Skip to main content

2017 | OriginalPaper | Buchkapitel

8. Functional Nanomaterials Via Self-assembly Based Modification of Natural Cellulosic Substances

verfasst von : Shun Li, Yuanqing Gu, Jianguo Huang

Erschienen in: Supramolecular Chemistry of Biomimetic Systems

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Natural cellulose substances possess inherent sophisticated hierarchical structures and morphologies which are impossible to be created by artificial methods at the present time. Precise surface modification of cellulose matters with specific guest substances at the molecular and nanometer scales provides a facile shortcut to combine the unique physical properties of cellulose materials and specifically designed chemical functionalities to give a large variety of new nanomaterials for various practical applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Sanchezl C, Arribart H, Guille MMG (2005) Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nat Mater 4:277–288CrossRef Sanchezl C, Arribart H, Guille MMG (2005) Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nat Mater 4:277–288CrossRef
2.
Zurück zum Zitat Omenetto FG, Kaplan DL (2010) New opportunities for an ancient material. Science 329:528–531CrossRef Omenetto FG, Kaplan DL (2010) New opportunities for an ancient material. Science 329:528–531CrossRef
3.
Zurück zum Zitat Caruso RA (2004) Micrometer-to-nanometer replication of hierarchical structures by using a surface sol–gel process. Angew Chem Int Ed 43:2746–2748CrossRef Caruso RA (2004) Micrometer-to-nanometer replication of hierarchical structures by using a surface sol–gel process. Angew Chem Int Ed 43:2746–2748CrossRef
4.
Zurück zum Zitat Mann S (2009) Self-assembly and transformation of hybrid nano-objects and nanostructures under equilibrium and non-equilibrium conditions. Nat Mater 8:781–792CrossRef Mann S (2009) Self-assembly and transformation of hybrid nano-objects and nanostructures under equilibrium and non-equilibrium conditions. Nat Mater 8:781–792CrossRef
5.
Zurück zum Zitat Alava M, Niskanen K (2006) The physics of paper. Rep Prog Phys 69:669–723CrossRef Alava M, Niskanen K (2006) The physics of paper. Rep Prog Phys 69:669–723CrossRef
6.
Zurück zum Zitat Klemm D, Heublein B, Fink HP et al (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393CrossRef Klemm D, Heublein B, Fink HP et al (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393CrossRef
7.
Zurück zum Zitat Balu B, Breedveld V, Hess DW (2008) Fabrication of “roll-off” and “sticky” superhydrophobic cellulose surfaces via plasma processing. Langmuir 24:4785–4790CrossRef Balu B, Breedveld V, Hess DW (2008) Fabrication of “roll-off” and “sticky” superhydrophobic cellulose surfaces via plasma processing. Langmuir 24:4785–4790CrossRef
8.
Zurück zum Zitat Cunha AG, Gandini A (2010) Turning polysaccharides into hydrophobicmaterials: a critical review. Part 1. Cellulose. Cellulose 17:875–889 Cunha AG, Gandini A (2010) Turning polysaccharides into hydrophobicmaterials: a critical review. Part 1. Cellulose. Cellulose 17:875–889
9.
Zurück zum Zitat Vesel A, Mozetic M, Hladnik A et al (2007) Modification of ink-jet paper by oxygen-plasma treatment. J Phys D 40:3689–3696CrossRef Vesel A, Mozetic M, Hladnik A et al (2007) Modification of ink-jet paper by oxygen-plasma treatment. J Phys D 40:3689–3696CrossRef
10.
Zurück zum Zitat Balu B, Kim JS, Breedveld V et al (2009) Tunability of the adhesion of water droplets on a superhydrophobic paper surface via selective plasma etching. J Adhes Sci Technol 23:361–380CrossRef Balu B, Kim JS, Breedveld V et al (2009) Tunability of the adhesion of water droplets on a superhydrophobic paper surface via selective plasma etching. J Adhes Sci Technol 23:361–380CrossRef
11.
Zurück zum Zitat Huang J, Kunitake T (2003) Nano-precision replication of natural cellulosic substances by metal oxides. J Am Chem Soc 125:11834–11835CrossRef Huang J, Kunitake T (2003) Nano-precision replication of natural cellulosic substances by metal oxides. J Am Chem Soc 125:11834–11835CrossRef
12.
Zurück zum Zitat Moon RJ, Martini A, Nairn J et al (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRef Moon RJ, Martini A, Nairn J et al (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRef
13.
Zurück zum Zitat Jia B, Mei Y, Cheng L et al (2012) Preparation of copper nanoparticles coated cellulose films with antibacterial properties through one-step reduction. ACS Appl Mater Interfaces 4:2897–2902CrossRef Jia B, Mei Y, Cheng L et al (2012) Preparation of copper nanoparticles coated cellulose films with antibacterial properties through one-step reduction. ACS Appl Mater Interfaces 4:2897–2902CrossRef
14.
Zurück zum Zitat Gandinia A, Pasquini D (2012) The impact of cellulose fibre surface modification on some physico-chemical properties of the ensuing papers. Ind Crop Prod 35:15–21CrossRef Gandinia A, Pasquini D (2012) The impact of cellulose fibre surface modification on some physico-chemical properties of the ensuing papers. Ind Crop Prod 35:15–21CrossRef
15.
Zurück zum Zitat Zhang X, Huang J (2010) Functional surface modification of natural cellulose substances for colorimetric detection and adsorption of Hg2+ in aqueous media. Chem Commun 46:6042–6044CrossRef Zhang X, Huang J (2010) Functional surface modification of natural cellulose substances for colorimetric detection and adsorption of Hg2+ in aqueous media. Chem Commun 46:6042–6044CrossRef
16.
Zurück zum Zitat Gu Y, Liu X, Niu T et al (2010) Superparamagnetic hierarchical material fabricated by protein molecule assembly on natural cellulose nanofibers. Chem Commun 46:6096–6098CrossRef Gu Y, Liu X, Niu T et al (2010) Superparamagnetic hierarchical material fabricated by protein molecule assembly on natural cellulose nanofibers. Chem Commun 46:6096–6098CrossRef
17.
Zurück zum Zitat Kemell M, Pore V, Ritala M et al (2005) Atomic layer deposition in nanometer-level replication of cellulosic substances and preparation of photocatalytic TiO2/cellulose composites. J Am Chem Soc 127:14178–14179CrossRef Kemell M, Pore V, Ritala M et al (2005) Atomic layer deposition in nanometer-level replication of cellulosic substances and preparation of photocatalytic TiO2/cellulose composites. J Am Chem Soc 127:14178–14179CrossRef
18.
