Skip to main content

2016 | OriginalPaper | Buchkapitel

Functionalized Chitosan: A Quantum Dot-Based Approach for Regenerative Medicine

verfasst von : Hridyesh Kumar, Pradip Kumar Dutta

Erschienen in: Chitin and Chitosan for Regenerative Medicine

Verlag: Springer India

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Quantum dots (QDs) are the semiconducting inorganic substances that form luminescent nanocrystals with unique optical properties. The formation of shell and or functionalization of it may be utilized as probes or carriers for target-specific cells or tissues for proper utilization in the field of regenerative medicine. Thus, the association of chitosan makes the entire body as biocompatible and suitable for optical stability in physiological environment. QDs-bound hybridization probe design reported for detection of intracellular pre-miRNA using chitosan poly(γ-glutamic acid) complex as a gene vector toward the progress and prognosis of cancer. It is also demonstrated that chitosan-based QD hybrid nanospheres can be internalized by tumor cells and hence act as labeling agent in cell imaging by optical microscopy. The challenge of such cell imaging in the field of molecular imaging is also being discussed. Overall, the interest in using chitosan–QDs in regenerative medicine and the current barriers to moving the technique into the clinic as great challenges will also be discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bäuerlein E (ed) (2004) Biomineralization: progress in biology, molecular biology and application. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Bäuerlein E (ed) (2004) Biomineralization: progress in biology, molecular biology and application. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
2.
Zurück zum Zitat Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4:435–446CrossRef Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4:435–446CrossRef
3.
Zurück zum Zitat Arai Y, Nagai T (2014) Real-time chemiluminescence imaging using nano-lantern probes. Curr Protoc Chem Biol 6:221–236CrossRef Arai Y, Nagai T (2014) Real-time chemiluminescence imaging using nano-lantern probes. Curr Protoc Chem Biol 6:221–236CrossRef
4.
Zurück zum Zitat Sun NF, Liu ZA, Huang WB, Tian AL, Hu SY (2014) The research of nanoparticles as gene vector for tumor gene therapy. Crit Rev Oncol Hematol 89:352–357CrossRef Sun NF, Liu ZA, Huang WB, Tian AL, Hu SY (2014) The research of nanoparticles as gene vector for tumor gene therapy. Crit Rev Oncol Hematol 89:352–357CrossRef
5.
Zurück zum Zitat Lima AC, Mano JF (2015) Micro/nano-structured superhydrophobic surfaces in the biomedical field: part II: applications overview. Nanomedicine 10:271–297CrossRef Lima AC, Mano JF (2015) Micro/nano-structured superhydrophobic surfaces in the biomedical field: part II: applications overview. Nanomedicine 10:271–297CrossRef
6.
Zurück zum Zitat Frigerio C, Ribeiro DSM, Rodrigues SSM, Abreu VLRG, Barbosa JAC, Prior JAV, Marques KL, Santos JLM (2012) Application of quantum dots as analytical tools in automated chemical analysis: a review. Anal Chim Acta 735:9–22CrossRef Frigerio C, Ribeiro DSM, Rodrigues SSM, Abreu VLRG, Barbosa JAC, Prior JAV, Marques KL, Santos JLM (2012) Application of quantum dots as analytical tools in automated chemical analysis: a review. Anal Chim Acta 735:9–22CrossRef
7.
Zurück zum Zitat Bruchez JM, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016CrossRef Bruchez JM, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016CrossRef
8.
Zurück zum Zitat Chan WCW, Nie SM (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018CrossRef Chan WCW, Nie SM (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018CrossRef
9.
Zurück zum Zitat Ho YP, Leong KW (2010) Quantum dot-based theranostics. Nanoscale 2:60–68CrossRef Ho YP, Leong KW (2010) Quantum dot-based theranostics. Nanoscale 2:60–68CrossRef
10.
Zurück zum Zitat Chan WCW, Maxwell DJ, Gao XH, Bailey RE, Han MY, Nie SM (2002) Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol 13:40–46CrossRef Chan WCW, Maxwell DJ, Gao XH, Bailey RE, Han MY, Nie SM (2002) Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol 13:40–46CrossRef
11.
Zurück zum Zitat Resch GU, Grabolle M, Cavaliere JS, Nitschke R, Nann T (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Methods 5:763–775CrossRef Resch GU, Grabolle M, Cavaliere JS, Nitschke R, Nann T (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Methods 5:763–775CrossRef
12.
Zurück zum Zitat Kagan CR, Murray CB, Nirmal M, Bawendi MG (1996) Electronic energy transfer in CdSe quantum dot solids. Phys Rev Lett 76:1517–1520CrossRef Kagan CR, Murray CB, Nirmal M, Bawendi MG (1996) Electronic energy transfer in CdSe quantum dot solids. Phys Rev Lett 76:1517–1520CrossRef
13.
Zurück zum Zitat Xu Y, Shi Y, Ding SA (2008) A chemical approach to stem-cell biology and regenerative medicine. Nature 453:338–344CrossRef Xu Y, Shi Y, Ding SA (2008) A chemical approach to stem-cell biology and regenerative medicine. Nature 453:338–344CrossRef
14.
Zurück zum Zitat Levin M (2011) The wisdom of the body: future techniques and approaches to morphogenetic fields in regenerative medicine, developmental biology and cancer. Regen Med 6:667–673CrossRef Levin M (2011) The wisdom of the body: future techniques and approaches to morphogenetic fields in regenerative medicine, developmental biology and cancer. Regen Med 6:667–673CrossRef
15.
