Skip to main content
Erschienen in: Cellulose 18/2019

12.09.2019 | Original Research

Functional divergence of cellulose synthase orthologs in between wild Gossypium raimondii and domesticated G. arboreum diploid cotton species

verfasst von: Hee Jin Kim, Gregory N. Thyssen, Xianliang Song, Christopher D. Delhom, Yongliang Liu

Erschienen in: Cellulose | Ausgabe 18/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Cellulose synthase (CESA) synthesizes cellulose for plant cell walls and determines plant morphology and biomass amount. The recently sequenced cotton genomes of two diploid species, Gossypium raimondii and G. arboreum have become references for study of agriculturally important cotton fibers composed nearly exclusively of cellulose. To better understand the roles of functionally divergent CESAs, we compared physical properties and CESA expression patterns from various tissues at different developmental stages of the two diploid cottons. Chemical and phenotypic analyses showed that the domesticated G. arboreum fibers with high cellulose content, thick cell wall, and long length were superior to the wild G. raimondii fibers. Among the seventeen orthologous CESA pairs sharing > 98% identity between the two diploid genomes, putatively nonfunctional CESAs lacking structural integrity or conserved catalytic motifs were identified. Transcript expression patterns of functional CESA family genes sharing high sequence similarities in each genome were determined by RNA-seq and a PCR method that distinguished specific CESAs based on single nucleotide polymorphisms. Our results showed that mutational events causing non-functionalization and tissue specific expression patterns of the redundant CESA genes occurred in the domesticated G. arboreum more frequently than the wild G. raimondii. The results provide insight on how cellulose biosynthesis has been altered during diploid cotton evolution and domestication process, and contributed to the diversity of cotton species that differ in fiber quality and cellulose content.

Graphic abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Abidi N, Cabrales L, Hequet E (2010) Fourier transform infrared spectroscopic approach to the study of the secondary cell wall development in cotton fiber. Cellulose 17:309–320CrossRef Abidi N, Cabrales L, Hequet E (2010) Fourier transform infrared spectroscopic approach to the study of the secondary cell wall development in cotton fiber. Cellulose 17:309–320CrossRef
Zurück zum Zitat Betancur L, Singh B, Rapp RA, Wendel JF, Marks MD, Roberts AW, Haigler CH (2010) Phylogenetically distinct cellulose synthase genes support secondary wall thickening in Arabidopsis shoot trichomes and cotton fiber. J Integr Plant Biol 52:205–220PubMedCrossRef Betancur L, Singh B, Rapp RA, Wendel JF, Marks MD, Roberts AW, Haigler CH (2010) Phylogenetically distinct cellulose synthase genes support secondary wall thickening in Arabidopsis shoot trichomes and cotton fiber. J Integr Plant Biol 52:205–220PubMedCrossRef
Zurück zum Zitat Brown DM, Zeef LAH, Ellis J, Goodacre R, Turner SR (2005) Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics. Plant Cell 17:2281–2295PubMedPubMedCentralCrossRef Brown DM, Zeef LAH, Ellis J, Goodacre R, Turner SR (2005) Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics. Plant Cell 17:2281–2295PubMedPubMedCentralCrossRef
Zurück zum Zitat Carroll A et al (2012) Complexes with mixed primary and secondary cellulose synthases are functional in Arabidopsis plants. Plant Physiol 160:726–737PubMedPubMedCentralCrossRef Carroll A et al (2012) Complexes with mixed primary and secondary cellulose synthases are functional in Arabidopsis plants. Plant Physiol 160:726–737PubMedPubMedCentralCrossRef
Zurück zum Zitat Delmer DP (1999) Cellulose biosynthesis: exciting times for a difficult field of study. Annu Rev Plan Biol 50:245–276CrossRef Delmer DP (1999) Cellulose biosynthesis: exciting times for a difficult field of study. Annu Rev Plan Biol 50:245–276CrossRef
