Skip to main content
Erschienen in: Journal of Scientific Computing 3/2016

25.05.2016

Fully Discretized Energy Stable Schemes for Hydrodynamic Equations Governing Two-Phase Viscous Fluid Flows

verfasst von: Yuezheng Gong, Xinfeng Liu, Qi Wang

Erschienen in: Journal of Scientific Computing | Ausgabe 3/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We develop systematically a numerical approximation strategy to discretize a hydrodynamic phase field model for a binary fluid mixture of two immiscible viscous fluids, derived using the generalized Onsager principle that warrants not only the variational structure but also the energy dissipation property. We first discretize the governing equations in space to arrive at a semi-discretized, time-dependent ordinary differential and algebraic equation (DAE) system in which a corresponding discrete energy dissipation law is preserved. Then, we discretize the DAE system in time to obtain a fully discretized system using a structure preserving finite difference method like the Crank–Nicolson method, which satisfies a fully discretized energy dissipation law. Alternatively, we solve the first order DAE system using the integration factor method after the algebraic equation is solved firstly. The integration factor method, which treats the linear, spatial derivative terms explicitly. Finally, two numerical examples are presented to compare the efficiency and accuracy of the two proposed methods.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Berger, M.J., Colella, P.: Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys. 82, 64–84 (1989)CrossRefMATH Berger, M.J., Colella, P.: Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys. 82, 64–84 (1989)CrossRefMATH
2.
Zurück zum Zitat Berger, M.J., Oliger, J.: Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. 53, 484–512 (1984)MathSciNetCrossRefMATH Berger, M.J., Oliger, J.: Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. 53, 484–512 (1984)MathSciNetCrossRefMATH
4.
Zurück zum Zitat Brigham, E.O.: The fast Fourier transform and its applications. Prentice Hall, Upper Saddle River (1988) Brigham, E.O.: The fast Fourier transform and its applications. Prentice Hall, Upper Saddle River (1988)
5.
Zurück zum Zitat Celledoni, E., Grimm, V., McLachlan, R.I., McLaren, D.I., O’Neale, D., Owren, B., Quispel, G.R.W.: Preserving energy resp. dissipation in numerical pdes using the “average vector field” method. J. Comput. Phys. 231, 6770–6789 (2012)MathSciNetCrossRefMATH Celledoni, E., Grimm, V., McLachlan, R.I., McLaren, D.I., O’Neale, D., Owren, B., Quispel, G.R.W.: Preserving energy resp. dissipation in numerical pdes using the “average vector field” method. J. Comput. Phys. 231, 6770–6789 (2012)MathSciNetCrossRefMATH
6.
Zurück zum Zitat Chen, S., Zhang, Y.: Krylov implicit integration factor methods for spatial discretization on high dimensional unstructured meshes: application to discontinuous Galerkin methods. J. Comput. Phys. 230, 4336–4352 (2011)MathSciNetCrossRefMATH Chen, S., Zhang, Y.: Krylov implicit integration factor methods for spatial discretization on high dimensional unstructured meshes: application to discontinuous Galerkin methods. J. Comput. Phys. 230, 4336–4352 (2011)MathSciNetCrossRefMATH
8.
Zurück zum Zitat Dahlby, M., Owren, B.: A general framework for deriving integral preserving numerical methods for pdes. SIAM J. Sci. Comput. 33, 2318–2340 (2011)MathSciNetCrossRefMATH Dahlby, M., Owren, B.: A general framework for deriving integral preserving numerical methods for pdes. SIAM J. Sci. Comput. 33, 2318–2340 (2011)MathSciNetCrossRefMATH
9.
Zurück zum Zitat Delfour, M., Fortin, M., Payr, G.: Finite-difference solutions of a non-linear Schrödinger equation. J. Comput. Phys. 44, 277–288 (1981)MathSciNetCrossRefMATH Delfour, M., Fortin, M., Payr, G.: Finite-difference solutions of a non-linear Schrödinger equation. J. Comput. Phys. 44, 277–288 (1981)MathSciNetCrossRefMATH
10.
Zurück zum Zitat Du, Q., Zhu, W.: Stability analysis and applications of the exponential time differencing schemes. J. Comput. Math. 22, 200–209 (2004)MathSciNetMATH Du, Q., Zhu, W.: Stability analysis and applications of the exponential time differencing schemes. J. Comput. Math. 22, 200–209 (2004)MathSciNetMATH
11.
Zurück zum Zitat Du, Q., Zhu, W.: Modified exponential time differencing schemes: analysis and applications. BIT Numer. Math. 45, 307–328 (2005)MathSciNetCrossRefMATH Du, Q., Zhu, W.: Modified exponential time differencing schemes: analysis and applications. BIT Numer. Math. 45, 307–328 (2005)MathSciNetCrossRefMATH
12.
