Skip to main content
Erschienen in: Engineering with Computers 4/2021

12.02.2020 | Original Article

Fully Petrov–Galerkin spectral method for the distributed-order time-fractional fourth-order partial differential equation

verfasst von: Farhad Fakhar-Izadi

Erschienen in: Engineering with Computers | Ausgabe 4/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Distributed fractional derivative operators can be used for modeling of complex multiscaling anomalous transport, where derivative orders are distributed over a range of values rather than being just a fixed integer number. In this paper, we consider the space-time Petrov–Galerkin spectral method for a two-dimensional distributed-order time-fractional fourth-order partial differential equation. By applying a proper Gauss-quadrature rule to discretize the distributed integral operator, the problem is converted to a multi-term time-fractional equation. Then, the proposed method for solving the obtained equation is based on using Jacobi polyfractonomial, which are eigenfunctions of the first kind fractional Sturm–Liouville problem (FSLP), as temporal basis and Legendre polynomials for the spatial discretization. The eigenfunctions of the second kind FSLP are used as temporal basis in test space. This approach leads to finding the numerical solution of the problem through solving a system of linear algebraic equations. Finally, we provide some examples with smooth solutions and finite regular solutions to numerically demonstrate the efficiency, accuracy, and exponential convergence of the proposed method.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Abbaszadeh M, Dehghan M (2017) An improved meshless method for solving two-dimensional distributed order time-fractional diffusion-wave equation with error estimate. Numer Algorithms 75(1):173–211MathSciNetMATH Abbaszadeh M, Dehghan M (2017) An improved meshless method for solving two-dimensional distributed order time-fractional diffusion-wave equation with error estimate. Numer Algorithms 75(1):173–211MathSciNetMATH
2.
Zurück zum Zitat Ainsworth M, Glusa C (2017) Aspects of an adaptive finite element method for the fractional Laplacian: a priori and a posteriori error estimates, efficient implementation and multigrid solver. Comput Methods Appl Mech Eng 327:4–35MathSciNetMATH Ainsworth M, Glusa C (2017) Aspects of an adaptive finite element method for the fractional Laplacian: a priori and a posteriori error estimates, efficient implementation and multigrid solver. Comput Methods Appl Mech Eng 327:4–35MathSciNetMATH
3.
Zurück zum Zitat Ammi MRS, Jamiai I (2018) Finite difference and Legendre spectral method for a time-fractional diffusion-convection equation for image restoration. Discrete Contin Dyn Syst Ser S 11(1) Ammi MRS, Jamiai I (2018) Finite difference and Legendre spectral method for a time-fractional diffusion-convection equation for image restoration. Discrete Contin Dyn Syst Ser S 11(1)
4.
Zurück zum Zitat Ardakani AG (2016) Investigation of Brewster anomalies in one-dimensional disordered media having Lévy-type distribution. Eur Phys J B 89(3):76 Ardakani AG (2016) Investigation of Brewster anomalies in one-dimensional disordered media having Lévy-type distribution. Eur Phys J B 89(3):76
5.
Zurück zum Zitat Armour KC, Marshall J, Scott JR, Donohoe A, Newsom ER (2016) Southern ocean warming delayed by circumpolar upwelling and equatorward transport. Nat Geosci 9(7):549 Armour KC, Marshall J, Scott JR, Donohoe A, Newsom ER (2016) Southern ocean warming delayed by circumpolar upwelling and equatorward transport. Nat Geosci 9(7):549
6.
Zurück zum Zitat Atanackovic T M, Pilipovic S, Zorica D (2009) Time distributed-order diffusion-wave equation. I. Volterra-type equation. Proc R Soc A Math Phys Eng Sci 465(2106):1869–1891MathSciNetMATH Atanackovic T M, Pilipovic S, Zorica D (2009) Time distributed-order diffusion-wave equation. I. Volterra-type equation. Proc R Soc A Math Phys Eng Sci 465(2106):1869–1891MathSciNetMATH
7.
Zurück zum Zitat Benson DA, Wheatcraft SW, Meerschaert MM (2000) Application of a fractional advection–dispersion equation. Water Resour Res 36(6):1403–1412 Benson DA, Wheatcraft SW, Meerschaert MM (2000) Application of a fractional advection–dispersion equation. Water Resour Res 36(6):1403–1412
8.