Zurück zum Zitat Kemell M, Pore V, Ritala M et al (2006) Ir/oxide/cellulose composites for catalytic purposes prepared by atomic layer deposition. Chem Vap Deposition 12:419–422CrossRef Kemell M, Pore V, Ritala M et al (2006) Ir/oxide/cellulose composites for catalytic purposes prepared by atomic layer deposition. Chem Vap Deposition 12:419–422CrossRef
19.
Zurück zum Zitat Kemell M, Ritala M, Leskelä M et al (2008) Coating of highly porous fber matrices by atomic layer deposition. Chem Vap Deposition 14:347–352CrossRef Kemell M, Ritala M, Leskelä M et al (2008) Coating of highly porous fber matrices by atomic layer deposition. Chem Vap Deposition 14:347–352CrossRef
20.
Zurück zum Zitat Jur JS, Sweet WJ III, Oldham CJ et al (2011) Atomic layer deposition of conductive coatings on cotton, paper, and synthetic fibers: conductivity analysis and functional chemical sensing using “all-fiber” capacitors. Adv Funct Mater 21:1993–2002CrossRef Jur JS, Sweet WJ III, Oldham CJ et al (2011) Atomic layer deposition of conductive coatings on cotton, paper, and synthetic fibers: conductivity analysis and functional chemical sensing using “all-fiber” capacitors. Adv Funct Mater 21:1993–2002CrossRef
21.
Zurück zum Zitat Hyde GK, Scarel G, Spagnola JC et al (2009) Atomic layer deposition and abrupt wetting transitions on nonwoven polypropylene and woven cotton fabrics. Langmuir 26:2550–2558CrossRef Hyde GK, Scarel G, Spagnola JC et al (2009) Atomic layer deposition and abrupt wetting transitions on nonwoven polypropylene and woven cotton fabrics. Langmuir 26:2550–2558CrossRef
22.
Zurück zum Zitat Hyde GK, Park KJ, Stewart SM et al (2007) Atomic layer deposition of conformal inorganic nanoscale coatings on three-dimensional natural fiber systems: effect of surface topology on film growth characteristics. Langmuir 23:9844–9849CrossRef Hyde GK, Park KJ, Stewart SM et al (2007) Atomic layer deposition of conformal inorganic nanoscale coatings on three-dimensional natural fiber systems: effect of surface topology on film growth characteristics. Langmuir 23:9844–9849CrossRef
23.
Zurück zum Zitat Liu X, Gu Y, Huang J (2010) Hierarchical, titania-coated, carbon nanofibrous material derived from a natural cellulosic substance. Chem Eur J 16:7730–7740CrossRef Liu X, Gu Y, Huang J (2010) Hierarchical, titania-coated, carbon nanofibrous material derived from a natural cellulosic substance. Chem Eur J 16:7730–7740CrossRef
24.
Zurück zum Zitat Shin Y, Li XS, Wang C et al (2004) Synthesis of hierarchical titanium carbide from titania-coated cellulose paper. Adv Mater 16:1212–1215CrossRef Shin Y, Li XS, Wang C et al (2004) Synthesis of hierarchical titanium carbide from titania-coated cellulose paper. Adv Mater 16:1212–1215CrossRef
25.
Zurück zum Zitat Kyotani M, Matsushita S, Kimura S et al (2012) Efficient preparation of carbon papers by pyrolysis of iodine-treated Japanese paper. J Anal Appl Pyrolysis 95:14–20CrossRef Kyotani M, Matsushita S, Kimura S et al (2012) Efficient preparation of carbon papers by pyrolysis of iodine-treated Japanese paper. J Anal Appl Pyrolysis 95:14–20CrossRef
26.
Zurück zum Zitat Pelton R, Geng XL, Brook M (2006) Photocatalytic paper from colloidal TiO2–fact or fantasy. Adv Colloid Interface Sci 127:43–53CrossRef Pelton R, Geng XL, Brook M (2006) Photocatalytic paper from colloidal TiO2–fact or fantasy. Adv Colloid Interface Sci 127:43–53CrossRef
27.
Zurück zum Zitat Gimenez AJ, Yãnez-Limon JM, Seminario JM (2011) ZnO–paper based photoconductive UV sensor. J Phys Chem C 115:282–297CrossRef Gimenez AJ, Yãnez-Limon JM, Seminario JM (2011) ZnO–paper based photoconductive UV sensor. J Phys Chem C 115:282–297CrossRef
28.
Zurück zum Zitat Ghule K, Ghule AV, Chen BJ et al (2006) Preparation and characterization of ZnO nanoparticles coated paper and its antibacterial activity study. Green Chem 8:1034–1041CrossRef Ghule K, Ghule AV, Chen BJ et al (2006) Preparation and characterization of ZnO nanoparticles coated paper and its antibacterial activity study. Green Chem 8:1034–1041CrossRef
29.
Zurück zum Zitat Sun Q, Schork FJ, Deng Y (2007) Water-based polymer/clay nanocomposite suspension for improving water and moisture barrier in coating. Compos Sci Technol 67:1823–1829CrossRef Sun Q, Schork FJ, Deng Y (2007) Water-based polymer/clay nanocomposite suspension for improving water and moisture barrier in coating. Compos Sci Technol 67:1823–1829CrossRef
30.
Zurück zum Zitat Ornatska M, Sharpe E, Andreescu D et al (2011) Paper bioassay based on ceria nanoparticles as colorimetric probes. Anal Chem 83:4273–4280CrossRef Ornatska M, Sharpe E, Andreescu D et al (2011) Paper bioassay based on ceria nanoparticles as colorimetric probes. Anal Chem 83:4273–4280CrossRef
31.
Zurück zum Zitat Mahltig B, Fiedler D, Böttcher H (2004) Antimicrobial sol–gel coatings. J Sol-Gel Sci Tech 32:219–222CrossRef Mahltig B, Fiedler D, Böttcher H (2004) Antimicrobial sol–gel coatings. J Sol-Gel Sci Tech 32:219–222CrossRef
32.
Zurück zum Zitat Hou A, Shi Y, Yu Y (2009) Preparation of the cellulose/silica hybrid containing cationic group by sol–gel crosslinking process and its dyeing properties. Carbohydr Polym 77:201–205CrossRef Hou A, Shi Y, Yu Y (2009) Preparation of the cellulose/silica hybrid containing cationic group by sol–gel crosslinking process and its dyeing properties. Carbohydr Polym 77:201–205CrossRef
33.
Zurück zum Zitat Xie K, Yu Y, Shi Y (2009) Synthesis and characterization of cellulose/silica hybrid materials with chemical crosslinking. Carbohydr Polym 78:799–805CrossRef Xie K, Yu Y, Shi Y (2009) Synthesis and characterization of cellulose/silica hybrid materials with chemical crosslinking. Carbohydr Polym 78:799–805CrossRef
34.
