Skip to main content

2019 | OriginalPaper | Buchkapitel

Functionalization of Graphene—A Critical Overview of its Improved Physical, Chemical and Electrochemical Properties

verfasst von : Ramesh Kumar Singh, Naresh Nalajala, Tathagata Kar, Alex Schechter

Erschienen in: Surface Engineering of Graphene

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Graphene, the 2D allotrope of carbon, is reported to be functionalized with a plethora of organic and inorganic species. This functionalization imparts significant improvement in the physical, chemical and electrochemical properties of graphene. The covalent and non-covalent functionalization of graphene with electron-rich organic moieties and heteroatoms is focused on different sections of this chapter. The focus is laid on the improvement in physical, chemical and electrochemical properties of graphene achieved through this functionalization. The enhancement in electrocatalytic activity of non-metal-doped graphene towards the oxygen reduction reaction, methanol oxidation reaction and photocatalysis is covered. Towards the end, the potential uses of functionalized graphene for selected applications like biosensors, fuel cells and dye-sensitized solar cells are also discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183 (2007) Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183 (2007)
7.
Zurück zum Zitat Yoo, E., Kim, J., Hosono, E., Zhou, H., Kudo, T., Honma, I.: Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett. 8(8), 2277–2282 (2008). https://doi.org/10.1021/nl800957b Yoo, E., Kim, J., Hosono, E., Zhou, H., Kudo, T., Honma, I.: Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett. 8(8), 2277–2282 (2008). https://​doi.​org/​10.​1021/​nl800957b
9.
Zurück zum Zitat Paek, S.-M., Yoo, E., Honma, I.: Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. Nano Lett. 9(1), 72–75 (2009). https://doi.org/10.1021/nl802484w Paek, S.-M., Yoo, E., Honma, I.: Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. Nano Lett. 9(1), 72–75 (2009). https://​doi.​org/​10.​1021/​nl802484w
15.
19.
Zurück zum Zitat Yang, W., Chen, G., Shi, Z., Liu, C.C., Zhang, L., Xie, G., Cheng, M., Wang, D., Yang, R., Shi, D., et al.: Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat. Mater. 12(9), 792–797 (2013). https://doi.org/10.1038/nmat3695 Yang, W., Chen, G., Shi, Z., Liu, C.C., Zhang, L., Xie, G., Cheng, M., Wang, D., Yang, R., Shi, D., et al.: Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat. Mater. 12(9), 792–797 (2013). https://​doi.​org/​10.​1038/​nmat3695
20.
Zurück zum Zitat Sinitskii, A., Dimiev, A., Corley, D.A., Fursina, A.A., Kosynkin, D.V, Tour, J.M.: Kinetics of diazonium functionalization of chemically converted graphene nanoribbons. ACS Nano 4(4), 1949–1954 (2010). https://doi.org/10.1021/nn901899j Sinitskii, A., Dimiev, A., Corley, D.A., Fursina, A.A., Kosynkin, D.V, Tour, J.M.: Kinetics of diazonium functionalization of chemically converted graphene nanoribbons. ACS Nano 4(4), 1949–1954 (2010). https://​doi.​org/​10.​1021/​nn901899j
21.
22.
Zurück zum Zitat An, X., Butler, T.W., Washington, M., Nayak, S.K., Kar, S.: Optical and sensing properties of 1-pyrenecarboxylic acid-functionalized graphene films laminated on polydimethylsiloxane membranes. ACS Nano 5(2), 1003–1011 (2011). https://doi.org/10.1021/nn102415c An, X., Butler, T.W., Washington, M., Nayak, S.K., Kar, S.: Optical and sensing properties of 1-pyrenecarboxylic acid-functionalized graphene films laminated on polydimethylsiloxane membranes. ACS Nano 5(2), 1003–1011 (2011). https://​doi.​org/​10.​1021/​nn102415c
23.
Zurück zum Zitat Imran Jafri, R., Rajalakshmi, N., Ramaprabhu, S.: Nitrogen doped graphene nanoplatelets as catalyst support for oxygen reduction reaction in proton exchange membrane fuel cell. J. Mater. Chem. 20(34), 7114–7117 (2010). https://doi.org/10.1039/C0JM00467G Imran Jafri, R., Rajalakshmi, N., Ramaprabhu, S.: Nitrogen doped graphene nanoplatelets as catalyst support for oxygen reduction reaction in proton exchange membrane fuel cell. J. Mater. Chem. 20(34), 7114–7117 (2010). https://​doi.​org/​10.​1039/​C0JM00467G
24.
26.
Zurück zum Zitat Liu, J., Li, Y., Li, Y., Li, J., Deng, Z.: Noncovalent DNA decorations of graphene oxide and reduced graphene oxide toward water-soluble metal–carbon hybrid nanostructures via self-assembly. J. Mater. Chem. 20(5), 900–906 (2010). https://doi.org/10.1039/B917752C Liu, J., Li, Y., Li, Y., Li, J., Deng, Z.: Noncovalent DNA decorations of graphene oxide and reduced graphene oxide toward water-soluble metal–carbon hybrid nanostructures via self-assembly. J. Mater. Chem. 20(5), 900–906 (2010). https://​doi.​org/​10.​1039/​B917752C
27.
29.
Zurück zum Zitat Li, J., Zhang, Y., Zhang, X., Han, J., Wang, Y., Gu, L., Zhang, Z., Wang, X., Jian, J., Xu, P., et al.: Direct transformation from graphitic C3N4 to nitrogen-doped graphene: an efficient metal-free electrocatalyst for oxygen reduction reaction. ACS Appl. Mater. Interfaces 7(35), 19626–19634 (2015). https://doi.org/10.1021/acsami.5b03845CrossRef Li, J., Zhang, Y., Zhang, X., Han, J., Wang, Y., Gu, L., Zhang, Z., Wang, X., Jian, J., Xu, P., et al.: Direct transformation from graphitic C3N4 to nitrogen-doped graphene: an efficient metal-free electrocatalyst for oxygen reduction reaction. ACS Appl. Mater. Interfaces 7(35), 19626–19634 (2015). https://​doi.​org/​10.​1021/​acsami.​5b03845CrossRef
30.