Zurück zum Zitat Bu W, Xiao A, Zeng W (2017) Finite difference/finite element methods for distributed-order time fractional diffusion equations. J Sci Comput 72(1):422–441MathSciNetMATH Bu W, Xiao A, Zeng W (2017) Finite difference/finite element methods for distributed-order time fractional diffusion equations. J Sci Comput 72(1):422–441MathSciNetMATH
9.
Zurück zum Zitat Chechkin A, Gorenflo R, Sokolov I (2002) Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations. Phys Rev E 66(4):046129 Chechkin A, Gorenflo R, Sokolov I (2002) Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations. Phys Rev E 66(4):046129
10.
Zurück zum Zitat Chen H, Lü S, Chen W (2016) Finite difference/spectral approximations for the distributed order time fractional reaction–diffusion equation on an unbounded domain. J Comput Phys 315:84–97MathSciNetMATH Chen H, Lü S, Chen W (2016) Finite difference/spectral approximations for the distributed order time fractional reaction–diffusion equation on an unbounded domain. J Comput Phys 315:84–97MathSciNetMATH
11.
Zurück zum Zitat Chen S, Shen J, Wang L-L (2018) Laguerre functions and their applications to tempered fractional differential equations on infinite intervals. J Sci Comput 74(3):1286–1313MathSciNetMATH Chen S, Shen J, Wang L-L (2018) Laguerre functions and their applications to tempered fractional differential equations on infinite intervals. J Sci Comput 74(3):1286–1313MathSciNetMATH
12.
Zurück zum Zitat Cheng A, Wang H, Wang K (2015) A Eulerian–Lagrangian control volume method for solute transport with anomalous diffusion. Numer Methods Part Differ Equ 31(1):253–267MathSciNetMATH Cheng A, Wang H, Wang K (2015) A Eulerian–Lagrangian control volume method for solute transport with anomalous diffusion. Numer Methods Part Differ Equ 31(1):253–267MathSciNetMATH
13.
Zurück zum Zitat Coronel-Escamilla A, Gómez-Aguilar J, Torres L, Escobar-Jiménez R (2018) A numerical solution for a variable-order reaction–diffusion model by using fractional derivatives with non-local and non-singular kernel. Phys A 491:406–424MathSciNet Coronel-Escamilla A, Gómez-Aguilar J, Torres L, Escobar-Jiménez R (2018) A numerical solution for a variable-order reaction–diffusion model by using fractional derivatives with non-local and non-singular kernel. Phys A 491:406–424MathSciNet
14.
Zurück zum Zitat Diethelm K, Ford NJ (2001) Numerical solution methods for distributed order differential equations Diethelm K, Ford NJ (2001) Numerical solution methods for distributed order differential equations
15.
Zurück zum Zitat Diethelm K, Ford NJ (2009) Numerical analysis for distributed-order differential equations. J Comput Appl Math 225(1):96–104MathSciNetMATH Diethelm K, Ford NJ (2009) Numerical analysis for distributed-order differential equations. J Comput Appl Math 225(1):96–104MathSciNetMATH
16.
Zurück zum Zitat Duan J-S, Baleanu D (2018) Steady periodic response for a vibration system with distributed order derivatives to periodic excitation. J Vib Control 24(14):3124–3131MathSciNet Duan J-S, Baleanu D (2018) Steady periodic response for a vibration system with distributed order derivatives to periodic excitation. J Vib Control 24(14):3124–3131MathSciNet
17.
Zurück zum Zitat Edery Y, Dror I, Scher H, Berkowitz B (2015) Anomalous reactive transport in porous media: experiments and modeling. Phys Rev E 91(5):052130MathSciNet Edery Y, Dror I, Scher H, Berkowitz B (2015) Anomalous reactive transport in porous media: experiments and modeling. Phys Rev E 91(5):052130MathSciNet
18.
Zurück zum Zitat Fei M, Huang C (2019) Galerkin–Legendre spectral method for the distributed-order time fractional fourth-order partial differential equation. Int J Comput Math 1–14 Fei M, Huang C (2019) Galerkin–Legendre spectral method for the distributed-order time fractional fourth-order partial differential equation. Int J Comput Math 1–14
19.
Zurück zum Zitat Gao G-H, Alikhanov AA, Sun Z-Z (2017) The temporal second order difference schemes based on the interpolation approximation for solving the time multi-term and distributed-order fractional sub-diffusion equations. J Sci Comput 73(1):93–121MathSciNetMATH Gao G-H, Alikhanov AA, Sun Z-Z (2017) The temporal second order difference schemes based on the interpolation approximation for solving the time multi-term and distributed-order fractional sub-diffusion equations. J Sci Comput 73(1):93–121MathSciNetMATH
20.
