Skip to main content

2018 | OriginalPaper | Buchkapitel

10. Full-Coverage Effusion Cooling in External Forced Convection: Sparse and Dense Hole Arrays

verfasst von : Phil Ligrani

Erschienen in: Handbook of Thermal Science and Engineering

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

To illustrate forced convection, external flow effects and phenomena, considered are full coverage effusion cooling arrangements. Parameters and phenomena considered include: (1) blowing ratio BR, (2) magnitude of main flow streamwise static pressure gradient (quantified by mainstream passage contraction ratio Cr values of 1, 3, 4, and 5), (3) streamwise development (quantified by variations with x/D), (4) effusion cooling hole inclination angle α, and (5) effusion hole spacing, ranging from dense to sparse (characterized by X/D values of 6 and 18, and Y/D values of 3, 5, and 7). As such, the film cooling holes in adjacent streamwise rows are staggered with respect to each other, with sharp edges, and streamwise inclination angles of either 20 degrees or 30 degrees, with respect to the liner surface. Data are provided for turbulent film cooling, blowing ratios (at the test section entrance) of 2.0, 5.0, and 10.0, coolant Reynolds numbers of 12,000 for BR = 5.0, freestream temperatures from 75 °C to 115 °C, a film hole diameter of 7 mm, and density ratios from 1.15 to 1.25. Data include local, line-averaged, and spatially-averaged adiabatic film effectiveness data and local, line-averaged, and spatially-averaged heat transfer coefficient data. Varying blowing ratio values are utilized along the length of the contraction passage, which contains the cooling hole arrangement, when contraction ratio is different from 1. Dependence on blowing ratio indicates important influences of coolant concentration and distribution. For example, line-averaged and spatially-averaged adiabatic effectiveness data show vastly different changes with blowing ratio BR for the configurations with contraction ratios of 1 and 4. These changes from acceleration are thus mostly due to different blowing ratio distributions along the test section.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Leger B, Miron P, Emidio JM (2002) Geometric and aero-thermal influences on multiholed plate temperature: application on combustor wall. Int J Heat Mass Transf 46:1215–1222CrossRef Leger B, Miron P, Emidio JM (2002) Geometric and aero-thermal influences on multiholed plate temperature: application on combustor wall. Int J Heat Mass Transf 46:1215–1222CrossRef
Zurück zum Zitat Ligrani PM, Goodro M, Fox M, Moon H-K (2012) Full-coverage film cooling: film effectiveness and heat transfer coefficients for dense and sparse hole arrays at different blowing ratios. ASME Trans J Turbomach 134(6):061039-1–061039-13CrossRef Ligrani PM, Goodro M, Fox M, Moon H-K (2012) Full-coverage film cooling: film effectiveness and heat transfer coefficients for dense and sparse hole arrays at different blowing ratios. ASME Trans J Turbomach 134(6):061039-1–061039-13CrossRef
Zurück zum Zitat Ligrani PM, Goodro M, Fox M, Moon H-K (2013) Full-coverage film cooling: film effectiveness and heat transfer coefficients for dense hole arrays at different hole angles, contraction ratios, and blowing ratios. ASME Trans J Heat Tran 135(3):031707-1–031707-14 Ligrani PM, Goodro M, Fox M, Moon H-K (2013) Full-coverage film cooling: film effectiveness and heat transfer coefficients for dense hole arrays at different hole angles, contraction ratios, and blowing ratios. ASME Trans J Heat Tran 135(3):031707-1–031707-14
Zurück zum Zitat Ligrani PM, Goodro M, Fox M, Moon H-K (2015) Full-coverage film cooling: heat transfer coefficients and film effectiveness for a sparse hole array at different blowing ratios and contraction ratios. ASME Trans J Heat Trans 137(3):032201-1–032201-12CrossRef Ligrani PM, Goodro M, Fox M, Moon H-K (2015) Full-coverage film cooling: heat transfer coefficients and film effectiveness for a sparse hole array at different blowing ratios and contraction ratios. ASME Trans J Heat Trans 137(3):032201-1–032201-12CrossRef
Zurück zum Zitat Lin Y, Song B, Li B, Liu G, Wu Z (2003) Investigation of film cooling effectiveness of full-coverage inclined multihole walls with different hole arrangements, ASME paper number GT-2003-38881 Lin Y, Song B, Li B, Liu G, Wu Z (2003) Investigation of film cooling effectiveness of full-coverage inclined multihole walls with different hole arrangements, ASME paper number GT-2003-38881
Zurück zum Zitat Sasaki M, Takahara K, Kumagai T, Hamano M (1979) Film cooling effectiveness for injection from multirow holes. ASME Trans J Eng Power 101:101–108CrossRef Sasaki M, Takahara K, Kumagai T, Hamano M (1979) Film cooling effectiveness for injection from multirow holes. ASME Trans J Eng Power 101:101–108CrossRef
Zurück zum Zitat Scrittore JJ, Thole KA, Burd SW (2007) Investigation of velocity profiles for effusion cooling of a combustor liner. ASME Trans J Turbomach 129:518–526CrossRef Scrittore JJ, Thole KA, Burd SW (2007) Investigation of velocity profiles for effusion cooling of a combustor liner. ASME Trans J Turbomach 129:518–526CrossRef
Metadaten
Titel
Full-Coverage Effusion Cooling in External Forced Convection: Sparse and Dense Hole Arrays
verfasst von
Phil Ligrani
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-26695-4_8

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.