Zurück zum Zitat Djerbi S, Lindskog M, Arvestad L, Sterky F, Teeri TT (2005) The genome sequence of black cottonwood (Populus trichocarpa) reveals 18 conserved cellulose synthase (CesA) genes. Planta 221:739–746PubMedCrossRef Djerbi S, Lindskog M, Arvestad L, Sterky F, Teeri TT (2005) The genome sequence of black cottonwood (Populus trichocarpa) reveals 18 conserved cellulose synthase (CesA) genes. Planta 221:739–746PubMedCrossRef
Zurück zum Zitat Drenkard E et al (2000) A simple procedure for the analysis of single nucleotide polymorphisms facilitates map-based cloning in Arabidopsis. Plant Physiol 124:1483–1492PubMedPubMedCentralCrossRef Drenkard E et al (2000) A simple procedure for the analysis of single nucleotide polymorphisms facilitates map-based cloning in Arabidopsis. Plant Physiol 124:1483–1492PubMedPubMedCentralCrossRef
Zurück zum Zitat Du X et al (2018) Resequencing of 243 diploid cotton accessions based on an updated A genome identifies the genetic basis of key agronomic traits. Nat Genet 50:796–802PubMedCrossRef Du X et al (2018) Resequencing of 243 diploid cotton accessions based on an updated A genome identifies the genetic basis of key agronomic traits. Nat Genet 50:796–802PubMedCrossRef
Zurück zum Zitat Flagel LE, Wendel JF, Udall JA (2012) Duplicate gene evolution, homoeologous recombination, and transcriptome characterization in allopolyploid cotton. BMC Genom 13:302CrossRef Flagel LE, Wendel JF, Udall JA (2012) Duplicate gene evolution, homoeologous recombination, and transcriptome characterization in allopolyploid cotton. BMC Genom 13:302CrossRef
Zurück zum Zitat Force A, Lynch M, Pickett FB, Amores A, Yan Y-l, Postlethwait J (1999) Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151:1531–1545PubMedPubMedCentralCrossRef Force A, Lynch M, Pickett FB, Amores A, Yan Y-l, Postlethwait J (1999) Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151:1531–1545PubMedPubMedCentralCrossRef
Zurück zum Zitat Haigler CH, Roberts AW (2019) Structure/function relationships in the rosette cellulose synthesis complex illuminated by an evolutionaly perspective. Cellulose 26:227–247CrossRef Haigler CH, Roberts AW (2019) Structure/function relationships in the rosette cellulose synthesis complex illuminated by an evolutionaly perspective. Cellulose 26:227–247CrossRef
Zurück zum Zitat Haigler CH, Betancur L, Stiff MR, Tuttle JR (2012) Cotton fiber: a powerful single-cell model for cell wall and cellulose research. Front Plant Sci 3:1–7CrossRef Haigler CH, Betancur L, Stiff MR, Tuttle JR (2012) Cotton fiber: a powerful single-cell model for cell wall and cellulose research. Front Plant Sci 3:1–7CrossRef
Zurück zum Zitat Hill JL, Hammudi MB, Tien M (2014) The Arabidopsis cellulose synthase complex: a proposed hexamer of CESA trimers in an equimolar stoichiometry. Plant Cell 26:4834–4842PubMedPubMedCentralCrossRef Hill JL, Hammudi MB, Tien M (2014) The Arabidopsis cellulose synthase complex: a proposed hexamer of CESA trimers in an equimolar stoichiometry. Plant Cell 26:4834–4842PubMedPubMedCentralCrossRef
Zurück zum Zitat Hirsch CD, Springer NM, Hirsch CN (2015) Genomic limitations to RNA sequencing expression profiling. Plant J 84:491–503PubMedCrossRef Hirsch CD, Springer NM, Hirsch CN (2015) Genomic limitations to RNA sequencing expression profiling. Plant J 84:491–503PubMedCrossRef
Zurück zum Zitat Hu H et al (2018) Three AtCesA6-like members enhance biomass production by distinctively promoting cell growth in Arabidopsis. Plant Biotechnol J 16:976–988PubMedCrossRef Hu H et al (2018) Three AtCesA6-like members enhance biomass production by distinctively promoting cell growth in Arabidopsis. Plant Biotechnol J 16:976–988PubMedCrossRef
Zurück zum Zitat Hu Y et al (2019) Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nat Genet 51:739–748PubMedCrossRef Hu Y et al (2019) Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nat Genet 51:739–748PubMedCrossRef