Zurück zum Zitat Gao G-H, Sun H-W, Sun Z-Z (2015) Some high-order difference schemes for the distributed-order differential equations. J Comput Phys 298:337–359MathSciNetMATH Gao G-H, Sun H-W, Sun Z-Z (2015) Some high-order difference schemes for the distributed-order differential equations. J Comput Phys 298:337–359MathSciNetMATH
21.
Zurück zum Zitat Gardiner JD, Laub AJ, Amato JJ, Moler CB (1992) Solution of the sylvester matrix equation \({AX}{B}^{T}+ {CX}{D}^{ T}= {E}\). ACM Trans Math Softw (TOMS) 18(2):223–231MATH Gardiner JD, Laub AJ, Amato JJ, Moler CB (1992) Solution of the sylvester matrix equation \({AX}{B}^{T}+ {CX}{D}^{ T}= {E}\). ACM Trans Math Softw (TOMS) 18(2):223–231MATH
22.
Zurück zum Zitat Gorenflo R, Luchko Y, Yamamoto M (2015) Time-fractional diffusion equation in the fractional Sobolev spaces. Fract Calculus Appl Anal 18(3):799–820MathSciNetMATH Gorenflo R, Luchko Y, Yamamoto M (2015) Time-fractional diffusion equation in the fractional Sobolev spaces. Fract Calculus Appl Anal 18(3):799–820MathSciNetMATH
23.
Zurück zum Zitat Guo S, Mei L, Zhang Z, Jiang Y (2018) Finite difference/spectral-Galerkin method for a two-dimensional distributed-order time-space fractional reaction–diffusion equation. Appl Math Lett 85:157–163MathSciNetMATH Guo S, Mei L, Zhang Z, Jiang Y (2018) Finite difference/spectral-Galerkin method for a two-dimensional distributed-order time-space fractional reaction–diffusion equation. Appl Math Lett 85:157–163MathSciNetMATH
24.
Zurück zum Zitat Iwayama T, Murakami S, Watanabe T (2015) Anomalous eddy viscosity for two-dimensional turbulence. Phys Fluids 27(4):045104 Iwayama T, Murakami S, Watanabe T (2015) Anomalous eddy viscosity for two-dimensional turbulence. Phys Fluids 27(4):045104
25.
Zurück zum Zitat Ji C-C, Sun Z-Z, Hao Z-P (2016) Numerical algorithms with high spatial accuracy for the fourth-order fractional sub-diffusion equations with the first Dirichlet boundary conditions. J Sci Comput 66(3):1148–1174MathSciNetMATH Ji C-C, Sun Z-Z, Hao Z-P (2016) Numerical algorithms with high spatial accuracy for the fourth-order fractional sub-diffusion equations with the first Dirichlet boundary conditions. J Sci Comput 66(3):1148–1174MathSciNetMATH
26.
Zurück zum Zitat Jin B, Lazarov R, Thomée V, Zhou Z (2017) On nonnegativity preservation in finite element methods for subdiffusion equations. Math Comput 86(307):2239–2260MathSciNetMATH Jin B, Lazarov R, Thomée V, Zhou Z (2017) On nonnegativity preservation in finite element methods for subdiffusion equations. Math Comput 86(307):2239–2260MathSciNetMATH
27.
Zurück zum Zitat Kharazmi E, Zayernouri M (2018) Fractional pseudo-spectral methods for distributed-order fractional PDEs. Int J Comput Math 95(6–7):1340–1361MathSciNet Kharazmi E, Zayernouri M (2018) Fractional pseudo-spectral methods for distributed-order fractional PDEs. Int J Comput Math 95(6–7):1340–1361MathSciNet
28.
Zurück zum Zitat Kharazmi E, Zayernouri M, Karniadakis GE (2017a) Petrov–Galerkin and spectral collocation methods for distributed order differential equations. SIAM J Sci Comput 39(3):A1003–A1037MathSciNetMATH Kharazmi E, Zayernouri M, Karniadakis GE (2017a) Petrov–Galerkin and spectral collocation methods for distributed order differential equations. SIAM J Sci Comput 39(3):A1003–A1037MathSciNetMATH
29.
Zurück zum Zitat Kharazmi E, Zayernouri M, Karniadakis GE (2017b) A Petrov–Galerkin spectral element method for fractional elliptic problems. Comput Methods Appl Mech Eng 324:512–536MathSciNetMATH Kharazmi E, Zayernouri M, Karniadakis GE (2017b) A Petrov–Galerkin spectral element method for fractional elliptic problems. Comput Methods Appl Mech Eng 324:512–536MathSciNetMATH
30.