Zurück zum Zitat Rida A, Yang L, Vyas R et al (2009) Conductive inkjet-printed antennas on flexible low-cost paper-based substrates for RFID and WSN applications. IEEE Antenn Propag M 51:13–23CrossRef Rida A, Yang L, Vyas R et al (2009) Conductive inkjet-printed antennas on flexible low-cost paper-based substrates for RFID and WSN applications. IEEE Antenn Propag M 51:13–23CrossRef
35.
Zurück zum Zitat Bayer IS, Fragouli D, Attanasio A et al (2011) Water-repellent cellulose fiber networks with multifunctional properties. ACS Appl Mater Interfaces 3:4024–4031CrossRef Bayer IS, Fragouli D, Attanasio A et al (2011) Water-repellent cellulose fiber networks with multifunctional properties. ACS Appl Mater Interfaces 3:4024–4031CrossRef
36.
Zurück zum Zitat Small AC, Johnston JH (2008) Novel hybrid materials of cellulose fibres and doped ZnS nanocrystals. Curr Appl Phys 8:512–515CrossRef Small AC, Johnston JH (2008) Novel hybrid materials of cellulose fibres and doped ZnS nanocrystals. Curr Appl Phys 8:512–515CrossRef
37.
Zurück zum Zitat Niu T, Gu Y, Huang J (2011) Luminescent cellulose sheet fabricated by facile self-assembly of cadmium selenide nanoparticles on cellulose nanofibres. J Mater Chem 21:651–656CrossRef Niu T, Gu Y, Huang J (2011) Luminescent cellulose sheet fabricated by facile self-assembly of cadmium selenide nanoparticles on cellulose nanofibres. J Mater Chem 21:651–656CrossRef
38.
Zurück zum Zitat Hwang SH, Moorefield CN, Wang P et al (2006) Construction of CdS quantum dots via a regioselective dendritic functionalized cellulose template. Chem Commun 3495–3497 Hwang SH, Moorefield CN, Wang P et al (2006) Construction of CdS quantum dots via a regioselective dendritic functionalized cellulose template. Chem Commun 3495–3497
39.
Zurück zum Zitat Ding Z, Wei P, Chitnis G et al (2011) Ferrofluid-impregnated paper actuators. J Microelectromech Syst 20:59–64CrossRef Ding Z, Wei P, Chitnis G et al (2011) Ferrofluid-impregnated paper actuators. J Microelectromech Syst 20:59–64CrossRef
40.
Zurück zum Zitat Fragouli D, Bayer IS, Corato RD et al (2012) Superparamagnetic cellulose fiber networks via nanocomposite functionalization. J Mater Chem 22:1662–1666CrossRef Fragouli D, Bayer IS, Corato RD et al (2012) Superparamagnetic cellulose fiber networks via nanocomposite functionalization. J Mater Chem 22:1662–1666CrossRef
41.
Zurück zum Zitat Liu X, Zong C, Lu L (2012) Fluorescent silver nanoclusters for user-friendly detection of Cu2+ on a paper platform. Analyst 137:2406–2414CrossRef Liu X, Zong C, Lu L (2012) Fluorescent silver nanoclusters for user-friendly detection of Cu2+ on a paper platform. Analyst 137:2406–2414CrossRef
42.
Zurück zum Zitat Cady NC, Behnke JL, Strickland AD (2011) Copper-based nanostructured coatings on natural cellulose: nanocomposites exhibiting rapid and efficient inhibition of a multi-drug resistant wound pathogen, A. baumannii, and mammalian cell biocompatibility in vitro. Adv Funct Mater 21:2506–2514CrossRef Cady NC, Behnke JL, Strickland AD (2011) Copper-based nanostructured coatings on natural cellulose: nanocomposites exhibiting rapid and efficient inhibition of a multi-drug resistant wound pathogen, A. baumannii, and mammalian cell biocompatibility in vitro. Adv Funct Mater 21:2506–2514CrossRef
43.
Zurück zum Zitat Huang J, Ichinose I, Kunitake T (2005) Nanocoating of natural cellulose fibers with conjugated polymer: hierarchical polypyrrole composite materials. Chem Commun 1717–1719 Huang J, Ichinose I, Kunitake T (2005) Nanocoating of natural cellulose fibers with conjugated polymer: hierarchical polypyrrole composite materials. Chem Commun 1717–1719
44.
Zurück zum Zitat Varesano A, Aluigi A, Florio L et al (2009) Multifunctional cotton fabrics. Synth Met 159:1082–1089CrossRef Varesano A, Aluigi A, Florio L et al (2009) Multifunctional cotton fabrics. Synth Met 159:1082–1089CrossRef
45.
Zurück zum Zitat Vernitskaya TV, Efimov ON (1997) Polypyrrole: a conducting polymer; its synthesis, properties and applications. Russ Chem Rev 66:443–457CrossRef Vernitskaya TV, Efimov ON (1997) Polypyrrole: a conducting polymer; its synthesis, properties and applications. Russ Chem Rev 66:443–457CrossRef
46.
Zurück zum Zitat Johnston JH, Kelly FM, Moraes J et al (2006) Conducting polymer composites with cellulose and protein fibres. Curr Appl Phys 6:587–590CrossRef Johnston JH, Kelly FM, Moraes J et al (2006) Conducting polymer composites with cellulose and protein fibres. Curr Appl Phys 6:587–590CrossRef
47.
Zurück zum Zitat Kelly FM, Johnston JH, Borrmann T et al (2007) Functionalised hybrid materials of conducting polymers with individual fibres of cellulose. Eur J Inorg Chem 5571–5577 Kelly FM, Johnston JH, Borrmann T et al (2007) Functionalised hybrid materials of conducting polymers with individual fibres of cellulose. Eur J Inorg Chem 5571–5577
48.
Zurück zum Zitat Beneventi D, Alila S, Boufi S et al (2006) Polymerization of pyrrole on cellulose fibres using a FeCl3 impregnation-pyrrole polymerization sequence. Cellulose 13:725–734CrossRef Beneventi D, Alila S, Boufi S et al (2006) Polymerization of pyrrole on cellulose fibres using a FeCl3 impregnation-pyrrole polymerization sequence. Cellulose 13:725–734CrossRef
49.
Zurück zum Zitat Olsson H, Carlsson DO, Nyström G et al (2012) Influence of the cellulose substrate on the electrochemical properties of paper-based polypyrrole electrode materials. J Mater Sci 47:5317–5325CrossRef Olsson H, Carlsson DO, Nyström G et al (2012) Influence of the cellulose substrate on the electrochemical properties of paper-based polypyrrole electrode materials. J Mater Sci 47:5317–5325CrossRef
50.
Zurück zum Zitat Zakirov AS, Yuldashev SU (2012) Functional hybrid materials derived from natural cellulose. J Korean Phys Soc 60:1526–1530CrossRef Zakirov AS, Yuldashev SU (2012) Functional hybrid materials derived from natural cellulose. J Korean Phys Soc 60:1526–1530CrossRef
51.