Zurück zum Zitat Garate Z, Davis BR, Quintana BO, Segovia JC (2013) New frontier in regenerative medicine: site-specific gene correction in patient-specific induced pluripotent stem cells. Hum Gene Ther 24:571–583CrossRef Garate Z, Davis BR, Quintana BO, Segovia JC (2013) New frontier in regenerative medicine: site-specific gene correction in patient-specific induced pluripotent stem cells. Hum Gene Ther 24:571–583CrossRef
16.
Zurück zum Zitat Zack-Williams SD, Butler PE, Kalaskar DM (2015) Current progress in use of adipose derived stem cells in peripheral nerve regeneration. World J Stem Cells 7:51–64CrossRef Zack-Williams SD, Butler PE, Kalaskar DM (2015) Current progress in use of adipose derived stem cells in peripheral nerve regeneration. World J Stem Cells 7:51–64CrossRef
17.
Zurück zum Zitat Senarath YK, McArdle A, Renda A, Longaker MT, Quarto N (2014) Adipose-derived stem cells: a review of signaling networks governing cell fate and regenerative potential in the context of craniofacial and long bone skeletal repair. Int J Mol Sci 15:9314–9330CrossRef Senarath YK, McArdle A, Renda A, Longaker MT, Quarto N (2014) Adipose-derived stem cells: a review of signaling networks governing cell fate and regenerative potential in the context of craniofacial and long bone skeletal repair. Int J Mol Sci 15:9314–9330CrossRef
18.
Zurück zum Zitat Griffith LG, Naughton G (2002) Tissue engineering–current challenges and expanding opportunities. Science 295:1009–1014CrossRef Griffith LG, Naughton G (2002) Tissue engineering–current challenges and expanding opportunities. Science 295:1009–1014CrossRef
19.
Zurück zum Zitat Kfoury C (2007) Therapeutic cloning: promises and issues. Mcgill J Med 10:112–120 Kfoury C (2007) Therapeutic cloning: promises and issues. Mcgill J Med 10:112–120
20.
Zurück zum Zitat Niidome T, Huang L (2002) Gene therapy progress and prospects: nonviral vectors. Gene Ther 9:1647–1652CrossRef Niidome T, Huang L (2002) Gene therapy progress and prospects: nonviral vectors. Gene Ther 9:1647–1652CrossRef
21.
Zurück zum Zitat Atta HM (2010) Gene therapy for liver regeneration: experimental studies and prospects for clinical trials. World J Gastroenterol 16:4019–4030CrossRef Atta HM (2010) Gene therapy for liver regeneration: experimental studies and prospects for clinical trials. World J Gastroenterol 16:4019–4030CrossRef
22.
Zurück zum Zitat Kimelman BN, Kallai I, Lieberman JR, Schwarz EM, Pelled G, Gazit D (2012) Gene therapy approaches to regenerating bone. Adv Drug Deliv Rev 64:1320–1330CrossRef Kimelman BN, Kallai I, Lieberman JR, Schwarz EM, Pelled G, Gazit D (2012) Gene therapy approaches to regenerating bone. Adv Drug Deliv Rev 64:1320–1330CrossRef
23.
Zurück zum Zitat Mekhail M, Tabrizian MA (2014) Injectable chitosan-based scaffolds in regenerative medicine and their clinical translatability. Adv Healthc Mater 3:1529–1545CrossRef Mekhail M, Tabrizian MA (2014) Injectable chitosan-based scaffolds in regenerative medicine and their clinical translatability. Adv Healthc Mater 3:1529–1545CrossRef
24.
Zurück zum Zitat Zhao XJ, Zhang SG (2007) Designer self-assembling peptide materials. Macromol Biosci 7:13–22CrossRef Zhao XJ, Zhang SG (2007) Designer self-assembling peptide materials. Macromol Biosci 7:13–22CrossRef
25.
Zurück zum Zitat Mata A, Hsu L, Capito R, Aparicio C, Henrikson K, Stupp SI (2009) Micropatterning of bioactive self-assembling gels. Soft Matt 5:1228–1236CrossRef Mata A, Hsu L, Capito R, Aparicio C, Henrikson K, Stupp SI (2009) Micropatterning of bioactive self-assembling gels. Soft Matt 5:1228–1236CrossRef
26.
Zurück zum Zitat Pastist CM, Mulder MB, Gautier SE, Maquet V, Jérôme R, Oudega M (2004) Freeze-dried poly(D, L-lactic acid) macroporous guidance scaffolds impregnated with brain-derived neurotrophic factor in the transected adult rat thoracic spinal cord. Biomaterials 25:1569CrossRef Pastist CM, Mulder MB, Gautier SE, Maquet V, Jérôme R, Oudega M (2004) Freeze-dried poly(D, L-lactic acid) macroporous guidance scaffolds impregnated with brain-derived neurotrophic factor in the transected adult rat thoracic spinal cord. Biomaterials 25:1569CrossRef
27.
Zurück zum Zitat Niklason LE, Gao J, Abbott WM, Hirschi KK, Houser S, Marini R, Langer R (1999) Functional arteries grown in vitro. Science 284:489–493CrossRef Niklason LE, Gao J, Abbott WM, Hirschi KK, Houser S, Marini R, Langer R (1999) Functional arteries grown in vitro. Science 284:489–493CrossRef
28.