Zurück zum Zitat Kilbas A, Marichev O, Samko S (1993) Fractional integral and derivatives: theory and applications. Gordon and Breach, SwitzerlandMATH Kilbas A, Marichev O, Samko S (1993) Fractional integral and derivatives: theory and applications. Gordon and Breach, SwitzerlandMATH
31.
Zurück zum Zitat Kilbas AAA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations, volume 204. Elsevier Science Limited Kilbas AAA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations, volume 204. Elsevier Science Limited
32.
Zurück zum Zitat Klages R, Radons G, Sokolov IM (2008) Anomalous transport: foundations and applications. Wiley, Hoboken Klages R, Radons G, Sokolov IM (2008) Anomalous transport: foundations and applications. Wiley, Hoboken
33.
Zurück zum Zitat Konjik S, Oparnica L, Zorica D (2019) Distributed-order fractional constitutive stress-strain relation in wave propagation modeling. Zeitschrift für angewandte Mathematik und Physik 70(2):51MathSciNetMATH Konjik S, Oparnica L, Zorica D (2019) Distributed-order fractional constitutive stress-strain relation in wave propagation modeling. Zeitschrift für angewandte Mathematik und Physik 70(2):51MathSciNetMATH
34.
Zurück zum Zitat Li X, Rui H, Liu Z (2018) Two alternating direction implicit spectral methods for two-dimensional distributed-order differential equation. Numer Algorithms 1–27 Li X, Rui H, Liu Z (2018) Two alternating direction implicit spectral methods for two-dimensional distributed-order differential equation. Numer Algorithms 1–27
35.
Zurück zum Zitat Li X, Wu B (2016) A numerical method for solving distributed order diffusion equations. Appl Math Lett 53:92–99MathSciNetMATH Li X, Wu B (2016) A numerical method for solving distributed order diffusion equations. Appl Math Lett 53:92–99MathSciNetMATH
36.
Zurück zum Zitat Li X, Xu C (2009) A space-time spectral method for the time fractional diffusion equation. SIAM Journal on Numerical Analysis 47(3):2108–2131MathSciNetMATH Li X, Xu C (2009) A space-time spectral method for the time fractional diffusion equation. SIAM Journal on Numerical Analysis 47(3):2108–2131MathSciNetMATH
37.
Zurück zum Zitat Liao H-L, Lyu P, Vong S, Zhao Y (2017) Stability of fully discrete schemes with interpolation-type fractional formulas for distributed-order subdiffusion equations. Numer Algorithms 75(4):845–878MathSciNetMATH Liao H-L, Lyu P, Vong S, Zhao Y (2017) Stability of fully discrete schemes with interpolation-type fractional formulas for distributed-order subdiffusion equations. Numer Algorithms 75(4):845–878MathSciNetMATH
38.
Zurück zum Zitat Liu Y, Du Y, Li H, He S, Gao W (2015) Finite difference/finite element method for a nonlinear time-fractional fourth-order reaction–diffusion problem. Comput Math Appl 70(4):573–591MathSciNetMATH Liu Y, Du Y, Li H, He S, Gao W (2015) Finite difference/finite element method for a nonlinear time-fractional fourth-order reaction–diffusion problem. Comput Math Appl 70(4):573–591MathSciNetMATH
39.
Zurück zum Zitat Liu Y, Fang Z, Li H, He S (2014) A mixed finite element method for a time-fractional fourth-order partial differential equation. Appl Math Comput 243:703–717MathSciNetMATH Liu Y, Fang Z, Li H, He S (2014) A mixed finite element method for a time-fractional fourth-order partial differential equation. Appl Math Comput 243:703–717MathSciNetMATH
40.
Zurück zum Zitat Macías-Díaz J (2018) An explicit dissipation-preserving method for Riesz space-fractional nonlinear wave equations in multiple dimensions. Commun Nonlinear Sci Numer Simul 59:67–87MathSciNetMATH Macías-Díaz J (2018) An explicit dissipation-preserving method for Riesz space-fractional nonlinear wave equations in multiple dimensions. Commun Nonlinear Sci Numer Simul 59:67–87MathSciNetMATH
41.