Zurück zum Zitat Palaniselvam, T., Valappil, M.O., Illathvalappil, R., Kurungot, S.: Nanoporous graphene by quantum dots removal from graphene and its conversion to a potential oxygen reduction electrocatalyst via nitrogen doping. Energy Environ. Sci. 7(3), 1059–1067 (2014). https://doi.org/10.1039/C3EE43648ACrossRef Palaniselvam, T., Valappil, M.O., Illathvalappil, R., Kurungot, S.: Nanoporous graphene by quantum dots removal from graphene and its conversion to a potential oxygen reduction electrocatalyst via nitrogen doping. Energy Environ. Sci. 7(3), 1059–1067 (2014). https://​doi.​org/​10.​1039/​C3EE43648ACrossRef
36.
Zurück zum Zitat Huang, H., Ming, K., Fang, Y., Zhao, H., Wang, X., Chen, J., Guo, J., Zhang, J.: Fluorine-doped graphene with an outstanding electrocatalytic performance for efficient oxygen reduction reaction in alkaline solution. R. Soc. Open Sci. 5(10), 180925 (2018). https://doi.org/10.1098/rsos.180925CrossRef Huang, H., Ming, K., Fang, Y., Zhao, H., Wang, X., Chen, J., Guo, J., Zhang, J.: Fluorine-doped graphene with an outstanding electrocatalytic performance for efficient oxygen reduction reaction in alkaline solution. R. Soc. Open Sci. 5(10), 180925 (2018). https://​doi.​org/​10.​1098/​rsos.​180925CrossRef
37.
Zurück zum Zitat Ion-Ebrasu, D., Varlam, M., Balan, D., Enachescu, M., Raceanu, M., Carcadea, E., Marinoiu, A., Stefanescu, I.: Iodine-doped graphene for enhanced electrocatalytic oxygen reduction reaction in proton exchange membrane fuel cell applications. J. Electrochem. Energy Convers. Storage 14(3), 031001 (2017). https://doi.org/10.1115/1.4036684CrossRef Ion-Ebrasu, D., Varlam, M., Balan, D., Enachescu, M., Raceanu, M., Carcadea, E., Marinoiu, A., Stefanescu, I.: Iodine-doped graphene for enhanced electrocatalytic oxygen reduction reaction in proton exchange membrane fuel cell applications. J. Electrochem. Energy Convers. Storage 14(3), 031001 (2017). https://​doi.​org/​10.​1115/​1.​4036684CrossRef
41.
Zurück zum Zitat Wang, Y., Liu, H., Wang, L., Wang, H., Du, X., Wang, F., Qi, T., Lee, J.-M., Wang, X.: Pd catalyst supported on a chitosan-functionalized large-area 3d reduced graphene oxide for formic acid electrooxidation reaction. J. Mater. Chem. A1(23), 6839–6848 (2013). https://doi.org/10.1039/C3TA10214ACrossRef Wang, Y., Liu, H., Wang, L., Wang, H., Du, X., Wang, F., Qi, T., Lee, J.-M., Wang, X.: Pd catalyst supported on a chitosan-functionalized large-area 3d reduced graphene oxide for formic acid electrooxidation reaction. J. Mater. Chem. A1(23), 6839–6848 (2013). https://​doi.​org/​10.​1039/​C3TA10214ACrossRef
42.
Zurück zum Zitat Jeon, I.Y., Choi, H.J., Choi, M., Seo, J.M., Jung, S.M., Kim, M.J., Zhang, S., Zhang, L., Xia, Z., Dai, L., et al.: Facile, scalable synthesis of edge-halogenated graphene nanoplatelets as efficient metal-free eletrocatalysts for oxygen reduction reaction. Sci. Rep. 3, 1–7 (2013). https://doi.org/10.1038/srep01810 Jeon, I.Y., Choi, H.J., Choi, M., Seo, J.M., Jung, S.M., Kim, M.J., Zhang, S., Zhang, L., Xia, Z., Dai, L., et al.: Facile, scalable synthesis of edge-halogenated graphene nanoplatelets as efficient metal-free eletrocatalysts for oxygen reduction reaction. Sci. Rep. 3, 1–7 (2013). https://​doi.​org/​10.​1038/​srep01810
43.
46.
Zurück zum Zitat Zhang, X., Hou, L., Cnossen, A., Coleman, A.C., Ivashenko, O., Rudolf, P., van Wees, B.J., Browne, W.R., Feringa, B.L.: One-pot functionalization of graphene with porphyrin through cycloaddition reactions. Chem. Eur. J. 17(32), 8957–8964 (2011). https://doi.org/10.1002/chem.201100980 Zhang, X., Hou, L., Cnossen, A., Coleman, A.C., Ivashenko, O., Rudolf, P., van Wees, B.J., Browne, W.R., Feringa, B.L.: One-pot functionalization of graphene with porphyrin through cycloaddition reactions. Chem. Eur. J. 17(32), 8957–8964 (2011). https://​doi.​org/​10.​1002/​chem.​201100980
48.
Zurück zum Zitat Vadukumpully, S., Gupta, J., Zhang, Y., Xu, G.Q., Valiyaveettil, S.: Functionalization of surfactant wrapped graphene nanosheets with alkylazides for enhanced dispersibility. Nanoscale 3(1), 303–308 (2011). https://doi.org/10.1039/C0NR00547A Vadukumpully, S., Gupta, J., Zhang, Y., Xu, G.Q., Valiyaveettil, S.: Functionalization of surfactant wrapped graphene nanosheets with alkylazides for enhanced dispersibility. Nanoscale 3(1), 303–308 (2011). https://​doi.​org/​10.​1039/​C0NR00547A
50.
Zurück zum Zitat Riley, K.E., Pitoňák, M., Jurečka, P., Hobza, P.: Stabilization and structure calculations for noncovalent interactions in extended molecular systems based on wave function and density functional theories. Chem. Rev. 110(9), 5023–5063 (2010). https://doi.org/10.1021/cr1000173 Riley, K.E., Pitoňák, M., Jurečka, P., Hobza, P.: Stabilization and structure calculations for noncovalent interactions in extended molecular systems based on wave function and density functional theories. Chem. Rev. 110(9), 5023–5063 (2010). https://​doi.​org/​10.​1021/​cr1000173
51.
54.