Zurück zum Zitat Razaq A, Nyström G, Strømme M et al (2011) High-capacity conductive nanocellulose paper sheets for electrochemically controlled extraction of DNA oligomers. PLoS ONE 6:e29243CrossRef Razaq A, Nyström G, Strømme M et al (2011) High-capacity conductive nanocellulose paper sheets for electrochemically controlled extraction of DNA oligomers. PLoS ONE 6:e29243CrossRef
52.
Zurück zum Zitat Bhat NV, Seshadri DT, Nate MM et al (2006) Development of conductive cotton fabrics for heating devices. J Appl Polym Sci 102:4690–4695CrossRef Bhat NV, Seshadri DT, Nate MM et al (2006) Development of conductive cotton fabrics for heating devices. J Appl Polym Sci 102:4690–4695CrossRef
53.
Zurück zum Zitat Dutta D, Sarma TK, Chowdhury D et al (2005) A polyaniline-containing filter paper that acts as a sensor, acid, base, and endpoint indicator and also filters acids and bases. J Colloid Interface Sci 283:153–159 Dutta D, Sarma TK, Chowdhury D et al (2005) A polyaniline-containing filter paper that acts as a sensor, acid, base, and endpoint indicator and also filters acids and bases. J Colloid Interface Sci 283:153–159
54.
Zurück zum Zitat Jagadeesan KK, Kumar S, Sumana G et al (2012) Application of conducting paper for selective detection of troponin. Electrochem Commun 20:71–74CrossRef Jagadeesan KK, Kumar S, Sumana G et al (2012) Application of conducting paper for selective detection of troponin. Electrochem Commun 20:71–74CrossRef
55.
Zurück zum Zitat Johnston JH, Kelly FM, Burridge KA et al (2009) Hybrid materials of conducting polymers with natural fibers and silicates. Int J Nanotechnol 6:312–328CrossRef Johnston JH, Kelly FM, Burridge KA et al (2009) Hybrid materials of conducting polymers with natural fibers and silicates. Int J Nanotechnol 6:312–328CrossRef
56.
Zurück zum Zitat Kawashima H, Shinotsuka M, Nakano M et al (2012) Fabrication of conductive paper coated with PEDOT: preparation and characterization. J Coat Technol Res 9:467–474CrossRef Kawashima H, Shinotsuka M, Nakano M et al (2012) Fabrication of conductive paper coated with PEDOT: preparation and characterization. J Coat Technol Res 9:467–474CrossRef
57.
Zurück zum Zitat Ichinose I, Kunitake T (1999) Polymerization-induced adsorption: a preparative method of ultrathin polymer films. Adv Mater 11:413–415CrossRef Ichinose I, Kunitake T (1999) Polymerization-induced adsorption: a preparative method of ultrathin polymer films. Adv Mater 11:413–415CrossRef
58.
Zurück zum Zitat Makela T, Jussila S, Vilkman M et al (2003) Roll-to-roll method for producing polyaniline patterns on paper. Synth Met 135–136:41–42 Makela T, Jussila S, Vilkman M et al (2003) Roll-to-roll method for producing polyaniline patterns on paper. Synth Met 135–136:41–42
59.
Zurück zum Zitat Zhou J, Fukawa T, Shirai H et al (2010) Anisotropic motion of electroactive papers coated with PEDOT/PSS. Macromol Mater Eng 295:671–675CrossRef Zhou J, Fukawa T, Shirai H et al (2010) Anisotropic motion of electroactive papers coated with PEDOT/PSS. Macromol Mater Eng 295:671–675CrossRef
60.
Zurück zum Zitat Winther-Jensen B, Clark N, Subramanian P et al (2007) Application of polypyrrole to flexible substrates. J Appl Polym Sci 104:3938–3947CrossRef Winther-Jensen B, Clark N, Subramanian P et al (2007) Application of polypyrrole to flexible substrates. J Appl Polym Sci 104:3938–3947CrossRef
61.
Zurück zum Zitat Sarrazin P, Valecce L, Beneventi D et al (2007) Photoluminescent paper based on poly(fluorene-co-fluorenone) particles adsorption on modified cellulose fibers. Adv Mater 19:3291–3294CrossRef Sarrazin P, Valecce L, Beneventi D et al (2007) Photoluminescent paper based on poly(fluorene-co-fluorenone) particles adsorption on modified cellulose fibers. Adv Mater 19:3291–3294CrossRef
62.
Zurück zum Zitat Zhang X, Shi F, Yu X et al (2004) Polyelectrolyte multilayer as matrix for electrochemical deposition of gold clusters: toward super-hydrophobic surface. J Am Chem Soc 126:3064–3065CrossRef Zhang X, Shi F, Yu X et al (2004) Polyelectrolyte multilayer as matrix for electrochemical deposition of gold clusters: toward super-hydrophobic surface. J Am Chem Soc 126:3064–3065CrossRef
63.
Zurück zum Zitat Lingström R, Wagberg L, Larsson P et al (2006) Formation of polyelectrolyte multilayers on fibers: influence on wettability and fibre/fibre interaction. J Colloid Interface Sci 296:396–408CrossRef Lingström R, Wagberg L, Larsson P et al (2006) Formation of polyelectrolyte multilayers on fibers: influence on wettability and fibre/fibre interaction. J Colloid Interface Sci 296:396–408CrossRef
64.
Zurück zum Zitat Lingström R, Notley SM, Wagberg L et al (2007) Wettability changes in the formation of polymeric multilayers on cellulose fibers and their influence on wet adhesion. J Colloid Interface Sci 314:1–9CrossRef Lingström R, Notley SM, Wagberg L et al (2007) Wettability changes in the formation of polymeric multilayers on cellulose fibers and their influence on wet adhesion. J Colloid Interface Sci 314:1–9CrossRef
65.
Zurück zum Zitat Nurmi L, Kontturi K, Houbenov N et al (2010) Modification of surface wettability through adsorption of partly fluorinated statistical and block polyelectrolytes from aqueous medium. Langmuir 26:15325–15332CrossRef Nurmi L, Kontturi K, Houbenov N et al (2010) Modification of surface wettability through adsorption of partly fluorinated statistical and block polyelectrolytes from aqueous medium. Langmuir 26:15325–15332CrossRef
66.
Zurück zum Zitat Nyström D, Lindqvist J, Östmark E et al (2006) Superhydrophobic bio-fiber surfaces via tailored grafting architecture. Chem Commun 3594–3596 Nyström D, Lindqvist J, Östmark E et al (2006) Superhydrophobic bio-fiber surfaces via tailored grafting architecture. Chem Commun 3594–3596
67.