Zurück zum Zitat Ma PX, Langer R (1999) Morphology and mechanical function of long-term in vitro engineered cartilage. J Biomed Mater Res 44:217–221CrossRef Ma PX, Langer R (1999) Morphology and mechanical function of long-term in vitro engineered cartilage. J Biomed Mater Res 44:217–221CrossRef
29.
Zurück zum Zitat Dutta J, Dutta PK (eds) (2005) Chitosan a material for 21st century. Publication Contai, SSM Intl Dutta J, Dutta PK (eds) (2005) Chitosan a material for 21st century. Publication Contai, SSM Intl
30.
Zurück zum Zitat Dutta J, Dutta PK, Rinki K (2008) Current research on chitin and chitosan for tissue engineering applications and future demands on bioproducts. In: Jayakumar R, Prabaharan M (eds) Current research and developments on chitin and chitosan in biomaterials science. Research Signpost, Trivandrum Dutta J, Dutta PK, Rinki K (2008) Current research on chitin and chitosan for tissue engineering applications and future demands on bioproducts. In: Jayakumar R, Prabaharan M (eds) Current research and developments on chitin and chitosan in biomaterials science. Research Signpost, Trivandrum
31.
Zurück zum Zitat Jiang T, Kumbar SG, Nair LS, Laurencin CT (2008) Biologically active chitosan systems for tissue engineering and regenerative medicine. Curr Top Med Chem 8:354–364CrossRef Jiang T, Kumbar SG, Nair LS, Laurencin CT (2008) Biologically active chitosan systems for tissue engineering and regenerative medicine. Curr Top Med Chem 8:354–364CrossRef
32.
Zurück zum Zitat Jana S, Gandhi A, Sen KK, Basu SK (eds) (2014) Biomedical applications of chitin and chitosan derivatives. CRC Press Taylor & Francis Group, London Jana S, Gandhi A, Sen KK, Basu SK (eds) (2014) Biomedical applications of chitin and chitosan derivatives. CRC Press Taylor & Francis Group, London
33.
Zurück zum Zitat Singh J, Dutta PK, Dutta J, Hunt AJ, Macquarrie DJ, Clark JH (2009) Preparation and properties of highly soluble chitosan-L-glutamic acid aerogel derivative. Carbohyd Polym 76:188–195CrossRef Singh J, Dutta PK, Dutta J, Hunt AJ, Macquarrie DJ, Clark JH (2009) Preparation and properties of highly soluble chitosan-L-glutamic acid aerogel derivative. Carbohyd Polym 76:188–195CrossRef
34.
Zurück zum Zitat Singh J, Dutta PK (2009) Preparation, circular dichroism induced helical conformation and optical property of chitosan acid salt complexes for biomedical application. Int J Biol Macromol 45:384–392CrossRef Singh J, Dutta PK (2009) Preparation, circular dichroism induced helical conformation and optical property of chitosan acid salt complexes for biomedical application. Int J Biol Macromol 45:384–392CrossRef
35.
Zurück zum Zitat Tripathi S, Mehrotra GK, Dutta PK (2009) Preparation and physicochemical evaluation of chitosan/poly(vinyl alcohol)/pectin ternary film for food-packaging applications. Carbohyd Polym 79:711–716CrossRef Tripathi S, Mehrotra GK, Dutta PK (2009) Preparation and physicochemical evaluation of chitosan/poly(vinyl alcohol)/pectin ternary film for food-packaging applications. Carbohyd Polym 79:711–716CrossRef
36.
Zurück zum Zitat Singh J, Dutta PK (2010) Preparation, antibacterial & physicochemical behavior of chitosan/ofloxacin complexes. Int J Polym Mater 59:793CrossRef Singh J, Dutta PK (2010) Preparation, antibacterial & physicochemical behavior of chitosan/ofloxacin complexes. Int J Polym Mater 59:793CrossRef
37.
Zurück zum Zitat Archana D, Dutta J, Dutta PK (2013) Evaluation of chitosan nano dressing for wound healing: characterization, in vitro and in vivo studies. Int J Biol Macromol 57:193–203CrossRef Archana D, Dutta J, Dutta PK (2013) Evaluation of chitosan nano dressing for wound healing: characterization, in vitro and in vivo studies. Int J Biol Macromol 57:193–203CrossRef
38.
Zurück zum Zitat Archana D, Singh BK, Dutta J, Dutta PK (2013) In vivo evaluation of chitosan–PVP–titanium dioxide nanocomposite as wound dressing material. Carbohydr Polym 95:530–539CrossRef Archana D, Singh BK, Dutta J, Dutta PK (2013) In vivo evaluation of chitosan–PVP–titanium dioxide nanocomposite as wound dressing material. Carbohydr Polym 95:530–539CrossRef
39.
Zurück zum Zitat Srivastava R, Tiwari DK, Dutta PK (2011) 4-(Ethoxycarbonyl) phenyl-l-amino-oxobutanoic acid–chitosan complex as a new matrix for silver nanocomposite film: preparation, characterization and antibacterial activity. Int J Biol Macromol 49:863–870CrossRef Srivastava R, Tiwari DK, Dutta PK (2011) 4-(Ethoxycarbonyl) phenyl-l-amino-oxobutanoic acid–chitosan complex as a new matrix for silver nanocomposite film: preparation, characterization and antibacterial activity. Int J Biol Macromol 49:863–870CrossRef
40.