Zurück zum Zitat Yang, Q., Pan, X., Huang, F., Li, K.: Fabrication of high-concentration and stable aqueous suspensions of graphene nanosheets by noncovalent functionalization with lignin and cellulose derivatives. J. Phys. Chem. C 114(9), 3811–3816 (2010). https://doi.org/10.1021/jp910232x Yang, Q., Pan, X., Huang, F., Li, K.: Fabrication of high-concentration and stable aqueous suspensions of graphene nanosheets by noncovalent functionalization with lignin and cellulose derivatives. J. Phys. Chem. C 114(9), 3811–3816 (2010). https://​doi.​org/​10.​1021/​jp910232x
55.
Zurück zum Zitat Kodali, V.K., Scrimgeour, J., Kim, S., Hankinson, J.H., Carroll, K.M., de Heer, W.A., Berger, C., Curtis, J.E.: Nonperturbative chemical modification of graphene for protein micropatterning. Langmuir 27(3), 863–865 (2011). https://doi.org/10.1021/la1033178 Kodali, V.K., Scrimgeour, J., Kim, S., Hankinson, J.H., Carroll, K.M., de Heer, W.A., Berger, C., Curtis, J.E.: Nonperturbative chemical modification of graphene for protein micropatterning. Langmuir 27(3), 863–865 (2011). https://​doi.​org/​10.​1021/​la1033178
57.
Zurück zum Zitat Georgakilas, V., Otyepka, M., Bourlinos, A.B., Chandra, V., Kim, N., Kemp, K.C., Hobza, P., Zboril, R., Kim, K.S.: Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem. Rev. 112(11), 6156–6214 (2012). https://doi.org/10.1021/cr3000412 Georgakilas, V., Otyepka, M., Bourlinos, A.B., Chandra, V., Kim, N., Kemp, K.C., Hobza, P., Zboril, R., Kim, K.S.: Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem. Rev. 112(11), 6156–6214 (2012). https://​doi.​org/​10.​1021/​cr3000412
58.
Zurück zum Zitat Elias, D.C., Nair, R.R., Mohiuddin, T.M.G., Morozov, S.V., Blake, P., Halsall, M.P., Ferrari, A.C., Boukhvalov, D.W., Katsnelson, M.I., Geim, A.K., et al.: Control of graphene's properties by reversible hydrogenation: evidence for graphane. Science (80-) 323(5914), 610 LP–613 LP (2009). https://doi.org/10.1126/science.1167130 Elias, D.C., Nair, R.R., Mohiuddin, T.M.G., Morozov, S.V., Blake, P., Halsall, M.P., Ferrari, A.C., Boukhvalov, D.W., Katsnelson, M.I., Geim, A.K., et al.: Control of graphene's properties by reversible hydrogenation: evidence for graphane. Science (80-) 323(5914), 610 LP–613 LP (2009). https://​doi.​org/​10.​1126/​science.​1167130
59.
Zurück zum Zitat Schniepp, H.C., Li, J.L., McAllister, M.J., Sai, H., Herrera-Alonson, M., Adamson, D.H., Prud’homme, R.K., Car, R., Seville, D.A., Aksay, I.A.: Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B 110(17), 8535–8539 (2006). https://doi.org/10.1021/jp060936f Schniepp, H.C., Li, J.L., McAllister, M.J., Sai, H., Herrera-Alonson, M., Adamson, D.H., Prud’homme, R.K., Car, R., Seville, D.A., Aksay, I.A.: Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B 110(17), 8535–8539 (2006). https://​doi.​org/​10.​1021/​jp060936f
60.
Zurück zum Zitat Lee, J.K., Yamazaki, S., Yun, H., Park, J., Kennedy, G.P., Kim, G.T., Pietzsch, O., Wiesendanger, R., Lee, S., Hong, S., et al.: Modification of electrical properties of graphene by substrate-induced nanomodulation. Nano Lett. 13(8), 3494–3500 (2013). https://doi.org/10.1021/nl400827p Lee, J.K., Yamazaki, S., Yun, H., Park, J., Kennedy, G.P., Kim, G.T., Pietzsch, O., Wiesendanger, R., Lee, S., Hong, S., et al.: Modification of electrical properties of graphene by substrate-induced nanomodulation. Nano Lett. 13(8), 3494–3500 (2013). https://​doi.​org/​10.​1021/​nl400827p
61.
Zurück zum Zitat Schiros, T., Nordlund, D., Pálová, L., Prezzi, D., Zhao, L., Kim, K. S., Wurstbauer, U., Gutiérrez, C., Delongchamp, D., Jaye, C., et al.: Connecting dopant bond type with electronic structure in N-doped graphene. Nano Lett. 12(8), 4025–4031 (2012). https://doi.org/10.1021/nl301409h Schiros, T., Nordlund, D., Pálová, L., Prezzi, D., Zhao, L., Kim, K. S., Wurstbauer, U., Gutiérrez, C., Delongchamp, D., Jaye, C., et al.: Connecting dopant bond type with electronic structure in N-doped graphene. Nano Lett. 12(8), 4025–4031 (2012). https://​doi.​org/​10.​1021/​nl301409h
62.
Zurück zum Zitat Macedo, L.J.A., Lima, F.C.D.A., Amorim, R.G., Freitas, R.O., Yadav, A., Iost, R.M., Balasubramanian, K., Crespilho, F.N.: Interplay of non-uniform charge distribution on the electrochemical modification of graphene. Nanoscale 10(31), 15048–15057 (2018). https://doi.org/10.1039/c8nr03893g Macedo, L.J.A., Lima, F.C.D.A., Amorim, R.G., Freitas, R.O., Yadav, A., Iost, R.M., Balasubramanian, K., Crespilho, F.N.: Interplay of non-uniform charge distribution on the electrochemical modification of graphene. Nanoscale 10(31), 15048–15057 (2018). https://​doi.​org/​10.​1039/​c8nr03893g
64.
Zurück zum Zitat de la Torre, B., Švec, M., Hapala, P., Redondo, J., Krejčí, O., Lo, R., Manna, D., Sarmah, A., Nachtigallová, D., Tuček, J., et al.: Non-covalent control of spin-state in metal-organic complex by positioning on N-doped graphene. Nat. Commun. 9(1), 1–9 (2018). https://doi.org/10.1038/s41467-018-05163-y de la Torre, B., Švec, M., Hapala, P., Redondo, J., Krejčí, O., Lo, R., Manna, D., Sarmah, A., Nachtigallová, D., Tuček, J., et al.: Non-covalent control of spin-state in metal-organic complex by positioning on N-doped graphene. Nat. Commun. 9(1), 1–9 (2018). https://​doi.​org/​10.​1038/​s41467-018-05163-y
65.
