Skip to main content
Erschienen in:

20.09.2022

Functional Equivariance and Conservation Laws in Numerical Integration

verfasst von: Robert I. McLachlan, Ari Stern

Erschienen in: Foundations of Computational Mathematics | Ausgabe 1/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Preservation of linear and quadratic invariants by numerical integrators has been well studied. However, many systems have linear or quadratic observables that are not invariant, but which satisfy evolution equations expressing important properties of the system. For example, a time-evolution PDE may have an observable that satisfies a local conservation law, such as the multisymplectic conservation law for Hamiltonian PDEs. We introduce the concept of functional equivariance, a natural sense in which a numerical integrator may preserve the dynamics satisfied by certain classes of observables, whether or not they are invariant. After developing the general framework, we use it to obtain results on methods preserving local conservation laws in PDEs. In particular, integrators preserving quadratic invariants also preserve local conservation laws for quadratic observables, and symplectic integrators are multisymplectic.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
For some methods, such as implicit Runge–Kutta methods, \( \Phi _{ \Delta t , f } (y) \) might only be defined for sufficiently small \( \Delta t \). Including such integrators requires only the minor modification of viewing \( \Phi _f \) as a partial function.
 
Literatur
1.
Zurück zum Zitat R. Abraham, J. E. Marsden, and T. Ratiu, Manifolds, tensor analysis, and applications, vol. 75 of Applied Mathematical Sciences, Springer-Verlag, New York, second ed., 1988. R. Abraham, J. E. Marsden, and T. Ratiu, Manifolds, tensor analysis, and applications, vol. 75 of Applied Mathematical Sciences, Springer-Verlag, New York, second ed., 1988.
2.
Zurück zum Zitat A. L. Araújo, A. Murua, and J. M. Sanz-Serna, Symplectic methods based on decompositions, SIAM J. Numer. Anal., 34 (1997), pp. 1926–1947.MathSciNetCrossRef A. L. Araújo, A. Murua, and J. M. Sanz-Serna, Symplectic methods based on decompositions, SIAM J. Numer. Anal., 34 (1997), pp. 1926–1947.MathSciNetCrossRef
3.
Zurück zum Zitat U. M. Ascher and R. I. McLachlan, Multisymplectic box schemes and the Korteweg–de Vries equation, Appl. Numer. Math., 48 (2004), pp. 255–269.MathSciNetCrossRef U. M. Ascher and R. I. McLachlan, Multisymplectic box schemes and the Korteweg–de Vries equation, Appl. Numer. Math., 48 (2004), pp. 255–269.MathSciNetCrossRef
4.
Zurück zum Zitat Y. Berchenko-Kogan and A. Stern, Constraint-preserving hybrid finite element methods for Maxwell’s equations, Found. Comput. Math., 21 (2021), pp. 1075–1098.MathSciNetCrossRef Y. Berchenko-Kogan and A. Stern, Constraint-preserving hybrid finite element methods for Maxwell’s equations, Found. Comput. Math., 21 (2021), pp. 1075–1098.MathSciNetCrossRef
5.
Zurück zum Zitat P. B. Bochev and C. Scovel, On quadratic invariants and symplectic structure, BIT, 34 (1994), pp. 337–345.MathSciNetCrossRef P. B. Bochev and C. Scovel, On quadratic invariants and symplectic structure, BIT, 34 (1994), pp. 337–345.MathSciNetCrossRef
6.
Zurück zum Zitat T. J. Bridges and S. Reich, Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity, Phys. Lett. A, 284 (2001), pp. 184–193.ADSMathSciNetCrossRef T. J. Bridges and S. Reich, Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity, Phys. Lett. A, 284 (2001), pp. 184–193.ADSMathSciNetCrossRef