Zurück zum Zitat Jacob-Wilk D, Kurek I, Hogan P, Delmer DP (2006) The cotton fiber zinc-binding domain of cellulose synthase A1 from Gossypium hirsutum displays rapid turnover in vitro and in vivo. Proc Natl Acad Sci USA 103:12191–12196PubMedPubMedCentralCrossRef Jacob-Wilk D, Kurek I, Hogan P, Delmer DP (2006) The cotton fiber zinc-binding domain of cellulose synthase A1 from Gossypium hirsutum displays rapid turnover in vitro and in vivo. Proc Natl Acad Sci USA 103:12191–12196PubMedPubMedCentralCrossRef
Zurück zum Zitat Joshi CP, Bhandari S, Ranjan P, Kalluri UC, Liang X, Fujino T, Samuga A (2004) Genomics of cellulose biosynthesis in poplars. New Phytol 164:53–61PubMedCrossRef Joshi CP, Bhandari S, Ranjan P, Kalluri UC, Liang X, Fujino T, Samuga A (2004) Genomics of cellulose biosynthesis in poplars. New Phytol 164:53–61PubMedCrossRef
Zurück zum Zitat Kim HJ (2015) Fiber biology. In: Fang DD, Percy RG (eds) Cotton. Agronomy monograph, 2nd edn. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Madison, pp 97–127 Kim HJ (2015) Fiber biology. In: Fang DD, Percy RG (eds) Cotton. Agronomy monograph, 2nd edn. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Madison, pp 97–127
Zurück zum Zitat Kim HJ (2018) Cotton fiber biosynthesis. In: Fang DD (ed) Cotton fiber: physics, chemistry and biology. Springer, Cham, pp 133–150 Kim HJ (2018) Cotton fiber biosynthesis. In: Fang DD (ed) Cotton fiber: physics, chemistry and biology. Springer, Cham, pp 133–150
Zurück zum Zitat Kim HJ, Triplett BA (2001) Cotton fiber growth in planta and in vitro. Models for plant cell elongation and cell wall biogenesis. Plant Physiol 127:1361–1366PubMedPubMedCentralCrossRef Kim HJ, Triplett BA (2001) Cotton fiber growth in planta and in vitro. Models for plant cell elongation and cell wall biogenesis. Plant Physiol 127:1361–1366PubMedPubMedCentralCrossRef
Zurück zum Zitat Kim H, Triplett BA (2007) Cellulose synthase catalytic subunit (CESA) genes associated with primary or secondary wall biosynthesis in developing cotton fibers (Gossypium hirsutum). In: World cotton research conference-4, Lubbock, Texas, USA. International Cotton Advisory Committee Kim H, Triplett BA (2007) Cellulose synthase catalytic subunit (CESA) genes associated with primary or secondary wall biosynthesis in developing cotton fibers (Gossypium hirsutum). In: World cotton research conference-4, Lubbock, Texas, USA. International Cotton Advisory Committee
Zurück zum Zitat Kim HJ, Liu Y, Dowd M, Frelichowski J, Delhom C, Rodgers J, Thibodeaux D (2016) Comparative phenotypic analysis of Gossypium raimondii with Upland cotton. J Cotton Sci 20:132–144 Kim HJ, Liu Y, Dowd M, Frelichowski J, Delhom C, Rodgers J, Thibodeaux D (2016) Comparative phenotypic analysis of Gossypium raimondii with Upland cotton. J Cotton Sci 20:132–144
Zurück zum Zitat Kim HJ et al (2017) Comparative physical and chemical analyses of cotton fibers from two near isogenic upland lines differing in fiber wall thickness. Cellulose 24:2385–2401CrossRef Kim HJ et al (2017) Comparative physical and chemical analyses of cotton fibers from two near isogenic upland lines differing in fiber wall thickness. Cellulose 24:2385–2401CrossRef
Zurück zum Zitat Kim HJ, Liu Y, French AD, Lee CM, Kim SH (2018) Comparison and validation of Fourier Transform Infrared spectroscopic methods for monitoring secondary cell wall cellulose from cotton fibers. Cellulose 25:49–64CrossRef Kim HJ, Liu Y, French AD, Lee CM, Kim SH (2018) Comparison and validation of Fourier Transform Infrared spectroscopic methods for monitoring secondary cell wall cellulose from cotton fibers. Cellulose 25:49–64CrossRef
Zurück zum Zitat Kumar M et al (2009) An update on the nomenclature for the cellulose synthase genes in Populus. Trends Plant Sci 14:248–254PubMedCrossRef Kumar M et al (2009) An update on the nomenclature for the cellulose synthase genes in Populus. Trends Plant Sci 14:248–254PubMedCrossRef