Zurück zum Zitat Saha, S., Samanta, P., Chandra Murmu, N., Kuila, T.: Investigation of the surface plasmon polariton and electrochemical properties of covalent and non-covalent functionalized reduced graphene oxide. Phys. Chem. Chem. Phys. 19(42), 28588–28595 (2017). https://doi.org/10.1039/c7cp05923j Saha, S., Samanta, P., Chandra Murmu, N., Kuila, T.: Investigation of the surface plasmon polariton and electrochemical properties of covalent and non-covalent functionalized reduced graphene oxide. Phys. Chem. Chem. Phys. 19(42), 28588–28595 (2017). https://​doi.​org/​10.​1039/​c7cp05923j
69.
Zurück zum Zitat Xu, Y., Liu, Z., Zhang, X., Wang, Y., Tian, J., Huang, Y., Ma, Y., Zhang, X., Chen, Y.: A graphene hybrid material covalently functionalized with porphyrin: synthesis and optical limiting property. Adv. Mater. 21(12), 1275–1279 (2009). https://doi.org/10.1002/adma.200801617 Xu, Y., Liu, Z., Zhang, X., Wang, Y., Tian, J., Huang, Y., Ma, Y., Zhang, X., Chen, Y.: A graphene hybrid material covalently functionalized with porphyrin: synthesis and optical limiting property. Adv. Mater. 21(12), 1275–1279 (2009). https://​doi.​org/​10.​1002/​adma.​200801617
70.
Zurück zum Zitat Du, Y., Dong, N., Zhang, M., Zhu, K., Na, R., Zhang, S., Sun, N., Wang, G., Wang, J.: Covalent functionalization of graphene oxide with porphyrin and porphyrin incorporated polymers for optical limiting. Phys. Chem. Chem. Phys. 19(3), 2252–2260 (2017). https://doi.org/10.1039/c6cp05920a Du, Y., Dong, N., Zhang, M., Zhu, K., Na, R., Zhang, S., Sun, N., Wang, G., Wang, J.: Covalent functionalization of graphene oxide with porphyrin and porphyrin incorporated polymers for optical limiting. Phys. Chem. Chem. Phys. 19(3), 2252–2260 (2017). https://​doi.​org/​10.​1039/​c6cp05920a
71.
Zurück zum Zitat Wang, A., Yu, W., Huang, Z., Zhou, F., Song, J., Song, Y., Long, L., Cifuentes, M.P., Humphrey, M.G., Zhang, L., et al.: Covalent functionalization of reduced graphene oxide with porphyrin by means of diazonium chemistry for nonlinear optical performance. Sci. Rep. 6, 1–12 (2016). https://doi.org/10.1038/srep23325 Wang, A., Yu, W., Huang, Z., Zhou, F., Song, J., Song, Y., Long, L., Cifuentes, M.P., Humphrey, M.G., Zhang, L., et al.: Covalent functionalization of reduced graphene oxide with porphyrin by means of diazonium chemistry for nonlinear optical performance. Sci. Rep. 6, 1–12 (2016). https://​doi.​org/​10.​1038/​srep23325
72.
Zurück zum Zitat Li, Z., He, C., Wang, Z., Gao, Y., Dong, Y., Zhao, C., Chen, Z., Wu, Y., Song, W.: Ethylenediamine-modified graphene oxide covalently functionalized with a tetracarboxylic Zn(ii) phthalocyanine hybrid for enhanced nonlinear optical properties. Photochem. Photobiol. Sci. 15(7), 910–919 (2016). https://doi.org/10.1039/c6pp00063k Li, Z., He, C., Wang, Z., Gao, Y., Dong, Y., Zhao, C., Chen, Z., Wu, Y., Song, W.: Ethylenediamine-modified graphene oxide covalently functionalized with a tetracarboxylic Zn(ii) phthalocyanine hybrid for enhanced nonlinear optical properties. Photochem. Photobiol. Sci. 15(7), 910–919 (2016). https://​doi.​org/​10.​1039/​c6pp00063k
74.
Zurück zum Zitat Liu, Z., Xu, Y., Zhang, X., Zhang, X., Chen, Y., Tian, J.: Porphyrin and fullerene covalently functionalized graphene hybrid materials with large nonlinear optical properties. J. Phys. Chem. B (ACS Publ.) 9681–9686 (2009) Liu, Z., Xu, Y., Zhang, X., Zhang, X., Chen, Y., Tian, J.: Porphyrin and fullerene covalently functionalized graphene hybrid materials with large nonlinear optical properties. J. Phys. Chem. B (ACS Publ.) 9681–9686 (2009)
75.
Zurück zum Zitat Xu, X., Li, P., Zhang, L., Liu, X., Zhang, H.L., Shi, Q., He, B., Zhang, W., Qu, Z., Liu, P.: Covalent functionalization of graphene by nucleophilic addition reaction: synthesis and optical-limiting properties. Chem. Asian J. 12(19), 2583–2590 (2017). https://doi.org/10.1002/asia.201700899 Xu, X., Li, P., Zhang, L., Liu, X., Zhang, H.L., Shi, Q., He, B., Zhang, W., Qu, Z., Liu, P.: Covalent functionalization of graphene by nucleophilic addition reaction: synthesis and optical-limiting properties. Chem. Asian J. 12(19), 2583–2590 (2017). https://​doi.​org/​10.​1002/​asia.​201700899
76.
79.
Zurück zum Zitat Ray, S.C., Soin, N., Pong, W. F., Roy, S.S., Strydom, A.M., McLaughlin, J.A., Papakonstantinou, P.: Plasma modification of the electronic and magnetic properties of vertically aligned Bi-/Tri-layered graphene nanoflakes. RSC Adv. 6(75), 70913–70924 (2016). https://doi.org/10.1039/c6ra14457h Ray, S.C., Soin, N., Pong, W. F., Roy, S.S., Strydom, A.M., McLaughlin, J.A., Papakonstantinou, P.: Plasma modification of the electronic and magnetic properties of vertically aligned Bi-/Tri-layered graphene nanoflakes. RSC Adv. 6(75), 70913–70924 (2016). https://​doi.​org/​10.​1039/​c6ra14457h
80.