Zurück zum Zitat Mainardi F, Mura A, Gorenflo R, Stojanović M (2007) The two forms of fractional relaxation of distributed order. J Vib Control 13(9–10):1249–1268MathSciNetMATH Mainardi F, Mura A, Gorenflo R, Stojanović M (2007) The two forms of fractional relaxation of distributed order. J Vib Control 13(9–10):1249–1268MathSciNetMATH
42.
Zurück zum Zitat Mao Z, Shen J (2016) Efficient spectral-Galerkin methods for fractional partial differential equations with variable coefficients. J Comput Phys 307:243–261MathSciNetMATH Mao Z, Shen J (2016) Efficient spectral-Galerkin methods for fractional partial differential equations with variable coefficients. J Comput Phys 307:243–261MathSciNetMATH
43.
Zurück zum Zitat Mao Z, Shen J (2018) Spectral element method with geometric mesh for two-sided fractional differential equations. Adv Comput Math 44(3):745–771MathSciNetMATH Mao Z, Shen J (2018) Spectral element method with geometric mesh for two-sided fractional differential equations. Adv Comput Math 44(3):745–771MathSciNetMATH
44.
Zurück zum Zitat Meerschaert MM (2012) Fractional calculus, anomalous diffusion, and probability. In: Fractional dynamics: recent advances. World Scientific, pp 265–284 Meerschaert MM (2012) Fractional calculus, anomalous diffusion, and probability. In: Fractional dynamics: recent advances. World Scientific, pp 265–284
45.
Zurück zum Zitat Meerschaert MM, Sikorskii A (2011) Stochastic models for fractional calculus, vol 43. Walter de Gruyter, BerlinMATH Meerschaert MM, Sikorskii A (2011) Stochastic models for fractional calculus, vol 43. Walter de Gruyter, BerlinMATH
46.
Zurück zum Zitat Metzler R, Jeon J-H, Cherstvy AG, Barkai E (2014) Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. Phys Chem Chem Phys 16(44):24128–24164 Metzler R, Jeon J-H, Cherstvy AG, Barkai E (2014) Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. Phys Chem Chem Phys 16(44):24128–24164
47.
Zurück zum Zitat Metzler R, Klafter J (2000) The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys Rep 339(1):1–77MathSciNetMATH Metzler R, Klafter J (2000) The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys Rep 339(1):1–77MathSciNetMATH
48.
Zurück zum Zitat Miller KS, Ross B (1993) An introduction to the fractional calculus and fractional differential equations. Wiley, HobokenMATH Miller KS, Ross B (1993) An introduction to the fractional calculus and fractional differential equations. Wiley, HobokenMATH
49.
Zurück zum Zitat Naghibolhosseini M, Long GR (2018) Fractional-order modelling and simulation of human ear. Int J Comput Math 95(6–7):1257–1273MathSciNet Naghibolhosseini M, Long GR (2018) Fractional-order modelling and simulation of human ear. Int J Comput Math 95(6–7):1257–1273MathSciNet
50.
Zurück zum Zitat Perdikaris P, Karniadakis GE (2014) Fractional-order viscoelasticity in one-dimensional blood flow models. Ann Biomed Eng 42(5):1012–1023 Perdikaris P, Karniadakis GE (2014) Fractional-order viscoelasticity in one-dimensional blood flow models. Ann Biomed Eng 42(5):1012–1023
51.
Zurück zum Zitat Podlubny I (1998) Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, vol 198. Elsevier, New YorkMATH Podlubny I (1998) Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, vol 198. Elsevier, New YorkMATH
52.
Zurück zum Zitat Ran M, Zhang C (2018) New compact difference scheme for solving the fourth-order time fractional sub-diffusion equation of the distributed order. Appl Numer Math 129:58–70MathSciNetMATH Ran M, Zhang C (2018) New compact difference scheme for solving the fourth-order time fractional sub-diffusion equation of the distributed order. Appl Numer Math 129:58–70MathSciNetMATH
53.
Zurück zum Zitat Samiee M, Kharazmi E, Zayernouri M, Meerschaert MM (2018) Petrov–Galerkin method for fully distributed-order fractional partial differential equations. arXiv preprint. arXiv:1805.08242 Samiee M, Kharazmi E, Zayernouri M, Meerschaert MM (2018) Petrov–Galerkin method for fully distributed-order fractional partial differential equations. arXiv preprint. arXiv:​1805.​08242
54.