Zurück zum Zitat Yadav SK, Mahapatra SS, Yadav MK, Dutta PK (2013) Mechanically robust biocomposite films of chitosan grafted carbon nanotubes via the [2+1] cycloaddition of nitrenes. RSC Adv 3:23631–23637 Yadav SK, Mahapatra SS, Yadav MK, Dutta PK (2013) Mechanically robust biocomposite films of chitosan grafted carbon nanotubes via the [2+1] cycloaddition of nitrenes. RSC Adv 3:23631–23637
41.
Zurück zum Zitat Singh J, Srivastava M, Dutta J, Dutta PK (2010) Preparation and properties of hybrid monodispersed magnetic -Fe2O3 based chitosan nanocomposite film for industrial and biomedical applications. Int J Biol Macromol 48:170–176CrossRef Singh J, Srivastava M, Dutta J, Dutta PK (2010) Preparation and properties of hybrid monodispersed magnetic -Fe2O3 based chitosan nanocomposite film for industrial and biomedical applications. Int J Biol Macromol 48:170–176CrossRef
42.
Zurück zum Zitat Kumar H, Srivastava R, Dutta PK (2013) Highly luminescent chitosan-L-cysteine functionalized CdTe quantum dots film: synthesis and characterization. Carbohydr Polym 12(97):327–334CrossRef Kumar H, Srivastava R, Dutta PK (2013) Highly luminescent chitosan-L-cysteine functionalized CdTe quantum dots film: synthesis and characterization. Carbohydr Polym 12(97):327–334CrossRef
43.
Zurück zum Zitat Kumar H, Srivastava R, Singh BK, Dutta PK (2012) Synthesis and antibacterial activity of CdTe quantam dots (QD)-chitosan nanocomposite film. Asian Chitin J 8:27–30 Kumar H, Srivastava R, Singh BK, Dutta PK (2012) Synthesis and antibacterial activity of CdTe quantam dots (QD)-chitosan nanocomposite film. Asian Chitin J 8:27–30
44.
Zurück zum Zitat Singh BK, Sirohi R, Archana D, Jain A, Dutta PK (2015) Porous chitosan scaffolds: a systematic study for choice of crosslinker and growth factor incorporation. Int J Polym Mater 64:242–252CrossRef Singh BK, Sirohi R, Archana D, Jain A, Dutta PK (2015) Porous chitosan scaffolds: a systematic study for choice of crosslinker and growth factor incorporation. Int J Polym Mater 64:242–252CrossRef
45.
Zurück zum Zitat Dutta PK, Kumar H, Tiwari DK, Archana D, Rizvi KS, Kumar A, Singh BK, Srivastava R (2011) The glimpses of chitosan nanoparticles. Asian Chitin J 7:103–106 Dutta PK, Kumar H, Tiwari DK, Archana D, Rizvi KS, Kumar A, Singh BK, Srivastava R (2011) The glimpses of chitosan nanoparticles. Asian Chitin J 7:103–106
46.
Zurück zum Zitat Dutta PK, Srivastava R, Dutta J (eds) (2013) Functionalized nanoparticles and chitosan-based functional nanomaterials. In: Dutta PK, Dutta J (ed) Multifaceted development and application of biopolymers for biology, biomedicine and nanotechnology. Adv Polym Sci 254:1–50 Dutta PK, Srivastava R, Dutta J (eds) (2013) Functionalized nanoparticles and chitosan-based functional nanomaterials. In: Dutta PK, Dutta J (ed) Multifaceted development and application of biopolymers for biology, biomedicine and nanotechnology. Adv Polym Sci 254:1–50
47.
Zurück zum Zitat Qiu Y, Ma Zand HuPA (2014) Environmentally benign magnetic chitosan/Fe3O4 composites as reductant and stabilizer for anchoring Au NPs and their catalytic reduction of 4-nitrophenol. J Mater Chem A 2:1347 Qiu Y, Ma Zand HuPA (2014) Environmentally benign magnetic chitosan/Fe3O4 composites as reductant and stabilizer for anchoring Au NPs and their catalytic reduction of 4-nitrophenol. J Mater Chem A 2:1347
48.
Zurück zum Zitat Ramasamy RP, Maliyekkal MS (2014) Formation of gold nanoparticles upon chitosan leading to formation and collapse of gels. New J Chem 38:63–69CrossRef Ramasamy RP, Maliyekkal MS (2014) Formation of gold nanoparticles upon chitosan leading to formation and collapse of gels. New J Chem 38:63–69CrossRef
49.
Zurück zum Zitat Safari J, Javadian L (2014) Chitosan decorated Fe3O4 nanoparticles as a magnetic catalyst in the synthesis of phenytoin derivatives. RSC Adv 4:48973–48979CrossRef Safari J, Javadian L (2014) Chitosan decorated Fe3O4 nanoparticles as a magnetic catalyst in the synthesis of phenytoin derivatives. RSC Adv 4:48973–48979CrossRef
50.
Zurück zum Zitat Tiwari AP, Satvekar RK, Rohiwal SS, Karande VA, Raut AV, Patil PG, Shete PG, Ghosh SJ, Pawar SH (2015) Magneto-separation of genomic deoxyribose nucleic acid using pH responsive Fe3O4@silica@chitosan nanoparticles in biological samples. RSC Adv 5:8463–8470CrossRef Tiwari AP, Satvekar RK, Rohiwal SS, Karande VA, Raut AV, Patil PG, Shete PG, Ghosh SJ, Pawar SH (2015) Magneto-separation of genomic deoxyribose nucleic acid using pH responsive Fe3O4@silica@chitosan nanoparticles in biological samples. RSC Adv 5:8463–8470CrossRef
51.