Zurück zum Zitat Huang J, Gu Y (2011) Self-assembly of various guest substrates in natural cellulose substances to functional nanostructured materials. Curr Opin Colloid Interface Sci 16:470–481CrossRef Huang J, Gu Y (2011) Self-assembly of various guest substrates in natural cellulose substances to functional nanostructured materials. Curr Opin Colloid Interface Sci 16:470–481CrossRef
68.
Zurück zum Zitat Aied A, Zheng Y, Pandit A et al (2012) DNA immobilization and detection on cellulose paper using a surface grown cationic polymer via ATRP. ACS Appl Mater Interfaces 4:826–831CrossRef Aied A, Zheng Y, Pandit A et al (2012) DNA immobilization and detection on cellulose paper using a surface grown cationic polymer via ATRP. ACS Appl Mater Interfaces 4:826–831CrossRef
69.
Zurück zum Zitat Carlmark A, Malmström EE (2012) Atom transfer radical polymerization from cellulose fibers at ambient temperature. J Am Chem Soc 124:900–901CrossRef Carlmark A, Malmström EE (2012) Atom transfer radical polymerization from cellulose fibers at ambient temperature. J Am Chem Soc 124:900–901CrossRef
70.
Zurück zum Zitat Carlmark A, Malmström EE (2003) ATRP grafting from cellulose fibers to create block-copolymer grafts. Biomacromol 4:1740–1745CrossRef Carlmark A, Malmström EE (2003) ATRP grafting from cellulose fibers to create block-copolymer grafts. Biomacromol 4:1740–1745CrossRef
71.
Zurück zum Zitat Lönnberg H, Zhou Q, Brumer H et al (2006) Grafting of cellulose fibers with poly(epsilon-caprolactone) and poly(L-latic acid) via ring-opening polymerization. Biomacromol 7:2178–2185CrossRef Lönnberg H, Zhou Q, Brumer H et al (2006) Grafting of cellulose fibers with poly(epsilon-caprolactone) and poly(L-latic acid) via ring-opening polymerization. Biomacromol 7:2178–2185CrossRef
72.
Zurück zum Zitat Ibrahim K, Salminen A, Holappa S et al (2006) Preparation and characterization of PS-PEO amphiphilic block copolymers via atom transfer radical polymerization. J Appl Polym Sci 102:4304–4313CrossRef Ibrahim K, Salminen A, Holappa S et al (2006) Preparation and characterization of PS-PEO amphiphilic block copolymers via atom transfer radical polymerization. J Appl Polym Sci 102:4304–4313CrossRef
73.
Zurück zum Zitat Roy D, Knapp JS, Guthrie JT et al (2008) Antibacterial cellulose fiber via RAFT surface graft polymerization. Biomacromol 9:91–99CrossRef Roy D, Knapp JS, Guthrie JT et al (2008) Antibacterial cellulose fiber via RAFT surface graft polymerization. Biomacromol 9:91–99CrossRef
74.
Zurück zum Zitat Roy D, Guthrie JT, Perrier S (2005) Graft polymerization: grafting poly(styrene) from cellulose via reversible addition-fragmentation chain transfer (RAFT) polymerization. Macromolecules 38:10363–10372CrossRef Roy D, Guthrie JT, Perrier S (2005) Graft polymerization: grafting poly(styrene) from cellulose via reversible addition-fragmentation chain transfer (RAFT) polymerization. Macromolecules 38:10363–10372CrossRef
75.
Zurück zum Zitat Perrier S, Takolpuckdee P, Westwood J et al (2004) Versatile chain transfer agents for reversible addition fragmentation chain transfer (RAFT) polymerization to synthesize functional polymeric architectures. Macromolecules 37:2709–2717CrossRef Perrier S, Takolpuckdee P, Westwood J et al (2004) Versatile chain transfer agents for reversible addition fragmentation chain transfer (RAFT) polymerization to synthesize functional polymeric architectures. Macromolecules 37:2709–2717CrossRef
76.
Zurück zum Zitat Li S, Xie H, Zhang S et al (2007) Facile transformation of hydrophilic cellulose into superhydrophobic cellulose. Chem Commun 4857–4859 Li S, Xie H, Zhang S et al (2007) Facile transformation of hydrophilic cellulose into superhydrophobic cellulose. Chem Commun 4857–4859
77.
Zurück zum Zitat Li S, Zhang S, Wang X (2008) Fabrication of superhydrophobic cellulose-based materials through a solution-immersion process. Langmuir 24:5585–5590CrossRef Li S, Zhang S, Wang X (2008) Fabrication of superhydrophobic cellulose-based materials through a solution-immersion process. Langmuir 24:5585–5590CrossRef
78.
Zurück zum Zitat Samyn P, Schoukens G, Van den Abbeele H et al (2011) Application of polymer nanoparticle coating for tuning the hydrophobicity of cellulosic substrates. J Coat Technol Res 8:363–373CrossRef Samyn P, Schoukens G, Van den Abbeele H et al (2011) Application of polymer nanoparticle coating for tuning the hydrophobicity of cellulosic substrates. J Coat Technol Res 8:363–373CrossRef
79.
Zurück zum Zitat Stanssens D, Van den Abbeele H, Vonck L et al (2011) Creating water-repellent and super-hydrophobic cellulose substrates by deposition of organic nanoparticles. Mater Lett 65:1781–1784CrossRef Stanssens D, Van den Abbeele H, Vonck L et al (2011) Creating water-repellent and super-hydrophobic cellulose substrates by deposition of organic nanoparticles. Mater Lett 65:1781–1784CrossRef
80.
Zurück zum Zitat Mukhopadhyay SM, Joshi P, Datta S et al (2002) Plasma assisted hydrophobic coating on porous materials: influence of plasma parameters. J Phys D 35:1927–1933CrossRef Mukhopadhyay SM, Joshi P, Datta S et al (2002) Plasma assisted hydrophobic coating on porous materials: influence of plasma parameters. J Phys D 35:1927–1933CrossRef
81.
Zurück zum Zitat Vaswani S, Koskinen J, Hess DW (2005) Surface modification of paper and cellulose by plasma-assisted deposition of fluorocarbon films. Surf Coat Technol 195:121–129CrossRef Vaswani S, Koskinen J, Hess DW (2005) Surface modification of paper and cellulose by plasma-assisted deposition of fluorocarbon films. Surf Coat Technol 195:121–129CrossRef
82.
Zurück zum Zitat Mukhopadhyay SM, Joshi P, Datta S et al (2002) Plasma assisted surface coating of porous solids. Appl Surf Sci 201:219–226CrossRef Mukhopadhyay SM, Joshi P, Datta S et al (2002) Plasma assisted surface coating of porous solids. Appl Surf Sci 201:219–226CrossRef
83.