Zurück zum Zitat Samiee M, Zayernouri M, Meerschaert MM (2019) A unified spectral method for FPDEs with two-sided derivatives; part I: a fast solver. J Comput Phys 385:225–243MathSciNetMATH Samiee M, Zayernouri M, Meerschaert MM (2019) A unified spectral method for FPDEs with two-sided derivatives; part I: a fast solver. J Comput Phys 385:225–243MathSciNetMATH
55.
Zurück zum Zitat Shraiman BI, Siggia ED (2000) Scalar turbulence. Nature 405(6787):639 Shraiman BI, Siggia ED (2000) Scalar turbulence. Nature 405(6787):639
56.
Zurück zum Zitat Siddiqi SS, Arshed S (2015) Numerical solution of time-fractional fourth-order partial differential equations. Int J Comput Math 92(7):1496–1518MathSciNetMATH Siddiqi SS, Arshed S (2015) Numerical solution of time-fractional fourth-order partial differential equations. Int J Comput Math 92(7):1496–1518MathSciNetMATH
58.
Zurück zum Zitat Szegö G (1975) Orthogonal polynomials, vol. 23. In: American Mathematical Society Colloquium Publications Szegö G (1975) Orthogonal polynomials, vol. 23. In: American Mathematical Society Colloquium Publications
59.
Zurück zum Zitat Tomovski Ž, Sandev T (2018) Distributed-order wave equations with composite time fractional derivative. Int J Comput Math 95(6–7):1100–1113MathSciNet Tomovski Ž, Sandev T (2018) Distributed-order wave equations with composite time fractional derivative. Int J Comput Math 95(6–7):1100–1113MathSciNet
60.
Zurück zum Zitat Wei L, He Y (2014) Analysis of a fully discrete local discontinuous Galerkin method for time-fractional fourth-order problems. Appl Math Model 38(4):1511–1522MathSciNetMATH Wei L, He Y (2014) Analysis of a fully discrete local discontinuous Galerkin method for time-fractional fourth-order problems. Appl Math Model 38(4):1511–1522MathSciNetMATH
61.
Zurück zum Zitat Zayernouri M, Karniadakis GE (2013) Fractional Sturm–Liouville eigen-problems: theory and numerical approximation. J Comput Phys 252:495–517MathSciNetMATH Zayernouri M, Karniadakis GE (2013) Fractional Sturm–Liouville eigen-problems: theory and numerical approximation. J Comput Phys 252:495–517MathSciNetMATH
62.
Zurück zum Zitat Zhang H, Yang X, Xu D (2019) A high-order numerical method for solving the 2D fourth-order reaction–diffusion equation. Numer Algorithms 80(3):849–877MathSciNetMATH Zhang H, Yang X, Xu D (2019) A high-order numerical method for solving the 2D fourth-order reaction–diffusion equation. Numer Algorithms 80(3):849–877MathSciNetMATH
63.
Zurück zum Zitat Zhang P, Pu H (2017) A second-order compact difference scheme for the fourth-order fractional sub-diffusion equation. Numer Algorithms 76(2):573–598MathSciNetMATH Zhang P, Pu H (2017) A second-order compact difference scheme for the fourth-order fractional sub-diffusion equation. Numer Algorithms 76(2):573–598MathSciNetMATH
64.
Zurück zum Zitat Zhang Y, Meerschaert MM, Baeumer B, LaBolle EM (2015) Modeling mixed retention and early arrivals in multidimensional heterogeneous media using an explicit Lagrangian scheme. Water Resour Res 51(8):6311–6337 Zhang Y, Meerschaert MM, Baeumer B, LaBolle EM (2015) Modeling mixed retention and early arrivals in multidimensional heterogeneous media using an explicit Lagrangian scheme. Water Resour Res 51(8):6311–6337
65.
Zurück zum Zitat Zhang Y, Meerschaert MM, Neupauer RM (2016) Backward fractional advection dispersion model for contaminant source prediction. Water Resour Res 52(4):2462–2473 Zhang Y, Meerschaert MM, Neupauer RM (2016) Backward fractional advection dispersion model for contaminant source prediction. Water Resour Res 52(4):2462–2473
Metadaten
Titel
Fully Petrov–Galerkin spectral method for the distributed-order time-fractional fourth-order partial differential equation
verfasst von
Farhad Fakhar-Izadi
Publikationsdatum
12.02.2020
Verlag
Springer London
Erschienen in
Engineering with Computers / Ausgabe 4/2021
Print ISSN: 0177-0667
Elektronische ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-020-00968-2

Weitere Artikel der Ausgabe 4/2021

Engineering with Computers 4/2021 Zur Ausgabe

Neuer Inhalt