Zurück zum Zitat Mallick S, Sanpui P, Ghosh SS, Chattopadhyay A, Paul A (2015) Synthesis, characterization and enhanced bactericidal action of a chitosan supported core–shell copper–silver nanoparticle composite. RSC Adv 5:12268–12276CrossRef Mallick S, Sanpui P, Ghosh SS, Chattopadhyay A, Paul A (2015) Synthesis, characterization and enhanced bactericidal action of a chitosan supported core–shell copper–silver nanoparticle composite. RSC Adv 5:12268–12276CrossRef
52.
Zurück zum Zitat Liu X, Huang H, Liu G, Zhou W, Chen Y, Jin Q, Ji J (2013) Multidentate zwitterionic chitosan oligosaccharide modified gold nanoparticles: stability, biocompatibility and cell interactions. Nanoscale 5:3982–3991CrossRef Liu X, Huang H, Liu G, Zhou W, Chen Y, Jin Q, Ji J (2013) Multidentate zwitterionic chitosan oligosaccharide modified gold nanoparticles: stability, biocompatibility and cell interactions. Nanoscale 5:3982–3991CrossRef
53.
Zurück zum Zitat Huang JH, Lai TC, Cheng LC, Liu RH, Lee CH, Hsiao M, Chen CH, Her LJ, Tsai DP (2011) Modulating cell-uptake behavior of Au-based nanomaterials via quantitative biomolecule modification. J Mater Chem 21:14821–14829CrossRef Huang JH, Lai TC, Cheng LC, Liu RH, Lee CH, Hsiao M, Chen CH, Her LJ, Tsai DP (2011) Modulating cell-uptake behavior of Au-based nanomaterials via quantitative biomolecule modification. J Mater Chem 21:14821–14829CrossRef
54.
Zurück zum Zitat Veerapandian M, Zhu XX, Giasson S (2015) Chitosan-modified silver@ruthenium hybrid nanoparticles: evaluation of physico-chemical properties and bio-affinity with sialic acid. J Mater Chem B 3:665–672CrossRef Veerapandian M, Zhu XX, Giasson S (2015) Chitosan-modified silver@ruthenium hybrid nanoparticles: evaluation of physico-chemical properties and bio-affinity with sialic acid. J Mater Chem B 3:665–672CrossRef
55.
Zurück zum Zitat Ensafi AA, Jafari AM, Dorostkar N, Ghiaci M, Martiınez-Huerta MV, Fierro JLG (2014) The fabrication and characterization of Cu-nanoparticle immobilization on a hybrid chitosan derivative-carbon support as a novel electrochemical sensor: application for the sensitive enzymeless oxidation of glucose and reduction of hydrogen peroxide. J Mater Chem B 2:706–717CrossRef Ensafi AA, Jafari AM, Dorostkar N, Ghiaci M, Martiınez-Huerta MV, Fierro JLG (2014) The fabrication and characterization of Cu-nanoparticle immobilization on a hybrid chitosan derivative-carbon support as a novel electrochemical sensor: application for the sensitive enzymeless oxidation of glucose and reduction of hydrogen peroxide. J Mater Chem B 2:706–717CrossRef
56.
Zurück zum Zitat Devi R, Yadav S, Pundir CS (2012) Amperometric determination of xanthine in fish meat by zinc oxide nanoparticle/chitosan/multiwalled carbon nanotube/polyaniline composite film bound xanthine oxidase. Analyst 137:754–759CrossRef Devi R, Yadav S, Pundir CS (2012) Amperometric determination of xanthine in fish meat by zinc oxide nanoparticle/chitosan/multiwalled carbon nanotube/polyaniline composite film bound xanthine oxidase. Analyst 137:754–759CrossRef
57.
Zurück zum Zitat Mallick S, Sharma S, Banerjee M, Ghosh SS, Chattopadhyay A, Paul A (2012) Iodine-stabilized Cu nanoparticle chitosan composite for antibacterial applications. ACS Appl Mater Interfaces 4:1313–1323CrossRef Mallick S, Sharma S, Banerjee M, Ghosh SS, Chattopadhyay A, Paul A (2012) Iodine-stabilized Cu nanoparticle chitosan composite for antibacterial applications. ACS Appl Mater Interfaces 4:1313–1323CrossRef
58.
Zurück zum Zitat Xiao W, Xu J, Liu X, Hu Q, Huang J (2013) Antibacterial hybrid materials fabricated by nanocoating of microfibril bundles of cellulose substance with titania/chitosan/silver-nanoparticle composite films. J Mater Chem B 1:3477–3485CrossRef Xiao W, Xu J, Liu X, Hu Q, Huang J (2013) Antibacterial hybrid materials fabricated by nanocoating of microfibril bundles of cellulose substance with titania/chitosan/silver-nanoparticle composite films. J Mater Chem B 1:3477–3485CrossRef
59.
Zurück zum Zitat Fan Y, Huang Y (2012) The effective peroxidase-like activity of chitosan-functionalized CoFe2O4 nanoparticles for chemiluminescence sensing of hydrogen peroxide and glucose. Analyst 137:1225–1231CrossRef Fan Y, Huang Y (2012) The effective peroxidase-like activity of chitosan-functionalized CoFe2O4 nanoparticles for chemiluminescence sensing of hydrogen peroxide and glucose. Analyst 137:1225–1231CrossRef
60.