Zurück zum Zitat Kim JH, Liu G, Kim SH (2006) Deposition of stable hydrophobic coatings with in-line CH4 atmospheric rf plasma. J Mater Chem 16:977–981CrossRef Kim JH, Liu G, Kim SH (2006) Deposition of stable hydrophobic coatings with in-line CH4 atmospheric rf plasma. J Mater Chem 16:977–981CrossRef
84.
Zurück zum Zitat Tan IH, da Silva MLP, Demarquette NR (2001) Paper surface modification by plasma deposition of double layers of organic silicon compounds. J Mater Chem 11:1019–1025CrossRef Tan IH, da Silva MLP, Demarquette NR (2001) Paper surface modification by plasma deposition of double layers of organic silicon compounds. J Mater Chem 11:1019–1025CrossRef
85.
Zurück zum Zitat Li S, Wei Y, Huang J (2010) Facile fabrication of superhydrophobic cellulose materials by a nanocoating approach. Chem Lett 39:20–21CrossRef Li S, Wei Y, Huang J (2010) Facile fabrication of superhydrophobic cellulose materials by a nanocoating approach. Chem Lett 39:20–21CrossRef
86.
Zurück zum Zitat Cappelletto E, Callone E, Campostrini R et al (2012) Hydrophobic siloxane paper coatings: the effect of increasing methyl substitution. J Sol-Gel Sci Technol 62:441–452CrossRef Cappelletto E, Callone E, Campostrini R et al (2012) Hydrophobic siloxane paper coatings: the effect of increasing methyl substitution. J Sol-Gel Sci Technol 62:441–452CrossRef
87.
Zurück zum Zitat Yuan H, Nishiyama Y, Kuga S (2005) Surface esterification of cellulose by vapor-phase treatment with trifluoroacetic anhydride. Cellulose 12:543–549CrossRef Yuan H, Nishiyama Y, Kuga S (2005) Surface esterification of cellulose by vapor-phase treatment with trifluoroacetic anhydride. Cellulose 12:543–549CrossRef
88.
Zurück zum Zitat Jin C, Yan R, Huang J (2011) Cellulose substance with reversible photo-responsive wettability by surface modification. J Mater Chem 21:17519–17525CrossRef Jin C, Yan R, Huang J (2011) Cellulose substance with reversible photo-responsive wettability by surface modification. J Mater Chem 21:17519–17525CrossRef
89.
Zurück zum Zitat Hu W, Liu S, Chen S et al (2011) Preparation and properties of photochromic bacterial cellulose nanofibrous membranes. Cellulose 18:655–661CrossRef Hu W, Liu S, Chen S et al (2011) Preparation and properties of photochromic bacterial cellulose nanofibrous membranes. Cellulose 18:655–661CrossRef
90.
Zurück zum Zitat Jin C, Jiang T, Niu T et al (2012) Cellulose-based material with amphiphobicity to inhibit bacterial adhesion by surface modification. J Mater Chem 22:12562–12567CrossRef Jin C, Jiang T, Niu T et al (2012) Cellulose-based material with amphiphobicity to inhibit bacterial adhesion by surface modification. J Mater Chem 22:12562–12567CrossRef
91.
Zurück zum Zitat Balu B, Berry AD, Hess DW et al (2009) Patterning of superhydrophobic paper to control the mobility of micro-liter drops for two-dimensional lab-on-paper applications. Lab Chip 9:3066–3075CrossRef Balu B, Berry AD, Hess DW et al (2009) Patterning of superhydrophobic paper to control the mobility of micro-liter drops for two-dimensional lab-on-paper applications. Lab Chip 9:3066–3075CrossRef
92.
Zurück zum Zitat Martinez AW, Phillips ST, Butte MJ et al (2007) Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew Chem Int Ed 46:1318–1320CrossRef Martinez AW, Phillips ST, Butte MJ et al (2007) Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew Chem Int Ed 46:1318–1320CrossRef
93.
Zurück zum Zitat Martinez AW, Phillips ST, Carrilho E et al (2008) Simple telemedicine for developing regions: camera phones and paper-based microfluidic devices for real-time, off-site diagnosis. Anal Chem 80:3699–3707CrossRef Martinez AW, Phillips ST, Carrilho E et al (2008) Simple telemedicine for developing regions: camera phones and paper-based microfluidic devices for real-time, off-site diagnosis. Anal Chem 80:3699–3707CrossRef
94.
Zurück zum Zitat Martinez AW, Phillips ST, Whitesides GM (2008) From the cover: three-dimensional microfluidic devices fabricated in layered paper and tape. Proc Natl Acad Sci U S A 105:19606–19611CrossRef Martinez AW, Phillips ST, Whitesides GM (2008) From the cover: three-dimensional microfluidic devices fabricated in layered paper and tape. Proc Natl Acad Sci U S A 105:19606–19611CrossRef
95.
Zurück zum Zitat Martinez AW, Phillips ST, Wiley BJ et al (2008) FLASH: a rapid method for prototyping paper-based microfluidic devices. Lab Chip 8:2146–2150CrossRef Martinez AW, Phillips ST, Wiley BJ et al (2008) FLASH: a rapid method for prototyping paper-based microfluidic devices. Lab Chip 8:2146–2150CrossRef
96.
Zurück zum Zitat Kong F, Ni Y (2009) Determination of Cr(VI) concentration in diluted samples based on the paper test strip method. Water Sci Technol 60:3083–3089CrossRef Kong F, Ni Y (2009) Determination of Cr(VI) concentration in diluted samples based on the paper test strip method. Water Sci Technol 60:3083–3089CrossRef
97.
Zurück zum Zitat Kong F, Ni Y (2009) Development of cellulosic paper-based test strips for Cr(Vi) determination. BioResources 4:1088–1097 Kong F, Ni Y (2009) Development of cellulosic paper-based test strips for Cr(Vi) determination. BioResources 4:1088–1097
98.
Zurück zum Zitat Xiao W, Hu H, Huang J (2012) Colorimetric detection of cysteine by surface functionalization of natural cellulose substance. Sens Actuators, B 171–172:878–885CrossRef Xiao W, Hu H, Huang J (2012) Colorimetric detection of cysteine by surface functionalization of natural cellulose substance. Sens Actuators, B 171–172:878–885CrossRef
99.
Zurück zum Zitat Xu M, Bunes BR, Zang L (2011) Paper-based vapor detection of hydrogen peroxide: colorimetric sensing with tunable interface. ACS Appl Mater Interfaces 3:642–647CrossRef Xu M, Bunes BR, Zang L (2011) Paper-based vapor detection of hydrogen peroxide: colorimetric sensing with tunable interface. ACS Appl Mater Interfaces 3:642–647CrossRef
100.