Zurück zum Zitat Kumar M, Mishra L, Carr P, Pilling M, Gardner P, Mansfield SD, Turner S (2018) Exploiting CELLULOSE SYNTHASE (CESA) class specificity to probe cellulose microfibril biosynthesis. Plant Physiol 177:151–167PubMedPubMedCentralCrossRef Kumar M, Mishra L, Carr P, Pilling M, Gardner P, Mansfield SD, Turner S (2018) Exploiting CELLULOSE SYNTHASE (CESA) class specificity to probe cellulose microfibril biosynthesis. Plant Physiol 177:151–167PubMedPubMedCentralCrossRef
Zurück zum Zitat Kurek I, Kawagoe Y, Jacob-Wilk D, Doblin M, Delmer D (2002) Dimerization of cotton fiber cellulose synthase catalytic subunits occurs via oxidation of the zinc-binding domains. Proc Natl Acad Sci USA 99:11109–11114PubMedPubMedCentralCrossRef Kurek I, Kawagoe Y, Jacob-Wilk D, Doblin M, Delmer D (2002) Dimerization of cotton fiber cellulose synthase catalytic subunits occurs via oxidation of the zinc-binding domains. Proc Natl Acad Sci USA 99:11109–11114PubMedPubMedCentralCrossRef
Zurück zum Zitat Li F et al (2014) Genome sequence of the cultivated cotton Gossypium arboreum. Nat Genet 46:567–572PubMedCrossRef Li F et al (2014) Genome sequence of the cultivated cotton Gossypium arboreum. Nat Genet 46:567–572PubMedCrossRef
Zurück zum Zitat Li F et al (2015) Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nat Biotechnol 33:524–530PubMedCrossRef Li F et al (2015) Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nat Biotechnol 33:524–530PubMedCrossRef
Zurück zum Zitat Liu Y, Kim HJ (2015) Use of Attenuated Total Reflection Fourier Transform Infared (ATR FT-IR) spectroscopy in direct, non-destructive, and rapid assessment of developmental cotton fibers grown in planta and in culture. Appl Spectrosc 69:1004–1010PubMedCrossRef Liu Y, Kim HJ (2015) Use of Attenuated Total Reflection Fourier Transform Infared (ATR FT-IR) spectroscopy in direct, non-destructive, and rapid assessment of developmental cotton fibers grown in planta and in culture. Appl Spectrosc 69:1004–1010PubMedCrossRef
Zurück zum Zitat Liu Y, Kim H-J (2019) Comparative investigation of secondary cell wall development in cotton fiber near isogenic lines using Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR FT-IR). Appl Spectrosc 73:329–336PubMedCrossRef Liu Y, Kim H-J (2019) Comparative investigation of secondary cell wall development in cotton fiber near isogenic lines using Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR FT-IR). Appl Spectrosc 73:329–336PubMedCrossRef
Zurück zum Zitat Liu X et al (2015) Gossypium barbadense genome sequence provides insight into the evolution of extra-long staple fiber and specialized metabolites. Sci Rep 5:14139PubMedPubMedCentralCrossRef Liu X et al (2015) Gossypium barbadense genome sequence provides insight into the evolution of extra-long staple fiber and specialized metabolites. Sci Rep 5:14139PubMedPubMedCentralCrossRef
Zurück zum Zitat Morgan JL, Strumillo J, Zimmer J (2013) Crystallographic snapshot of cellulose synthesis and membrane translocation. Nature 493:181–186PubMedCrossRef Morgan JL, Strumillo J, Zimmer J (2013) Crystallographic snapshot of cellulose synthesis and membrane translocation. Nature 493:181–186PubMedCrossRef
Zurück zum Zitat Nixon BT et al (2016) Comparative structural and computational analysis supports eighteen cellulose synthases in the plant cellulose synthesis complex. Sci Rep 6:28696PubMedPubMedCentralCrossRef Nixon BT et al (2016) Comparative structural and computational analysis supports eighteen cellulose synthases in the plant cellulose synthesis complex. Sci Rep 6:28696PubMedPubMedCentralCrossRef
Zurück zum Zitat Ozsolak F, Milos PM (2011) RNA sequencing: advances, challenges and opportunities. Nat Rev Genet 12:87–98PubMedCrossRef Ozsolak F, Milos PM (2011) RNA sequencing: advances, challenges and opportunities. Nat Rev Genet 12:87–98PubMedCrossRef
Zurück zum Zitat Paterson AH et al (2012) Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature 492:423–427PubMedCrossRef Paterson AH et al (2012) Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature 492:423–427PubMedCrossRef