Zurück zum Zitat Petkova P, Francesko A, Fernandes MM, Mendoza E, Perelshtein I, Gedanken A, Tzanov T (2014) Sonochemical coating of textiles with hybrid ZnO/chitosan antimicrobial nanoparticles. ACS Appl Mater Interfaces 6:1164–1172CrossRef Petkova P, Francesko A, Fernandes MM, Mendoza E, Perelshtein I, Gedanken A, Tzanov T (2014) Sonochemical coating of textiles with hybrid ZnO/chitosan antimicrobial nanoparticles. ACS Appl Mater Interfaces 6:1164–1172CrossRef
61.
Zurück zum Zitat Sashiwa H, Aiba S (2004) Chemically modified chitin and chitosan as biomaterials. Prog Polym Sci 29:887–908CrossRef Sashiwa H, Aiba S (2004) Chemically modified chitin and chitosan as biomaterials. Prog Polym Sci 29:887–908CrossRef
62.
Zurück zum Zitat Kurita K (2001) Controlled functionalisation of the polysaccharide chitin. Prog Polym Sci 26:1921–1971CrossRef Kurita K (2001) Controlled functionalisation of the polysaccharide chitin. Prog Polym Sci 26:1921–1971CrossRef
63.
Zurück zum Zitat Morimoto M, Saimoto H, Usui H, Okamoto Y, Minami S, Shigemasa Y (2002) Control of functions of chitin and chitosan by chemical modification. Trends Glycosci Glycotech 14:205–222CrossRef Morimoto M, Saimoto H, Usui H, Okamoto Y, Minami S, Shigemasa Y (2002) Control of functions of chitin and chitosan by chemical modification. Trends Glycosci Glycotech 14:205–222CrossRef
64.
Zurück zum Zitat Macquarrie DJ, Hardy JEE (2005) Applications of functionalized chitosan in catalysis. Ind Eng Chem Res 44:8499–8520CrossRef Macquarrie DJ, Hardy JEE (2005) Applications of functionalized chitosan in catalysis. Ind Eng Chem Res 44:8499–8520CrossRef
65.
Zurück zum Zitat Kim IY, Seo SJ, Moon HS, Yoo MK, Park IY, Kim BC, Cho CS (2008) Chitosan and its derivatives for tissue engineering applications. Biotechnol Adv 26:1–21CrossRef Kim IY, Seo SJ, Moon HS, Yoo MK, Park IY, Kim BC, Cho CS (2008) Chitosan and its derivatives for tissue engineering applications. Biotechnol Adv 26:1–21CrossRef
66.
Zurück zum Zitat Shi C, Zhu Y, Ran X, Wang M, Su Y, Cheng T (2006) Therapeutic potential of chitosan and its derivatives in regenerative. J Surg Res 133:185–192CrossRef Shi C, Zhu Y, Ran X, Wang M, Su Y, Cheng T (2006) Therapeutic potential of chitosan and its derivatives in regenerative. J Surg Res 133:185–192CrossRef
67.
Zurück zum Zitat Felice F, Zambito Y, Belardinelli E, Fabiano A, Santoni T, Stefano RD (2015) Effect of different chitosan derivatives on in vitro scratch wound assay: a comparative study. Int J Biol Macromol 76:236–241CrossRef Felice F, Zambito Y, Belardinelli E, Fabiano A, Santoni T, Stefano RD (2015) Effect of different chitosan derivatives on in vitro scratch wound assay: a comparative study. Int J Biol Macromol 76:236–241CrossRef
68.
Zurück zum Zitat Saranya N, Moorthi A, Saravanan S, Pandima Devi M, Selvamurugan N (2011) Chitosan and its derivatives for gene delivery. Int J Biol Macromol 48:234–238CrossRef Saranya N, Moorthi A, Saravanan S, Pandima Devi M, Selvamurugan N (2011) Chitosan and its derivatives for gene delivery. Int J Biol Macromol 48:234–238CrossRef
69.
Zurück zum Zitat Hardy JF, Hubert S, Macquarrie DJ, Wilson AJ (2004) Chitosan-based heterogeneous catalysts for Suzuki and Heck reactions. Green Chem 6:53–56CrossRef Hardy JF, Hubert S, Macquarrie DJ, Wilson AJ (2004) Chitosan-based heterogeneous catalysts for Suzuki and Heck reactions. Green Chem 6:53–56CrossRef
70.
Zurück zum Zitat Tojima T, Katsura H, Han S, Tanida F, Nishi N, Tokura S, Sakaira N (1998) Preparation of an β cyclodextrin linked chitosan derivative via reductive amination strategy. J Polym Sci Polym Chem 36:1965–1968CrossRef Tojima T, Katsura H, Han S, Tanida F, Nishi N, Tokura S, Sakaira N (1998) Preparation of an β cyclodextrin linked chitosan derivative via reductive amination strategy. J Polym Sci Polym Chem 36:1965–1968CrossRef
71.
Zurück zum Zitat Chen S, Wang Y (2001) Study on β-cyclodextrin grafting with chitosan and slow release of its inclusion complex with radioactive iodine. J Appl Polym Sci 82:2414–2421CrossRef Chen S, Wang Y (2001) Study on β-cyclodextrin grafting with chitosan and slow release of its inclusion complex with radioactive iodine. J Appl Polym Sci 82:2414–2421CrossRef
72.
Zurück zum Zitat Sun W, Xia CG, Wang HW (2002) Efficient heterogeneous catalysts for the cyclopropanation of olefins. New J Chem 26:755–758CrossRef Sun W, Xia CG, Wang HW (2002) Efficient heterogeneous catalysts for the cyclopropanation of olefins. New J Chem 26:755–758CrossRef
73.