Zurück zum Zitat Cha R, Wang D, He Z (2012) Development of cellulose paper testing strips for quick measurement of glucose. Carbohydr Polym 88:1414–1419CrossRef Cha R, Wang D, He Z (2012) Development of cellulose paper testing strips for quick measurement of glucose. Carbohydr Polym 88:1414–1419CrossRef
101.
Zurück zum Zitat Kwon H, Samain F, Kool ET (2012) Fluorescent DNAs printed on paper: sensing food spoilage and ripening in the vapor phase. Chem Sci 3:2542–2549CrossRef Kwon H, Samain F, Kool ET (2012) Fluorescent DNAs printed on paper: sensing food spoilage and ripening in the vapor phase. Chem Sci 3:2542–2549CrossRef
102.
Zurück zum Zitat Egusa S, Yokota S, Tanaka K et al (2009) Surface modification of a solid-state cellulose matrix with lactose by a surfactant-enveloped enzyme in a nonaqueous medium. J Mater Chem 19:1836–1842CrossRef Egusa S, Yokota S, Tanaka K et al (2009) Surface modification of a solid-state cellulose matrix with lactose by a surfactant-enveloped enzyme in a nonaqueous medium. J Mater Chem 19:1836–1842CrossRef
103.
Zurück zum Zitat Brumer H, Zhou Q, Baumann MJ et al (2004) Activation of crystalline cellulose surfaces through the chemoenzymatic modification of xyloglucan. J Am Chem Soc 126:5715–5721CrossRef Brumer H, Zhou Q, Baumann MJ et al (2004) Activation of crystalline cellulose surfaces through the chemoenzymatic modification of xyloglucan. J Am Chem Soc 126:5715–5721CrossRef
104.
Zurück zum Zitat Gustavsson MT, Persson PV, Iversen T et al (2005) Modification of cellulose fiber surfaces by use of a lipase and a xyloglucan endotransglycosylase. Biomacromol 6:196–203CrossRef Gustavsson MT, Persson PV, Iversen T et al (2005) Modification of cellulose fiber surfaces by use of a lipase and a xyloglucan endotransglycosylase. Biomacromol 6:196–203CrossRef
105.
Zurück zum Zitat Huang J, Ichinose I, Kunitake T (2006) Biomolecular modification of hierarchical cellulose fibers through titania nanocoating. Angew Chem Int Ed 45:2883–2886CrossRef Huang J, Ichinose I, Kunitake T (2006) Biomolecular modification of hierarchical cellulose fibers through titania nanocoating. Angew Chem Int Ed 45:2883–2886CrossRef
106.
Zurück zum Zitat Ye L, Filipe CDM, Kavoosi M et al (2009) Immobilization of TiO2 nanoparticles onto paper modification through bioconjugation. J Mater Chem 19:2189–2198CrossRef Ye L, Filipe CDM, Kavoosi M et al (2009) Immobilization of TiO2 nanoparticles onto paper modification through bioconjugation. J Mater Chem 19:2189–2198CrossRef
107.
Zurück zum Zitat Xiao W, Huang J (2011) Immobilization of oligonucleotides onto zirconia-modified filter paper and specific molecular recognition. Langmuir 27:12284–12288CrossRef Xiao W, Huang J (2011) Immobilization of oligonucleotides onto zirconia-modified filter paper and specific molecular recognition. Langmuir 27:12284–12288CrossRef
108.
Zurück zum Zitat Koga H, Kitaoka T, Isogai A (2012) Paper-immobilized enzyme as a green microstructured catalyst. J Mater Chem 22:11591–11597CrossRef Koga H, Kitaoka T, Isogai A (2012) Paper-immobilized enzyme as a green microstructured catalyst. J Mater Chem 22:11591–11597CrossRef
109.
Zurück zum Zitat Koga H, Kitaoka T, Isogai A (2011) In situ modification of cellulose paper with amino groups for catalytic applications. J Mater Chem 21:9356–9361CrossRef Koga H, Kitaoka T, Isogai A (2011) In situ modification of cellulose paper with amino groups for catalytic applications. J Mater Chem 21:9356–9361CrossRef
110.
Zurück zum Zitat Lu P, Hsieh YL (2010) Layer-by-layer self-assembly of Cibacron Blue F3GA and lipase on ultra-fine cellulose fibrous membrane. J Membr Sci 348:21–27CrossRef Lu P, Hsieh YL (2010) Layer-by-layer self-assembly of Cibacron Blue F3GA and lipase on ultra-fine cellulose fibrous membrane. J Membr Sci 348:21–27CrossRef
111.
Zurück zum Zitat Jarujamrus P, Tian J, Li X et al (2012) Mechanisms of red blood cells agglutination in antibody-treated paper. Analyst 137:2205–2210CrossRef Jarujamrus P, Tian J, Li X et al (2012) Mechanisms of red blood cells agglutination in antibody-treated paper. Analyst 137:2205–2210CrossRef
112.
Zurück zum Zitat Martinez AW, Phillips ST, Whitesides GM et al (2010) Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal Chem 82:3–10CrossRef Martinez AW, Phillips ST, Whitesides GM et al (2010) Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal Chem 82:3–10CrossRef
113.
Zurück zum Zitat Dungchai W, Chailapakul O, Henry CS (2009) Electrochemical detection for paper-based microfluidics. Anal Chem 81:5821–5826CrossRef Dungchai W, Chailapakul O, Henry CS (2009) Electrochemical detection for paper-based microfluidics. Anal Chem 81:5821–5826CrossRef
114.
Zurück zum Zitat Coltro WKT, de Jesus DP, da Silva JAF et al (2010) Toner and paper-based fabrication techniques for microfluidic applications. Electrophoresis 31:2487–2498CrossRef Coltro WKT, de Jesus DP, da Silva JAF et al (2010) Toner and paper-based fabrication techniques for microfluidic applications. Electrophoresis 31:2487–2498CrossRef
115.
Zurück zum Zitat Liu H, Crooks RM (2011) Three-dimensional paper microfluidic devices assembled using the principles of origami. J Am Chem Soc 133:17564–17566CrossRef Liu H, Crooks RM (2011) Three-dimensional paper microfluidic devices assembled using the principles of origami. J Am Chem Soc 133:17564–17566CrossRef
116.
Zurück zum Zitat Khan MS, Thouas G, Shen W et al (2010) Paper diagnostic for instantaneous blood typing. Anal Chem 82:4158–4164CrossRef Khan MS, Thouas G, Shen W et al (2010) Paper diagnostic for instantaneous blood typing. Anal Chem 82:4158–4164CrossRef
117.
Zurück zum Zitat Fu E, Lutz B, Kauffman P et al (2010) Controlled reagent transport in disposable 2D paper networks. Lab Chip 10:918–920CrossRef Fu E, Lutz B, Kauffman P et al (2010) Controlled reagent transport in disposable 2D paper networks. Lab Chip 10:918–920CrossRef
118.