Zurück zum Zitat Ray, S.C., Soin, N., Makgato, T., Chuang, C.H., Pong, W.F., Roy, S.S., Ghosh, S.K., Strydom, A.M., McLaughlin, J.A.: Graphene supported graphone/graphane bilayer nanostructure material for spintronics. Sci. Rep. 4 (2014). https://doi.org/10.1038/srep03862 Ray, S.C., Soin, N., Makgato, T., Chuang, C.H., Pong, W.F., Roy, S.S., Ghosh, S.K., Strydom, A.M., McLaughlin, J.A.: Graphene supported graphone/graphane bilayer nanostructure material for spintronics. Sci. Rep. 4 (2014). https://​doi.​org/​10.​1038/​srep03862
81.
Zurück zum Zitat Liu, Y., Tang, N., Wan, X., Feng, Q., Li, M., Xu, Q., Liu, F., Du, Y.: Realization of ferromagnetic graphene oxide with high magnetization by doping graphene oxide with nitrogen. Sci. Rep. 3 (2013). https://doi.org/10.1038/srep02566 Liu, Y., Tang, N., Wan, X., Feng, Q., Li, M., Xu, Q., Liu, F., Du, Y.: Realization of ferromagnetic graphene oxide with high magnetization by doping graphene oxide with nitrogen. Sci. Rep. 3 (2013). https://​doi.​org/​10.​1038/​srep02566
83.
Zurück zum Zitat Gonzalez-Herrero, H., Gomez-Rodriguez, J.M., Mallet, P., Moaied, M., Palacios, J.J., Salgado, C., Ugeda, M.M., Veuillen, J.-Y., Yndurain, F., Brihuega, I.: Supplementary materials for atomic-scale control of graphene magnetism by using hydrogen atoms. Science (80-) 352(6284), 437–441 (2016). https://doi.org/10.1126/science.aad8038 Gonzalez-Herrero, H., Gomez-Rodriguez, J.M., Mallet, P., Moaied, M., Palacios, J.J., Salgado, C., Ugeda, M.M., Veuillen, J.-Y., Yndurain, F., Brihuega, I.: Supplementary materials for atomic-scale control of graphene magnetism by using hydrogen atoms. Science (80-) 352(6284), 437–441 (2016). https://​doi.​org/​10.​1126/​science.​aad8038
85.
Zurück zum Zitat Gonalves, G., Marques, P.A.A.P., Barros-Timmons, A., Bdkin, I., Singh, M.K., Emami, N., Grácio, J.: Graphene oxide modified with pmma via atrp as a reinforcement filler. J. Mater. Chem. 20(44), 9927–9934 (2010). https://doi.org/10.1039/c0jm01674h Gonalves, G., Marques, P.A.A.P., Barros-Timmons, A., Bdkin, I., Singh, M.K., Emami, N., Grácio, J.: Graphene oxide modified with pmma via atrp as a reinforcement filler. J. Mater. Chem. 20(44), 9927–9934 (2010). https://​doi.​org/​10.​1039/​c0jm01674h
86.
Zurück zum Zitat Song, S., Wan, C., Zhang, Y.: Non-covalent functionalization of Graphene oxide by Pyrene-block copolymers for enhancing physical properties of Poly(Methyl Methacrylate). RSC Adv. 5(97), 79947–79955 (2015). https://doi.org/10.1039/c5ra14967c Song, S., Wan, C., Zhang, Y.: Non-covalent functionalization of Graphene oxide by Pyrene-block copolymers for enhancing physical properties of Poly(Methyl Methacrylate). RSC Adv. 5(97), 79947–79955 (2015). https://​doi.​org/​10.​1039/​c5ra14967c
87.
Zurück zum Zitat Dikin, D.A., Stankovich, S., Zimney, E.J., Piner, R.D., Dommett, G.H.B., Evmenenko, G., Nguyen, S.T., Ruoff, R.S.: Preparation and characterization of graphene oxide paper. Nature 448(7152), 457–460 (2007). https://doi.org/10.1038/nature06016 Dikin, D.A., Stankovich, S., Zimney, E.J., Piner, R.D., Dommett, G.H.B., Evmenenko, G., Nguyen, S.T., Ruoff, R.S.: Preparation and characterization of graphene oxide paper. Nature 448(7152), 457–460 (2007). https://​doi.​org/​10.​1038/​nature06016
88.
Zurück zum Zitat Suk, J. W., Piner, R. D., An, J., Ruoff, R. S.: Mechanical properties of monolayer graphene oxide. ACS Nano. 4, 6557−6564 (2010) Suk, J. W., Piner, R. D., An, J., Ruoff, R. S.: Mechanical properties of monolayer graphene oxide. ACS Nano. 4, 6557−6564 (2010)
89.
Zurück zum Zitat Wang, B., Li, Z., Wang, C., Signetti, S., Cunning, B.V., Wu, X., Huang, Y., Jiang, Y., Shi, H., Ryu, S., et al.: Folding large graphene-on-polymer films yields laminated composites with enhanced mechanical performance. Adv. Mater. 30(35), 1–10 (2018). https://doi.org/10.1002/adma.201707449 Wang, B., Li, Z., Wang, C., Signetti, S., Cunning, B.V., Wu, X., Huang, Y., Jiang, Y., Shi, H., Ryu, S., et al.: Folding large graphene-on-polymer films yields laminated composites with enhanced mechanical performance. Adv. Mater. 30(35), 1–10 (2018). https://​doi.​org/​10.​1002/​adma.​201707449
95.
Zurück zum Zitat Wang, X., Song, L., Yang, H., Xing, W., Lu, H., Hu, Y.: Cobalt Oxide/Graphene composite for highly efficient CO oxidation and its application in reducing the fire hazards of aliphatic polyesters. J. Mater. Chem. 22(8), 3426–3431 (2012). https://doi.org/10.1039/c2jm15637g Wang, X., Song, L., Yang, H., Xing, W., Lu, H., Hu, Y.: Cobalt Oxide/Graphene composite for highly efficient CO oxidation and its application in reducing the fire hazards of aliphatic polyesters. J. Mater. Chem. 22(8), 3426–3431 (2012). https://​doi.​org/​10.​1039/​c2jm15637g
97.
Zurück zum Zitat Li, W., Zhang, H., Wang, J., Qiao, W., Ling, L., Long, D.: Flexible Ru/Graphene aerogel with switchable surface chemistry: highly efficient catalyst for room-temperature CO oxidation. Adv. Mater. Interfaces 3(10), 1–8 (2016). https://doi.org/10.1002/admi.201500711 Li, W., Zhang, H., Wang, J., Qiao, W., Ling, L., Long, D.: Flexible Ru/Graphene aerogel with switchable surface chemistry: highly efficient catalyst for room-temperature CO oxidation. Adv. Mater. Interfaces 3(10), 1–8 (2016). https://​doi.​org/​10.​1002/​admi.​201500711
98.