Zurück zum Zitat Millotti G, Samberger C, Fröhlich E, Sakloetsakun D, Bernkop SA (2010) Synthesis and characterization of a novel thiolated chitosan. J Mater Chem 20:2432–2440CrossRef Millotti G, Samberger C, Fröhlich E, Sakloetsakun D, Bernkop SA (2010) Synthesis and characterization of a novel thiolated chitosan. J Mater Chem 20:2432–2440CrossRef
74.
Zurück zum Zitat Sashiwa H, Shigemasa Y, Roy R (2000) Chemical modification of chitosan 3 hyperbranched chitosan-sialic acid dendrimer hybrid with tetraethylene glycol spacer. Macromolecules 33:6913–6915CrossRef Sashiwa H, Shigemasa Y, Roy R (2000) Chemical modification of chitosan 3 hyperbranched chitosan-sialic acid dendrimer hybrid with tetraethylene glycol spacer. Macromolecules 33:6913–6915CrossRef
75.
Zurück zum Zitat Sashiwa H, Yamamori N, Ichinose Y, Sunamoto J, Aiba SI (2003) Michael reaction of chitosan with various acryl reagents in water. Biomacromolecules 4:1250–1254CrossRef Sashiwa H, Yamamori N, Ichinose Y, Sunamoto J, Aiba SI (2003) Michael reaction of chitosan with various acryl reagents in water. Biomacromolecules 4:1250–1254CrossRef
76.
Zurück zum Zitat Sashiwa H, Kawasaki N, Nakayama A, Muraki E, Yamamoto N, Aiba SI (2002) Chemical modification of chitosan 14 synthesis of water-soluble chitosan derivatives by simple acetylation. Biomacromolecules 3:1126–1128CrossRef Sashiwa H, Kawasaki N, Nakayama A, Muraki E, Yamamoto N, Aiba SI (2002) Chemical modification of chitosan 14 synthesis of water-soluble chitosan derivatives by simple acetylation. Biomacromolecules 3:1126–1128CrossRef
77.
Zurück zum Zitat Sashiwa H, Thompson JM, Das SK, Shigemasa Y, Tripathy S, Roy R (2000) Chemical modification of chitosan: preparation and lectin binding properties of α-galactosyl-chitosan conjugates potential inhibitors in acute rejection following xenotransplantation. Biomacromolecules 1:303–305CrossRef Sashiwa H, Thompson JM, Das SK, Shigemasa Y, Tripathy S, Roy R (2000) Chemical modification of chitosan: preparation and lectin binding properties of α-galactosyl-chitosan conjugates potential inhibitors in acute rejection following xenotransplantation. Biomacromolecules 1:303–305CrossRef
78.
Zurück zum Zitat Li M, Xin M, Miyashita T (2002) Preparation of N, N dilauryl chitosan langmuir–blodgett film. Polym Int 51:889–891CrossRef Li M, Xin M, Miyashita T (2002) Preparation of N, N dilauryl chitosan langmuir–blodgett film. Polym Int 51:889–891CrossRef
79.
Zurück zum Zitat Heras A, Rodríguez NM, Ramos VM, Agulló E (2003) N-methylene phosphonic chitosan: a novel soluble derivative. Carbohydr Polym 52:39–46CrossRef Heras A, Rodríguez NM, Ramos VM, Agulló E (2003) N-methylene phosphonic chitosan: a novel soluble derivative. Carbohydr Polym 52:39–46CrossRef
80.
Zurück zum Zitat Ramos VM, Rodríguez NM, Henning I, Díaz MF, Monachesi MP, Rodríguez MS, Abarrategi A, Correas MV, López JL, Agulló E (2006) Poly(ethylene glycol)-crosslinked N-methylene phosphonic chitosan-preparation and characterization. Carbohydr Polym 64:328–336CrossRef Ramos VM, Rodríguez NM, Henning I, Díaz MF, Monachesi MP, Rodríguez MS, Abarrategi A, Correas MV, López JL, Agulló E (2006) Poly(ethylene glycol)-crosslinked N-methylene phosphonic chitosan-preparation and characterization. Carbohydr Polym 64:328–336CrossRef
81.
Zurück zum Zitat Park IK, Yang J, Jeong HJ, Bom HS, Harada I, Akaike T, Kim SI, Cho CS (2003) Galactosylated chitosan as a synthetic extracellular matrix for hepatocytes attachment. Biomaterials 24:2331–2337CrossRef Park IK, Yang J, Jeong HJ, Bom HS, Harada I, Akaike T, Kim SI, Cho CS (2003) Galactosylated chitosan as a synthetic extracellular matrix for hepatocytes attachment. Biomaterials 24:2331–2337CrossRef
82.
Zurück zum Zitat Lee KY, Kim JH, Kwon IC, Jeong SY (2000) Self-aggregates of deoxycholic acid-modified chitosan as a novel carrier of Adriamycin. Colloid Polym Sci 278:1216CrossRef Lee KY, Kim JH, Kwon IC, Jeong SY (2000) Self-aggregates of deoxycholic acid-modified chitosan as a novel carrier of Adriamycin. Colloid Polym Sci 278:1216CrossRef
83.
Zurück zum Zitat Martin L, Wilson CG, Koosha F, Tetley L, Gral AI, Senel S, Uchegbu IF (2002) The release of model macromolecules may be controlled by the hydrophobicity of palmitoyl glycol chitosan hydrogels. J Control Rel 80:87–100CrossRef Martin L, Wilson CG, Koosha F, Tetley L, Gral AI, Senel S, Uchegbu IF (2002) The release of model macromolecules may be controlled by the hydrophobicity of palmitoyl glycol chitosan hydrogels. J Control Rel 80:87–100CrossRef
84.