Zurück zum Zitat Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. Handb. Numer. Anal. 7, 713–1018 (2000)MathSciNetMATH Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. Handb. Numer. Anal. 7, 713–1018 (2000)MathSciNetMATH
13.
Zurück zum Zitat Fei, Z., Vazquez, L.: Two energy conserving numerical schemes for the sine-Gordon equation. Appl. Math. Comput. 45, 17–30 (1991)MathSciNetMATH Fei, Z., Vazquez, L.: Two energy conserving numerical schemes for the sine-Gordon equation. Appl. Math. Comput. 45, 17–30 (1991)MathSciNetMATH
14.
Zurück zum Zitat Feng, K., Qin, M.: Symplectic Geometric Algorithms for Hamiltonian Systems. Springer, Heidelberg (2010)CrossRefMATH Feng, K., Qin, M.: Symplectic Geometric Algorithms for Hamiltonian Systems. Springer, Heidelberg (2010)CrossRefMATH
15.
Zurück zum Zitat Furihata, D.: Finite difference schemes for \(\frac{\partial u}{\partial t}=(\frac{\partial }{\partial x})^{\alpha }\frac{\delta g}{\delta u}\) that inherit energy conservation or dissipation property. J. Comput. Phys. 156, 181–205 (1999)MathSciNetCrossRefMATH Furihata, D.: Finite difference schemes for \(\frac{\partial u}{\partial t}=(\frac{\partial }{\partial x})^{\alpha }\frac{\delta g}{\delta u}\) that inherit energy conservation or dissipation property. J. Comput. Phys. 156, 181–205 (1999)MathSciNetCrossRefMATH
16.
Zurück zum Zitat Furihata, D., Matsuo, T.: Discrete Variational Derivative Method. A Structure-Preserving Numerical Method for Partial Differential Equations. Chapman Hall, Boca Raton (2011)MATH Furihata, D., Matsuo, T.: Discrete Variational Derivative Method. A Structure-Preserving Numerical Method for Partial Differential Equations. Chapman Hall, Boca Raton (2011)MATH
17.
Zurück zum Zitat Gong, Y., Cai, J., Wang, Y.: Some new structure-preserving algorithms for general multi-symplectic formulations of hamiltonian pdes. J. Comput. Phys. 279, 80–102 (2014)MathSciNetCrossRef Gong, Y., Cai, J., Wang, Y.: Some new structure-preserving algorithms for general multi-symplectic formulations of hamiltonian pdes. J. Comput. Phys. 279, 80–102 (2014)MathSciNetCrossRef
18.
Zurück zum Zitat Gray, R.M.: Toeplitz and Circulant Matrices: A Review. Found. Trends Commu. Inform. Theory. 2, 155–239 (2006)CrossRefMATH Gray, R.M.: Toeplitz and Circulant Matrices: A Review. Found. Trends Commu. Inform. Theory. 2, 155–239 (2006)CrossRefMATH
19.
Zurück zum Zitat Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations. Springer, Berlin (2002)CrossRefMATH Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations. Springer, Berlin (2002)CrossRefMATH
20.
Zurück zum Zitat Hua, J., Lin, P., Liu, C., Wang, Q.: Energy law preserving \(c^0\) finite element schemes for phase field models in two-phase flow computations. J. Comput. Phys. 230, 7115–7131 (2011)MathSciNetCrossRefMATH Hua, J., Lin, P., Liu, C., Wang, Q.: Energy law preserving \(c^0\) finite element schemes for phase field models in two-phase flow computations. J. Comput. Phys. 230, 7115–7131 (2011)MathSciNetCrossRefMATH
21.
Zurück zum Zitat Huang, M.: A hamiltonian approximation to simulate solitary waves of the Korteweg-de Vries equation. Math. Comput. 56, 607–620 (1991)MathSciNetCrossRefMATH Huang, M.: A hamiltonian approximation to simulate solitary waves of the Korteweg-de Vries equation. Math. Comput. 56, 607–620 (1991)MathSciNetCrossRefMATH
22.
23.
Zurück zum Zitat Jameson, A., Schmidt, W., Turkel, E.: Numerical Solutions of the Euler Equations by Finite Volume Methods Using Runge–Kutta Time-Stepping Schemes. AIAA 1259-1981 (1981) Jameson, A., Schmidt, W., Turkel, E.: Numerical Solutions of the Euler Equations by Finite Volume Methods Using Runge–Kutta Time-Stepping Schemes. AIAA 1259-1981 (1981)
25.
Zurück zum Zitat Ju, L., Liu, X., Leng, W.: Compact implicit integration factor methods for a family of semi linear fourth-order parabolic equations. Discrete Continuous Dyn. Syst. Ser. B 19, 1667–1687 (2014)MathSciNetCrossRefMATH Ju, L., Liu, X., Leng, W.: Compact implicit integration factor methods for a family of semi linear fourth-order parabolic equations. Discrete Continuous Dyn. Syst. Ser. B 19, 1667–1687 (2014)MathSciNetCrossRefMATH
26.