Zurück zum Zitat Hu L, Choi JW, Yang Y et al (2009) Highly conductive paper for energy-storage devices. Proc Natl Acad Sci U S A 106:21490–21494CrossRef Hu L, Choi JW, Yang Y et al (2009) Highly conductive paper for energy-storage devices. Proc Natl Acad Sci U S A 106:21490–21494CrossRef
119.
Zurück zum Zitat Hu L, Pasta M, Mantia FL et al (2010) Stretchable, porous, and conductive energy textiles. Nano Lett 10:708–714CrossRef Hu L, Pasta M, Mantia FL et al (2010) Stretchable, porous, and conductive energy textiles. Nano Lett 10:708–714CrossRef
120.
Zurück zum Zitat Hu L, Wu H, Mantia FL et al (2010) Thin, flexible secondary Li-ion paper batteries. ACS Nano 4:5843–5848CrossRef Hu L, Wu H, Mantia FL et al (2010) Thin, flexible secondary Li-ion paper batteries. ACS Nano 4:5843–5848CrossRef
121.
Zurück zum Zitat Pushparaj VL, Shaijumon MM, Kumar A et al (2007) Flexible energy storage devices based on nanocomposite paper. Proc Natl Acad Sci U S A 104:13574–13577CrossRef Pushparaj VL, Shaijumon MM, Kumar A et al (2007) Flexible energy storage devices based on nanocomposite paper. Proc Natl Acad Sci U S A 104:13574–13577CrossRef
122.
Zurück zum Zitat Gimenez AJ, Yáñez-Limón JM, Seminario JM (2011) Paper-based photoconductive infrared sensor. J Phys Chem C 115:18829–18834CrossRef Gimenez AJ, Yáñez-Limón JM, Seminario JM (2011) Paper-based photoconductive infrared sensor. J Phys Chem C 115:18829–18834CrossRef
123.
Zurück zum Zitat Nie Z, Nijhuis CA, Gong J et al (2010) Electrochemical sensing in paper-based microfluidic devices. Lab Chip 10:477–483CrossRef Nie Z, Nijhuis CA, Gong J et al (2010) Electrochemical sensing in paper-based microfluidic devices. Lab Chip 10:477–483CrossRef
124.
Zurück zum Zitat Weng Z, Su Y, Wang DW et al (2011) Graphene-cellulose paper flexible supercapacitors. Adv Energy Mater 1:917–922CrossRef Weng Z, Su Y, Wang DW et al (2011) Graphene-cellulose paper flexible supercapacitors. Adv Energy Mater 1:917–922CrossRef
125.
Zurück zum Zitat Anderson RE, Guan J, Ricard M et al (2010) Multifunctional single-walled carbon nanotube–cellulose composite paper. J Mater Chem 20:2400–2407CrossRef Anderson RE, Guan J, Ricard M et al (2010) Multifunctional single-walled carbon nanotube–cellulose composite paper. J Mater Chem 20:2400–2407CrossRef
126.
Zurück zum Zitat Zheng G, Hu L, Wu H et al (2010) Paper supercapacitors by a solvent-free drawing method. Energy Environ Sci 4:3368–3373CrossRef Zheng G, Hu L, Wu H et al (2010) Paper supercapacitors by a solvent-free drawing method. Energy Environ Sci 4:3368–3373CrossRef
127.
Zurück zum Zitat Nystrom G, Razaq A, Strømme M et al (2009) Ultrafast all-polymer paper-based batteries. Nano Lett 9:3635–3639CrossRef Nystrom G, Razaq A, Strømme M et al (2009) Ultrafast all-polymer paper-based batteries. Nano Lett 9:3635–3639CrossRef
128.
Zurück zum Zitat Callone E, Fletcher JM, Carturan G et al (2008) A low-cost method for producing high-performance nanocomposite thin-films made from silica and CNTs on cellulose substrates. J Mater Sci 43:4862–4869CrossRef Callone E, Fletcher JM, Carturan G et al (2008) A low-cost method for producing high-performance nanocomposite thin-films made from silica and CNTs on cellulose substrates. J Mater Sci 43:4862–4869CrossRef
129.
Zurück zum Zitat Li J, Möhwald H, An Z et al (2005) Molecular assembly of biomimetic microcapsules. Soft Matt 1:259–264CrossRef Li J, Möhwald H, An Z et al (2005) Molecular assembly of biomimetic microcapsules. Soft Matt 1:259–264CrossRef
130.
Zurück zum Zitat An Z, Möhwald H, Li J (2006) pH Controlled permeability of lipid/protein biomimetic microcapsules. Biomacromol 7:580–585CrossRef An Z, Möhwald H, Li J (2006) pH Controlled permeability of lipid/protein biomimetic microcapsules. Biomacromol 7:580–585CrossRef
131.
Zurück zum Zitat He Q, Cui Y, Li J (2009) Molecular assembly and application of biomimetic microcapsules. Chem Soc Rev 38:2292–2303CrossRef He Q, Cui Y, Li J (2009) Molecular assembly and application of biomimetic microcapsules. Chem Soc Rev 38:2292–2303CrossRef
132.
Zurück zum Zitat Jia Y, Li J (2015) Molecular assembly of schiff base interactions: construction and application. Chem Rev 115:1597–1621CrossRef Jia Y, Li J (2015) Molecular assembly of schiff base interactions: construction and application. Chem Rev 115:1597–1621CrossRef
133.
Zurück zum Zitat Li J, Jia Y, Dong W et al (2014) Transporting a tube in a tube. Nano Lett 14:6160–6164CrossRef Li J, Jia Y, Dong W et al (2014) Transporting a tube in a tube. Nano Lett 14:6160–6164CrossRef
134.
Zurück zum Zitat Chen B, Jia Y, Zhao J et al (2013) Assembled hemoglobin and catalase nanotubes for the treatment of oxidative stress. J Phys Chem C 117:19751–19758 Chen B, Jia Y, Zhao J et al (2013) Assembled hemoglobin and catalase nanotubes for the treatment of oxidative stress. J Phys Chem C 117:19751–19758
135.
Zurück zum Zitat Zhao J, Fei J, Gao L et al (2013) Bioluminescent microcapsules: applications in activating a photosensitizer. Chem Eur J 19:4548–4555CrossRef Zhao J, Fei J, Gao L et al (2013) Bioluminescent microcapsules: applications in activating a photosensitizer. Chem Eur J 19:4548–4555CrossRef
Metadaten
Titel
Functional Nanomaterials Via Self-assembly Based Modification of Natural Cellulosic Substances
verfasst von
Shun Li
Yuanqing Gu
Jianguo Huang
Copyright-Jahr
2017
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-6059-5_8

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.