Zurück zum Zitat Mahmoudi, H., Mahmoudi, M., Doustdar, O., Jahangiri, H., Tsolakis, A., Gu, S., LechWyszynski, M.: A review of Fischer Tropsch synthesis process, mechanism, surface chemistry and catalyst formulation. Biofuels Eng. 2(1), 11–31 (2017). https://doi.org/10.1515/bfuel-2017-0002 Mahmoudi, H., Mahmoudi, M., Doustdar, O., Jahangiri, H., Tsolakis, A., Gu, S., LechWyszynski, M.: A review of Fischer Tropsch synthesis process, mechanism, surface chemistry and catalyst formulation. Biofuels Eng. 2(1), 11–31 (2017). https://​doi.​org/​10.​1515/​bfuel-2017-0002
99.
Zurück zum Zitat Jahangiri, H., Bennett, J., Mahjoubi, P., Wilson, K., Gu, S.: A review of advanced catalyst development for fischer-tropsch synthesis of hydrocarbons from biomass derived syn-gas. Catal. Sci. Technol. 4(8), 2210–2229 (2014). https://doi.org/10.1039/c4cy00327f Jahangiri, H., Bennett, J., Mahjoubi, P., Wilson, K., Gu, S.: A review of advanced catalyst development for fischer-tropsch synthesis of hydrocarbons from biomass derived syn-gas. Catal. Sci. Technol. 4(8), 2210–2229 (2014). https://​doi.​org/​10.​1039/​c4cy00327f
100.
Zurück zum Zitat Cheng, Y., Lin, J., Xu, K., Wang, H., Yao, X., Pei, Y., Yan, S., Qiao, M., Zong, B.: Fischer-tropsch synthesis to lower olefins over potassium-promoted reduced graphene oxide supported iron catalysts. ACS Catal. 6(1), 389–399 (2016). https://doi.org/10.1021/acscatal.5b02024 Cheng, Y., Lin, J., Xu, K., Wang, H., Yao, X., Pei, Y., Yan, S., Qiao, M., Zong, B.: Fischer-tropsch synthesis to lower olefins over potassium-promoted reduced graphene oxide supported iron catalysts. ACS Catal. 6(1), 389–399 (2016). https://​doi.​org/​10.​1021/​acscatal.​5b02024
102.
Zurück zum Zitat Abbas, M., Zhang, J., Lin, K., Chen, J.: Fe3O4 nanocubes assembled on RGO nanosheets: ultrasound induced in-situ and eco-friendly synthesis, characterization and their excellent catalytic performance for the production of liquid fuel in fischer-tropsch synthesis. Ultrason. Sonochem. 42, 271–282 (2018). https://doi.org/10.1016/j.ultsonch.2017.11.031 Abbas, M., Zhang, J., Lin, K., Chen, J.: Fe3O4 nanocubes assembled on RGO nanosheets: ultrasound induced in-situ and eco-friendly synthesis, characterization and their excellent catalytic performance for the production of liquid fuel in fischer-tropsch synthesis. Ultrason. Sonochem. 42, 271–282 (2018). https://​doi.​org/​10.​1016/​j.​ultsonch.​2017.​11.​031
103.
Zurück zum Zitat Sun, B., Jiang, Z., Fang, D., Xu, K., Pei, Y., Yan, S., Qiao, M., Fan, K., Zong, B.: One-pot approach to a highly robust iron oxide/reduced graphene oxide nanocatalyst for fischer-tropsch synthesis. ChemCatChem 5(3), 714–719 (2013). https://doi.org/10.1002/cctc.201200653 Sun, B., Jiang, Z., Fang, D., Xu, K., Pei, Y., Yan, S., Qiao, M., Fan, K., Zong, B.: One-pot approach to a highly robust iron oxide/reduced graphene oxide nanocatalyst for fischer-tropsch synthesis. ChemCatChem 5(3), 714–719 (2013). https://​doi.​org/​10.​1002/​cctc.​201200653
106.
107.
Zurück zum Zitat Rostamnia, S., Doustkhah, E., Golchin-Hosseini, H., Zeynizadeh, B., Xin, H., Luque, R.: Efficient tandem aqueous room temperature oxidative amidations catalysed by supported Pd nanoparticles on graphene oxide. Catal. Sci. Technol. 6(12), 4124–4133 (2016). https://doi.org/10.1039/c5cy01596k Rostamnia, S., Doustkhah, E., Golchin-Hosseini, H., Zeynizadeh, B., Xin, H., Luque, R.: Efficient tandem aqueous room temperature oxidative amidations catalysed by supported Pd nanoparticles on graphene oxide. Catal. Sci. Technol. 6(12), 4124–4133 (2016). https://​doi.​org/​10.​1039/​c5cy01596k
108.
Zurück zum Zitat Rahimi, R., Moshari, M., Rabbani, M., Azad, A.: Photooxidation of benzyl alcohols and photodegradation of cationic dyes by Fe3O4@sulfur/reduced graphene oxide as catalyst. RSC Adv. 6(47), 41156–41164 (2016). https://doi.org/10.1039/c6ra00137h Rahimi, R., Moshari, M., Rabbani, M., Azad, A.: Photooxidation of benzyl alcohols and photodegradation of cationic dyes by Fe3O4@sulfur/reduced graphene oxide as catalyst. RSC Adv. 6(47), 41156–41164 (2016). https://​doi.​org/​10.​1039/​c6ra00137h
110.
Zurück zum Zitat Song, Z., Li, W., Niu, F., Xu, Y., Niu, L., Yang, W., Wang, Y., Liu, J.: A novel method to decorate au clusters onto graphene via a mild co-reduction process for ultrahigh catalytic activity. J. Mater. Chem. A 5(1), 230–239 (2017). https://doi.org/10.1039/c6ta08284j Song, Z., Li, W., Niu, F., Xu, Y., Niu, L., Yang, W., Wang, Y., Liu, J.: A novel method to decorate au clusters onto graphene via a mild co-reduction process for ultrahigh catalytic activity. J. Mater. Chem. A 5(1), 230–239 (2017). https://​doi.​org/​10.​1039/​c6ta08284j
111.