Zurück zum Zitat Pear JR, Kawagoe Y, Schreckengost WE, Delmer DP, Stalker DM (1996) Higher plants contain homologs of the bacterial celA genes encoding the catalytic subunit of cellulose synthase. Proc Natl Acad Sci USA 93:12637–12642PubMedPubMedCentralCrossRef Pear JR, Kawagoe Y, Schreckengost WE, Delmer DP, Stalker DM (1996) Higher plants contain homologs of the bacterial celA genes encoding the catalytic subunit of cellulose synthase. Proc Natl Acad Sci USA 93:12637–12642PubMedPubMedCentralCrossRef
Zurück zum Zitat Persson S, Wei H, Milne J, Page GP, Somerville CR (2005) Identification of genes required for cellulose synthesis by regression analysis of public microarray data sets. Proc Natl Acad Sci USA 102:8633–8638PubMedPubMedCentralCrossRef Persson S, Wei H, Milne J, Page GP, Somerville CR (2005) Identification of genes required for cellulose synthesis by regression analysis of public microarray data sets. Proc Natl Acad Sci USA 102:8633–8638PubMedPubMedCentralCrossRef
Zurück zum Zitat Proost S, Mutwil M (2017) PlaNet: comparative co-expression network analyses for plants. In: van Dijk ADJ (ed) Plant genomics databases. Humana Press, New York, pp 213–227CrossRef Proost S, Mutwil M (2017) PlaNet: comparative co-expression network analyses for plants. In: van Dijk ADJ (ed) Plant genomics databases. Humana Press, New York, pp 213–227CrossRef
Zurück zum Zitat Renny-Byfield S et al (2013) Diploidization and genome size change in allopolyploids is associated with differential dynamics of low-and high-copy sequences. Plant J 74:829–839PubMedCrossRef Renny-Byfield S et al (2013) Diploidization and genome size change in allopolyploids is associated with differential dynamics of low-and high-copy sequences. Plant J 74:829–839PubMedCrossRef
Zurück zum Zitat Renny-Byfield S et al (2014) Ancient gene duplicates in Gossypium (cotton) exhibit near-complete expression divergence. Genome Biol Evol 6:559–571PubMedPubMedCentralCrossRef Renny-Byfield S et al (2014) Ancient gene duplicates in Gossypium (cotton) exhibit near-complete expression divergence. Genome Biol Evol 6:559–571PubMedPubMedCentralCrossRef
Zurück zum Zitat Saski CA et al (2017) Sub genome anchored physical frameworks of the allotetraploid Upland cotton (Gossypium hirsutum L.) genome, and an approach toward reference-grade assemblies of polyploids. Sci Rep 7:15274PubMedPubMedCentralCrossRef Saski CA et al (2017) Sub genome anchored physical frameworks of the allotetraploid Upland cotton (Gossypium hirsutum L.) genome, and an approach toward reference-grade assemblies of polyploids. Sci Rep 7:15274PubMedPubMedCentralCrossRef
Zurück zum Zitat Sethaphong L, Davis JK, Slabaugh E, Singh A, Haigler CH, Yingling YG (2016) Prediction of the structures of the plant-specific regions of vascular plant cellulose synthases and correlated functional analysis. Cellulose 23:145–161CrossRef Sethaphong L, Davis JK, Slabaugh E, Singh A, Haigler CH, Yingling YG (2016) Prediction of the structures of the plant-specific regions of vascular plant cellulose synthases and correlated functional analysis. Cellulose 23:145–161CrossRef
Zurück zum Zitat Song D, Shen J, Li L (2010) Characterization of cellulose synthase complexes in Populus xylem differentiation. New Phytol 187:777–790PubMedCrossRef Song D, Shen J, Li L (2010) Characterization of cellulose synthase complexes in Populus xylem differentiation. New Phytol 187:777–790PubMedCrossRef
Zurück zum Zitat Stiff MR, Haigler CH (2012) Recent advances in cotton fiber development. In: Oosterhuis DM, Cothren JT (eds) Flowering and fruiting in cotton. The Cotton Foundation, Cordova, pp 163–192 Stiff MR, Haigler CH (2012) Recent advances in cotton fiber development. In: Oosterhuis DM, Cothren JT (eds) Flowering and fruiting in cotton. The Cotton Foundation, Cordova, pp 163–192