Zurück zum Zitat Ju, L., Zhang, J., Zhu, L., Du, Q.: Fast explicit integration factor methods for semilinear parabolic equations. J. Sci. Comput. 62, 431–455 (2015)MathSciNetCrossRefMATH Ju, L., Zhang, J., Zhu, L., Du, Q.: Fast explicit integration factor methods for semilinear parabolic equations. J. Sci. Comput. 62, 431–455 (2015)MathSciNetCrossRefMATH
27.
28.
Zurück zum Zitat Kleefeld, B., Khaliq, A.Q.M., Wade, B.A.: An etd Crank–Nicolson method for reaction-diffusion systems. Numer. Methods Partial Differ. Equ. 28, 1309–1335 (2012)MathSciNetCrossRefMATH Kleefeld, B., Khaliq, A.Q.M., Wade, B.A.: An etd Crank–Nicolson method for reaction-diffusion systems. Numer. Methods Partial Differ. Equ. 28, 1309–1335 (2012)MathSciNetCrossRefMATH
30.
31.
Zurück zum Zitat Li, S., Vu-Quoc, L.: Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein–Gordon equation. SIAM J. Numer. Anal. 32, 1839–1875 (1995)MathSciNetCrossRefMATH Li, S., Vu-Quoc, L.: Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein–Gordon equation. SIAM J. Numer. Anal. 32, 1839–1875 (1995)MathSciNetCrossRefMATH
32.
Zurück zum Zitat Liu, X., Nie, Q.: Compact integration factor methods for complex domains and adaptive mesh refinement. J. Comput. Phys. 229, 5692–5706 (2010)MathSciNetCrossRefMATH Liu, X., Nie, Q.: Compact integration factor methods for complex domains and adaptive mesh refinement. J. Comput. Phys. 229, 5692–5706 (2010)MathSciNetCrossRefMATH
33.
34.
Zurück zum Zitat Van Loan, C.: Computational frameworks for the fast fourier transform. SIAM 10, (1992) Van Loan, C.: Computational frameworks for the fast fourier transform. SIAM 10, (1992)
35.
Zurück zum Zitat Matsuo, T., Furihata, D.: Dissipative or conservative finite-difference schemes for complex-valued nonlinear partial differential equations. J. Comput. Phys. 171, 425–447 (2001)MathSciNetCrossRefMATH Matsuo, T., Furihata, D.: Dissipative or conservative finite-difference schemes for complex-valued nonlinear partial differential equations. J. Comput. Phys. 171, 425–447 (2001)MathSciNetCrossRefMATH
36.
Zurück zum Zitat Nie, Q., Wan, F., Zhang, Y., Liu, X.: Compact integration factor methods in high spatial dimensions. J. Comput. Phys. 227, 5238–5255 (2008)MathSciNetCrossRefMATH Nie, Q., Wan, F., Zhang, Y., Liu, X.: Compact integration factor methods in high spatial dimensions. J. Comput. Phys. 227, 5238–5255 (2008)MathSciNetCrossRefMATH
37.
Zurück zum Zitat Onsager, L.: Reciprocal relations in irreversible processes. I. Phys. Rev. 37, 405–426 (1931)CrossRefMATH Onsager, L.: Reciprocal relations in irreversible processes. I. Phys. Rev. 37, 405–426 (1931)CrossRefMATH
38.
Zurück zum Zitat Onsager, L.: Reciprocal relations in irreversible processes. II. Phys. Rev. 38, 2265–2279 (1931)CrossRefMATH Onsager, L.: Reciprocal relations in irreversible processes. II. Phys. Rev. 38, 2265–2279 (1931)CrossRefMATH
39.
Zurück zum Zitat Shen, J., Tang, T.: Spectral and High-Order Methods with Applications. Science Press, Beijing (2006)MATH Shen, J., Tang, T.: Spectral and High-Order Methods with Applications. Science Press, Beijing (2006)MATH
40.
Zurück zum Zitat Shen, J., Yang, X.: Decoupled energy stable schemes for phase-field models of two-phase complex fluids. SIAM J. Sci. Comput. 36, 122–145 (2014)MathSciNetCrossRefMATH Shen, J., Yang, X.: Decoupled energy stable schemes for phase-field models of two-phase complex fluids. SIAM J. Sci. Comput. 36, 122–145 (2014)MathSciNetCrossRefMATH
41.
42.