Zurück zum Zitat Chung, H.T., Cullen, D. A., Higgins, D., Sneed, B.T., Holby, E.F. More, K.L., Zelenay, P.: Direct atomic-level insight into the active sites of a high-performance pgm-free ORR catalyst. Science (80-) 357(6350), 479–484 (2017). https://doi.org/10.1126/science.aan2255 Chung, H.T., Cullen, D. A., Higgins, D., Sneed, B.T., Holby, E.F. More, K.L., Zelenay, P.: Direct atomic-level insight into the active sites of a high-performance pgm-free ORR catalyst. Science (80-) 357(6350), 479–484 (2017). https://​doi.​org/​10.​1126/​science.​aan2255
113.
Zurück zum Zitat Jaouen, F., Proietti, E., Lefèvre, M., Chenitz, R., Dodelet, J.-P., Wu, G., Chung, H.T., Johnston, C.M., Zelenay, P.: Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells. Energy Environ. Sci. 4(1), 114 (2011). https://doi.org/10.1039/c0ee00011f Jaouen, F., Proietti, E., Lefèvre, M., Chenitz, R., Dodelet, J.-P., Wu, G., Chung, H.T., Johnston, C.M., Zelenay, P.: Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells. Energy Environ. Sci. 4(1), 114 (2011). https://​doi.​org/​10.​1039/​c0ee00011f
115.
Zurück zum Zitat Wang, J.X., Inada, H.; Wu, L.; Zhu, Y.; Choi, Y.; Liu, P.; Zhou, W. P., Adzic, R.R.: Oxygen reduction on well-defined core-shell nanocatalysts: particle size, facet, and pt shell thickness effects. J. Am. Chem. Soc. 131(47), 17299–17302 (2009). https://doi.org/10.1021/ja9067645 Wang, J.X., Inada, H.; Wu, L.; Zhu, Y.; Choi, Y.; Liu, P.; Zhou, W. P., Adzic, R.R.: Oxygen reduction on well-defined core-shell nanocatalysts: particle size, facet, and pt shell thickness effects. J. Am. Chem. Soc. 131(47), 17299–17302 (2009). https://​doi.​org/​10.​1021/​ja9067645
116.
117.
118.
Zurück zum Zitat Greeley, J., Stephens, I.E.L., Bondarenko, A.S., Johansson, T.P., Hansen, H.A., Jaramillo, T.F., Rossmeisl, J., Chorkendorff, I., Nørskov, J.K.: Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat. Chem. 1(7), 552–556 (2009). https://doi.org/10.1038/nchem.367 Greeley, J., Stephens, I.E.L., Bondarenko, A.S., Johansson, T.P., Hansen, H.A., Jaramillo, T.F., Rossmeisl, J., Chorkendorff, I., Nørskov, J.K.: Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat. Chem. 1(7), 552–556 (2009). https://​doi.​org/​10.​1038/​nchem.​367
125.
Zurück zum Zitat Liang, J., Jiao, Y., Jaroniec, M., Qiao, S.Z.: Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angew. Chemie. Int. Ed. 51(46), 11496–11500 (2012). https://doi.org/10.1002/anie.201206720 Liang, J., Jiao, Y., Jaroniec, M., Qiao, S.Z.: Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angew. Chemie. Int. Ed. 51(46), 11496–11500 (2012). https://​doi.​org/​10.​1002/​anie.​201206720
127.
Zurück zum Zitat Yang, Z., Yao, Z., Li, G., Fang, G., Nie, H., Liu, Z., Zhou, X., Chen, X., Huang, S.: Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction. ACS Nano 6(1), 205–211 (2012). https://doi.org/10.1021/nn203393d Yang, Z., Yao, Z., Li, G., Fang, G., Nie, H., Liu, Z., Zhou, X., Chen, X., Huang, S.: Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction. ACS Nano 6(1), 205–211 (2012). https://​doi.​org/​10.​1021/​nn203393d
128.
Zurück zum Zitat Xiong, W., Du, F., Liu, Y., Perez, A., Supp, M., Ramakrishnan, T.S., Dai, L., Jiang, L.: 3-D carbon nanotube structures used as high performance catalyst for oxygen reduction reaction. J. Am. Chem. Soc. 132(45), 15839–15841 (2010). https://doi.org/10.1021/ja104425h Xiong, W., Du, F., Liu, Y., Perez, A., Supp, M., Ramakrishnan, T.S., Dai, L., Jiang, L.: 3-D carbon nanotube structures used as high performance catalyst for oxygen reduction reaction. J. Am. Chem. Soc. 132(45), 15839–15841 (2010). https://​doi.​org/​10.​1021/​ja104425h
129.
131.
134.
Zurück zum Zitat Kolagatla, S., Subramanian, P., Schechter, A.: Nanoscale mapping of catalytic hotspots on Fe, N-Modified HOPG by scanning electrochemical microscopy-atomic force microscopy. Nanoscale 10(15), 6962–6970 (2018). https://doi.org/10.1039/C8NR00849C Kolagatla, S., Subramanian, P., Schechter, A.: Nanoscale mapping of catalytic hotspots on Fe, N-Modified HOPG by scanning electrochemical microscopy-atomic force microscopy. Nanoscale 10(15), 6962–6970 (2018). https://​doi.​org/​10.​1039/​C8NR00849C
135.
Zurück zum Zitat Zhou, Y., Neyerlin, K., Olson, T.S., Pylypenko, S., Bult, J., Dinh, H.N., Gennett, T., Shao, Z., O’Hayre, R.: Enhancement of Pt and Pt-Alloy fuel cell catalyst activity and durability via nitrogen-modified carbon supports. Energy Environ. Sci. 3(10), 1437–1446 (2010). https://doi.org/10.1039/C003710A Zhou, Y., Neyerlin, K., Olson, T.S., Pylypenko, S., Bult, J., Dinh, H.N., Gennett, T., Shao, Z., O’Hayre, R.: Enhancement of Pt and Pt-Alloy fuel cell catalyst activity and durability via nitrogen-modified carbon supports. Energy Environ. Sci. 3(10), 1437–1446 (2010). https://​doi.​org/​10.​1039/​C003710A
136.
137.