7.
Zurück zum Zitat K. Burrage and J. C. Butcher, Stability criteria for implicit Runge-Kutta methods, SIAM J. Numer. Anal., 16 (1979), pp. 46–57.ADSMathSciNetCrossRef K. Burrage and J. C. Butcher, Stability criteria for implicit Runge-Kutta methods, SIAM J. Numer. Anal., 16 (1979), pp. 46–57.ADSMathSciNetCrossRef
8.
Zurück zum Zitat J. C. Butcher, A stability property of implicit Runge–Kutta methods, BIT, 15 (1975), pp. 358–361.CrossRef J. C. Butcher, A stability property of implicit Runge–Kutta methods, BIT, 15 (1975), pp. 358–361.CrossRef
9.
Zurück zum Zitat P. Chartier and A. Murua, Preserving first integrals and volume forms of additively split systems, IMA J. Numer. Anal., 27 (2007), pp. 381–405.MathSciNetCrossRef P. Chartier and A. Murua, Preserving first integrals and volume forms of additively split systems, IMA J. Numer. Anal., 27 (2007), pp. 381–405.MathSciNetCrossRef
10.
Zurück zum Zitat B. Cockburn, J. Gopalakrishnan, and R. Lazarov, Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems, SIAM J. Numer. Anal., 47 (2009), pp. 1319–1365.MathSciNetCrossRef B. Cockburn, J. Gopalakrishnan, and R. Lazarov, Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems, SIAM J. Numer. Anal., 47 (2009), pp. 1319–1365.MathSciNetCrossRef
11.
Zurück zum Zitat T. de Donder, Théorie Invariantive du Calcul des Variations, Gauthier-Villars, second ed., 1935. T. de Donder, Théorie Invariantive du Calcul des Variations, Gauthier-Villars, second ed., 1935.
13.
Zurück zum Zitat M. Günther, A. Sandu, and A. Zanna, Symplectic GARK methods for Hamiltonian systems, 2021. Preprint, arXiv:2103.04110 [math.NA]. M. Günther, A. Sandu, and A. Zanna, Symplectic GARK methods for Hamiltonian systems, 2021. Preprint, arXiv:​2103.​04110 [math.NA].
14.
Zurück zum Zitat E. Hairer, Order conditions for numerical methods for partitioned ordinary differential equations, Numer. Math., 36 (1980/81), pp. 431–445. E. Hairer, Order conditions for numerical methods for partitioned ordinary differential equations, Numer. Math., 36 (1980/81), pp. 431–445.
15.
Zurück zum Zitat E. Hairer, C. Lubich, and G. Wanner, Geometric numerical integration, vol. 31 of Springer Series in Computational Mathematics, Springer, Heidelberg, 2010. E. Hairer, C. Lubich, and G. Wanner, Geometric numerical integration, vol. 31 of Springer Series in Computational Mathematics, Springer, Heidelberg, 2010.
16.
Zurück zum Zitat A. Iserles, G. R. W. Quispel, and P. S. P. Tse, B-series methods cannot be volume-preserving, BIT, 47 (2007), pp. 351–378.MathSciNetCrossRef A. Iserles, G. R. W. Quispel, and P. S. P. Tse, B-series methods cannot be volume-preserving, BIT, 47 (2007), pp. 351–378.MathSciNetCrossRef
17.
18.
Zurück zum Zitat R. I. McLachlan, K. Modin, H. Munthe-Kaas, and O. Verdier, B-series methods are exactly the affine equivariant methods, Numer. Math., 133 (2016), pp. 599–622.MathSciNetCrossRef R. I. McLachlan, K. Modin, H. Munthe-Kaas, and O. Verdier, B-series methods are exactly the affine equivariant methods, Numer. Math., 133 (2016), pp. 599–622.MathSciNetCrossRef
19.
Zurück zum Zitat R. I. McLachlan and G. R. W. Quispel, What kinds of dynamics are there? Lie pseudogroups, dynamical systems and geometric integration, Nonlinearity, 14 (2001), pp. 1689–1705. R. I. McLachlan and G. R. W. Quispel, What kinds of dynamics are there? Lie pseudogroups, dynamical systems and geometric integration, Nonlinearity, 14 (2001), pp. 1689–1705.
20.