Zurück zum Zitat Wang, D., Chen, W., Nie, Q.: Semi-implicit integration factor methods on sparse grids for high-dimensional systems. J. Comput. Phys. 292, 43–55 (2015)MathSciNetCrossRef Wang, D., Chen, W., Nie, Q.: Semi-implicit integration factor methods on sparse grids for high-dimensional systems. J. Comput. Phys. 292, 43–55 (2015)MathSciNetCrossRef
43.
Zurück zum Zitat Wang, D., Zhang, L., Nie, Q.: Array-representation integration factor method for high-dimensional systems. J. Comput. Phys. 258, 585–600 (2014)MathSciNetCrossRef Wang, D., Zhang, L., Nie, Q.: Array-representation integration factor method for high-dimensional systems. J. Comput. Phys. 258, 585–600 (2014)MathSciNetCrossRef
44.
Zurück zum Zitat Wang, Y., Hong, J.: Multi-symplectic algorithms for hamiltonian partial differential equations. Commun. Appl. Math. Comput. 27, 163–230 (2013)MathSciNetMATH Wang, Y., Hong, J.: Multi-symplectic algorithms for hamiltonian partial differential equations. Commun. Appl. Math. Comput. 27, 163–230 (2013)MathSciNetMATH
45.
Zurück zum Zitat Wiegmann, A.: Fast Poisson, Fast Helmholtz and Fast Linear Elastostatic Solvers on Rectangular Parallelepipeds. Lawrence Berkeley National Laboratory, Paper LBNL-43565 (1999) Wiegmann, A.: Fast Poisson, Fast Helmholtz and Fast Linear Elastostatic Solvers on Rectangular Parallelepipeds. Lawrence Berkeley National Laboratory, Paper LBNL-43565 (1999)
46.
Zurück zum Zitat Yang, X.: Modeling and Numerical Simulations of Active Liquid Crystals. PhD thesis, Nankai University, Tianjin, China (2014) Yang, X.: Modeling and Numerical Simulations of Active Liquid Crystals. PhD thesis, Nankai University, Tianjin, China (2014)
47.
Zurück zum Zitat Yang, X., Li, J., Forest, M.G., Wang, Q.: Hydrodynamic theories for flows of active liquid crystals and generalized onsager principle. Entropy, (2016, in press) Yang, X., Li, J., Forest, M.G., Wang, Q.: Hydrodynamic theories for flows of active liquid crystals and generalized onsager principle. Entropy, (2016, in press)
48.
Zurück zum Zitat Zhao, J., Wang, Q.: Semi-discrete energy-stable schemes for a tensor-based hydrodynamic model of nematic liquid crystal flows. J. Sci. Comput. (2016). doi:10.1007/s10915-016-0177-x Zhao, J., Wang, Q.: Semi-discrete energy-stable schemes for a tensor-based hydrodynamic model of nematic liquid crystal flows. J. Sci. Comput. (2016). doi:10.​1007/​s10915-016-0177-x
49.
Zurück zum Zitat Zhao, J., Yang, X., Shen, J., Wang, Q.: A decoupled energy stable scheme for a hydrodynamic phase-field model of mixtures of nematic liquid crystals and viscous fluids. J. Comput. Phys. 305, 539–556 (2016)MathSciNetCrossRef Zhao, J., Yang, X., Shen, J., Wang, Q.: A decoupled energy stable scheme for a hydrodynamic phase-field model of mixtures of nematic liquid crystals and viscous fluids. J. Comput. Phys. 305, 539–556 (2016)MathSciNetCrossRef
50.
Zurück zum Zitat Zhao, J., Yang, X., Wang, Q.: Energy stable numerical schemes for a hydrodynamic model of nematic liquid crystals. SIAM J. Sci. Comput. (2016, in press) Zhao, J., Yang, X., Wang, Q.: Energy stable numerical schemes for a hydrodynamic model of nematic liquid crystals. SIAM J. Sci. Comput. (2016, in press)
51.
Zurück zum Zitat Zhao, S., Ovadia, J., Liu, X., Zhang, Y., Nie, Q.: Operator splitting implicit integration factor methods for stiff reaction–diffusion–advection systems. J. Comput. Phys. 230, 5996–6009 (2011)MathSciNetCrossRefMATH Zhao, S., Ovadia, J., Liu, X., Zhang, Y., Nie, Q.: Operator splitting implicit integration factor methods for stiff reaction–diffusion–advection systems. J. Comput. Phys. 230, 5996–6009 (2011)MathSciNetCrossRefMATH
Metadaten
Titel
Fully Discretized Energy Stable Schemes for Hydrodynamic Equations Governing Two-Phase Viscous Fluid Flows
verfasst von
Yuezheng Gong
Xinfeng Liu
Qi Wang
Publikationsdatum
25.05.2016
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 3/2016
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-016-0224-7

Weitere Artikel der Ausgabe 3/2016

Journal of Scientific Computing 3/2016 Zur Ausgabe