Zurück zum Zitat Bera, B., Chakraborty, A., Kar, T., Leuaa, P., Neergat, M.: Density of states, carrier concentration, and flat band potential derived from electrochemical impedance measurements of N-Doped carbon and their influence on electrocatalysis of oxygen reduction reaction. J. Phys. Chem. C 121(38), 20850–20856 (2017). https://doi.org/10.1021/acs.jpcc.7b06735 Bera, B., Chakraborty, A., Kar, T., Leuaa, P., Neergat, M.: Density of states, carrier concentration, and flat band potential derived from electrochemical impedance measurements of N-Doped carbon and their influence on electrocatalysis of oxygen reduction reaction. J. Phys. Chem. C 121(38), 20850–20856 (2017). https://​doi.​org/​10.​1021/​acs.​jpcc.​7b06735
138.
Zurück zum Zitat Li, Y., Wang, H., Xie, L., Liang, Y., Hong, G., Dai, H.: MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 133(19), 7296–7299 (2011). https://doi.org/10.1021/ja201269b Li, Y., Wang, H., Xie, L., Liang, Y., Hong, G., Dai, H.: MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 133(19), 7296–7299 (2011). https://​doi.​org/​10.​1021/​ja201269b
144.
Zurück zum Zitat Li, Q., Guo, B., Yu, J., Ran, J., Zhang, B., Yan, H., Gong, J.R.: Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. J. Am. Chem. Soc. 133(28), 10878–10884 (2011). https://doi.org/10.1021/ja2025454 Li, Q., Guo, B., Yu, J., Ran, J., Zhang, B., Yan, H., Gong, J.R.: Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. J. Am. Chem. Soc. 133(28), 10878–10884 (2011). https://​doi.​org/​10.​1021/​ja2025454
145.
146.
Zurück zum Zitat Jia, L., Wang, D.H., Huang, Y.X., Xu, A.W., Yu, H.Q.: Highly durable N-Doped graphene/CdS nanocomposites with enhanced photocatalytic hydrogen evolution from water under visible light irradiation. J. Phys. Chem. C 115(23), 11466–11473 (2011). https://doi.org/10.1021/jp2023617 Jia, L., Wang, D.H., Huang, Y.X., Xu, A.W., Yu, H.Q.: Highly durable N-Doped graphene/CdS nanocomposites with enhanced photocatalytic hydrogen evolution from water under visible light irradiation. J. Phys. Chem. C 115(23), 11466–11473 (2011). https://​doi.​org/​10.​1021/​jp2023617
149.
Zurück zum Zitat Lee, D.H., Cho, H.S., Han, D., Chand, R., Yoon, T.J., Kim, Y.S.: Highly selective organic transistor biosensor with inkjet printed graphene oxide support system. J. Mater. Chem. B 5(19), 3580–3585 (2017). https://doi.org/10.1039/c6tb03357a Lee, D.H., Cho, H.S., Han, D., Chand, R., Yoon, T.J., Kim, Y.S.: Highly selective organic transistor biosensor with inkjet printed graphene oxide support system. J. Mater. Chem. B 5(19), 3580–3585 (2017). https://​doi.​org/​10.​1039/​c6tb03357a
152.
Zurück zum Zitat Choi, B.G., Park, H., Park, T.J., Yang, M.H., Kim, J.S., Jang, S.-Y., Heo, N.S., Lee, S.Y., Kong, J., Hong, W.H.: Solution chemistry of self-assembled graphene nanohybrids for high-performance flexible biosensors. ACS Nano 4(5), 2910–2918 (2010). https://doi.org/10.1021/nn100145x Choi, B.G., Park, H., Park, T.J., Yang, M.H., Kim, J.S., Jang, S.-Y., Heo, N.S., Lee, S.Y., Kong, J., Hong, W.H.: Solution chemistry of self-assembled graphene nanohybrids for high-performance flexible biosensors. ACS Nano 4(5), 2910–2918 (2010). https://​doi.​org/​10.​1021/​nn100145x
157.
Zurück zum Zitat Peng X., Omasta, T.J.; Magliocca, E.; Wang, L.; Varcoe, J.R.; Mustain, W.E.: N-doped carbon CoOx nanohybrids: the first precious metal free cathode to achieve 1.0 w/cm2 peak power and 100 h life in anion-exchange membrane fuel cells. Angew. Chemie Int. Ed. 1–7 (2018). https://doi.org/10.1002/anie.201811099 Peng X., Omasta, T.J.; Magliocca, E.; Wang, L.; Varcoe, J.R.; Mustain, W.E.: N-doped carbon CoOx nanohybrids: the first precious metal free cathode to achieve 1.0 w/cm2 peak power and 100 h life in anion-exchange membrane fuel cells. Angew. Chemie Int. Ed. 1–7 (2018). https://​doi.​org/​10.​1002/​anie.​201811099
158.
Zurück zum Zitat Bi, E., Chen, H., Yang, X., Peng, W., Grätzel, M., Han, L.: A quasi core–shell nitrogen-doped graphene/cobalt sulfide conductive catalyst for highly efficient dye-sensitized solar cells. Energy Environ. Sci. 7(8), 2637–2641 (2014). https://doi.org/10.1039/C4EE01339E Bi, E., Chen, H., Yang, X., Peng, W., Grätzel, M., Han, L.: A quasi core–shell nitrogen-doped graphene/cobalt sulfide conductive catalyst for highly efficient dye-sensitized solar cells. Energy Environ. Sci. 7(8), 2637–2641 (2014). https://​doi.​org/​10.​1039/​C4EE01339E
159.
Zurück zum Zitat Ma, H., Tian, J., Cui, L., Liu, Y., Bai, S., Chen, H., Shan, Z.: Porous activated graphene nanoplatelets incorporated in TiO2 photoanodes for high-efficiency dye-sensitized solar cells. J. Mater. Chem. A 3(16), 8890–8895 (2015). https://doi.org/10.1039/C5TA00527B Ma, H., Tian, J., Cui, L., Liu, Y., Bai, S., Chen, H., Shan, Z.: Porous activated graphene nanoplatelets incorporated in TiO2 photoanodes for high-efficiency dye-sensitized solar cells. J. Mater. Chem. A 3(16), 8890–8895 (2015). https://​doi.​org/​10.​1039/​C5TA00527B
Metadaten
Titel
Functionalization of Graphene—A Critical Overview of its Improved Physical, Chemical and Electrochemical Properties
verfasst von
Ramesh Kumar Singh
Naresh Nalajala
Tathagata Kar
Alex Schechter
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-30207-8_6

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.