21.
Zurück zum Zitat R. I. McLachlan, B. N. Ryland, and Y. Sun, High order multisymplectic Runge–Kutta methods, SIAM Journal on Scientific Computing, 36 (2014), pp. A2199–A2226.MathSciNetCrossRef R. I. McLachlan, B. N. Ryland, and Y. Sun, High order multisymplectic Runge–Kutta methods, SIAM Journal on Scientific Computing, 36 (2014), pp. A2199–A2226.MathSciNetCrossRef
22.
Zurück zum Zitat R. I. McLachlan and A. Stern, Multisymplecticity of hybridizable discontinuous Galerkin methods, Found. Comput. Math., 20 (2020), pp. 35–69.MathSciNetCrossRef R. I. McLachlan and A. Stern, Multisymplecticity of hybridizable discontinuous Galerkin methods, Found. Comput. Math., 20 (2020), pp. 35–69.MathSciNetCrossRef
23.
Zurück zum Zitat H. Munthe-Kaas and O. Verdier, Aromatic Butcher series, Found. Comput. Math., 16 (2016), pp. 183–215.MathSciNetCrossRef H. Munthe-Kaas and O. Verdier, Aromatic Butcher series, Found. Comput. Math., 16 (2016), pp. 183–215.MathSciNetCrossRef
24.
25.
Zurück zum Zitat P. J. Olver, Applications of Lie groups to differential equations, vol. 107 of Graduate Texts in Mathematics, Springer-Verlag, New York, second ed., 1993. P. J. Olver, Applications of Lie groups to differential equations, vol. 107 of Graduate Texts in Mathematics, Springer-Verlag, New York, second ed., 1993.
26.
Zurück zum Zitat S. Reich, Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equations, J. Comput. Phys., 157 (2000), pp. 473–499.ADSMathSciNetCrossRef S. Reich, Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equations, J. Comput. Phys., 157 (2000), pp. 473–499.ADSMathSciNetCrossRef
27.
Zurück zum Zitat B. N. Ryland and R. I. McLachlan, On multisymplecticity of partitioned Runge-Kutta methods, SIAM J. Sci. Comput., 30 (2008), pp. 1318–1340.MathSciNetCrossRef B. N. Ryland and R. I. McLachlan, On multisymplecticity of partitioned Runge-Kutta methods, SIAM J. Sci. Comput., 30 (2008), pp. 1318–1340.MathSciNetCrossRef
28.
Zurück zum Zitat M. A. Sánchez, C. Ciuca, N. C. Nguyen, J. Peraire, and B. Cockburn, Symplectic Hamiltonian HDG methods for wave propagation phenomena, J. Comput. Phys., 350 (2017), pp. 951–973.ADSMathSciNetCrossRef M. A. Sánchez, C. Ciuca, N. C. Nguyen, J. Peraire, and B. Cockburn, Symplectic Hamiltonian HDG methods for wave propagation phenomena, J. Comput. Phys., 350 (2017), pp. 951–973.ADSMathSciNetCrossRef
29.
Zurück zum Zitat Z. Sun and Y. Xing, On structure-preserving discontinuous Galerkin methods for Hamiltonian partial differential equations: energy conservation and multi-symplecticity, J. Comput. Phys., 419 (2020), pp. 109662, 25.MathSciNetCrossRef Z. Sun and Y. Xing, On structure-preserving discontinuous Galerkin methods for Hamiltonian partial differential equations: energy conservation and multi-symplecticity, J. Comput. Phys., 419 (2020), pp. 109662, 25.MathSciNetCrossRef
30.
Zurück zum Zitat H. Weyl, Geodesic fields in the calculus of variation for multiple integrals, Ann. of Math. (2), 36 (1935), pp. 607–629.MathSciNetCrossRef H. Weyl, Geodesic fields in the calculus of variation for multiple integrals, Ann. of Math. (2), 36 (1935), pp. 607–629.MathSciNetCrossRef
Metadaten
Titel
Functional Equivariance and Conservation Laws in Numerical Integration
verfasst von
Robert I. McLachlan
Ari Stern
Publikationsdatum
20.09.2022
Verlag
Springer US
Erschienen in
Foundations of Computational Mathematics / Ausgabe 1/2024
Print ISSN: 1615-3375
Elektronische ISSN: 1615-3383
DOI
https://doi.org/10.1007/s10208-022-09590-8