Zurück zum Zitat Suzuki S, Li L, Sun YH, Chiang VL (2006) The cellulose synthase gene superfamily and biochemical functions of xylem-specific cellulose synthase-like genes in Populus trichocarpa. Plant Physiol 142:1233–1245PubMedPubMedCentralCrossRef Suzuki S, Li L, Sun YH, Chiang VL (2006) The cellulose synthase gene superfamily and biochemical functions of xylem-specific cellulose synthase-like genes in Populus trichocarpa. Plant Physiol 142:1233–1245PubMedPubMedCentralCrossRef
Zurück zum Zitat Thibodeaux DP, Evans JP (1986) Cotton fiber maturity by image analysis. Text Res J 56:130–139CrossRef Thibodeaux DP, Evans JP (1986) Cotton fiber maturity by image analysis. Text Res J 56:130–139CrossRef
Zurück zum Zitat Turner S, Gallois P, Brown D (2007) Tracheary element differentiation. Annu Rev Plant Biol 58:407–433PubMedCrossRef Turner S, Gallois P, Brown D (2007) Tracheary element differentiation. Annu Rev Plant Biol 58:407–433PubMedCrossRef
Zurück zum Zitat Updegraff DM (1969) Semimicro determination of cellulose in biological materials. Anal Biochem 32:420–424PubMedCrossRef Updegraff DM (1969) Semimicro determination of cellulose in biological materials. Anal Biochem 32:420–424PubMedCrossRef
Zurück zum Zitat Wang M et al (2017) Asymmetric subgenome selection and cis-regulatory divergence during cotton domestication. Nat Genet 49:579–587PubMedCrossRef Wang M et al (2017) Asymmetric subgenome selection and cis-regulatory divergence during cotton domestication. Nat Genet 49:579–587PubMedCrossRef
Zurück zum Zitat Wang M et al (2019) Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense. Nat Genet 51:224–229PubMedCrossRef Wang M et al (2019) Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense. Nat Genet 51:224–229PubMedCrossRef
Zurück zum Zitat Xi W, Song D, Sun J, Shen J, Li L (2017) Formation of wood secondary cell wall may involve two type cellulose synthase complexes in Populus. Plant Mol Biol 93:419–429PubMedCrossRef Xi W, Song D, Sun J, Shen J, Li L (2017) Formation of wood secondary cell wall may involve two type cellulose synthase complexes in Populus. Plant Mol Biol 93:419–429PubMedCrossRef
Zurück zum Zitat Xu B, Huang Y (2004) Image analysis for cotton fibers Part II: cross-sectional measurements. Text Res J 74:409–416CrossRef Xu B, Huang Y (2004) Image analysis for cotton fibers Part II: cross-sectional measurements. Text Res J 74:409–416CrossRef
Zurück zum Zitat Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinform 13:134CrossRef Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinform 13:134CrossRef
Zurück zum Zitat Yuan D et al (2015) The genome sequence of Sea-Island cotton (Gossypium barbadense) provides insights into the allopolyploidization and development of superior spinnable fibres. Sci Rep 5:17662PubMedPubMedCentralCrossRef Yuan D et al (2015) The genome sequence of Sea-Island cotton (Gossypium barbadense) provides insights into the allopolyploidization and development of superior spinnable fibres. Sci Rep 5:17662PubMedPubMedCentralCrossRef
Zurück zum Zitat Zhang S et al (2017) A comparative phylogenetic analysis and SNP identification of cellulose synthase gene family in cotton. In: Beltwide cotton conferences, Dallas, TX. National Cotton Council, pp 491–499 Zhang S et al (2017) A comparative phylogenetic analysis and SNP identification of cellulose synthase gene family in cotton. In: Beltwide cotton conferences, Dallas, TX. National Cotton Council, pp 491–499
Zurück zum Zitat Zhang T et al (2015) Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol 33:531–537PubMedCrossRef Zhang T et al (2015) Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol 33:531–537PubMedCrossRef
Metadaten
Titel
Functional divergence of cellulose synthase orthologs in between wild Gossypium raimondii and domesticated G. arboreum diploid cotton species
verfasst von
Hee Jin Kim
Gregory N. Thyssen
Xianliang Song
Christopher D. Delhom
Yongliang Liu
Publikationsdatum
12.09.2019
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 18/2019
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-019-02744-y

Weitere Artikel der Ausgabe 18/2019

Cellulose 18/2019 Zur Ausgabe