Zurück zum Zitat Nishiyama Y, Yoshida T, Mori T, Ishii S, Kurita K (1998) Asymmetric reduction with chitosan/dihydronicotinamide conjugates: influence of L-alanine spacer arms on reducing performance. React Funct Polym 37:83–91CrossRef Nishiyama Y, Yoshida T, Mori T, Ishii S, Kurita K (1998) Asymmetric reduction with chitosan/dihydronicotinamide conjugates: influence of L-alanine spacer arms on reducing performance. React Funct Polym 37:83–91CrossRef
85.
Zurück zum Zitat Kurita K, Hiyakama M, Nishiyama Y, Harata M (2002) Polymeric asymmetric reducing agents: preparation and reducing performance of chitosan/dihydronicotinamide conjugates having L- and D-phenylalanine spacer arms. Carbohydr Polym 47:7–14CrossRef Kurita K, Hiyakama M, Nishiyama Y, Harata M (2002) Polymeric asymmetric reducing agents: preparation and reducing performance of chitosan/dihydronicotinamide conjugates having L- and D-phenylalanine spacer arms. Carbohydr Polym 47:7–14CrossRef
86.
Zurück zum Zitat Hojo K, Maeda M, Mu Y, Kamada H, Tsutsumi Y, Nishiyama Y, Yoshikawa T, Kurita K, Block LH, Mayumi T, Kawasaki K (2000) Facile synthesis of a chitosan hybrid of a lamininrelated peptide and its antimetastatic effect in mice. J Pharm Pharmacol 52:67–73CrossRef Hojo K, Maeda M, Mu Y, Kamada H, Tsutsumi Y, Nishiyama Y, Yoshikawa T, Kurita K, Block LH, Mayumi T, Kawasaki K (2000) Facile synthesis of a chitosan hybrid of a lamininrelated peptide and its antimetastatic effect in mice. J Pharm Pharmacol 52:67–73CrossRef
87.
Zurück zum Zitat Fujii S, Kumugai H, Noda M (1980) Preparation of poly(acyl) chitosans. Carbohydr Res 83:389–393CrossRef Fujii S, Kumugai H, Noda M (1980) Preparation of poly(acyl) chitosans. Carbohydr Res 83:389–393CrossRef
88.
Zurück zum Zitat Paiva D, Ivanova G, Pereira MC, Rocha S (2013) Chitosan conjugates for DNA delivery. Phys Chem Chem Phys 15:11893–11899CrossRef Paiva D, Ivanova G, Pereira MC, Rocha S (2013) Chitosan conjugates for DNA delivery. Phys Chem Chem Phys 15:11893–11899CrossRef
89.
Zurück zum Zitat Du YZ, Ying XY, Wang L, Zhai Y, Yuan H, Yu RS, Hu FQ (2010) Sustained release of ATP encapsulated in chitosan oligosaccharide nanoparticles. Int J Pharm 392:164–169CrossRef Du YZ, Ying XY, Wang L, Zhai Y, Yuan H, Yu RS, Hu FQ (2010) Sustained release of ATP encapsulated in chitosan oligosaccharide nanoparticles. Int J Pharm 392:164–169CrossRef
90.
Zurück zum Zitat Mao HQ, Roy K, Troung-Le VL, Janes KA, Lin KY, Wang Y, August JT, Leong KW (2001) Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency. J Control Rel 70:399–421CrossRef Mao HQ, Roy K, Troung-Le VL, Janes KA, Lin KY, Wang Y, August JT, Leong KW (2001) Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency. J Control Rel 70:399–421CrossRef
91.
Zurück zum Zitat Howard KA, Rahbek UL, Liu X, Damgaard CK, Glud SZ, Andersen MØ, Hovgaard MB, Schmitz A, Nyengaard JR, Besenbacher F, Kjems J (2006) RNA interference in vitro and in vivo using a novel chitosan/siRNA nanoparticle system. Mol Ther 14:476–484CrossRef Howard KA, Rahbek UL, Liu X, Damgaard CK, Glud SZ, Andersen MØ, Hovgaard MB, Schmitz A, Nyengaard JR, Besenbacher F, Kjems J (2006) RNA interference in vitro and in vivo using a novel chitosan/siRNA nanoparticle system. Mol Ther 14:476–484CrossRef
92.
Zurück zum Zitat Salva E, Turan SO, Eren F, Akbuğa J (2014) The enhancement of gene silencing efficiency with chitosan-coated liposome formulations of siRNAs targeting HIF-1α and VEGF. Int J Pharm 478:147–154CrossRef Salva E, Turan SO, Eren F, Akbuğa J (2014) The enhancement of gene silencing efficiency with chitosan-coated liposome formulations of siRNAs targeting HIF-1α and VEGF. Int J Pharm 478:147–154CrossRef
93.
Zurück zum Zitat Bradshaw M, Zou J, Byrne L, Iyer KS, Stewart SG, Raston CL (2011) Pd(II) conjugated chitosan nanofibre mats for application in Heck cross-coupling reactions. Chem Comm 47:12292–12294CrossRef Bradshaw M, Zou J, Byrne L, Iyer KS, Stewart SG, Raston CL (2011) Pd(II) conjugated chitosan nanofibre mats for application in Heck cross-coupling reactions. Chem Comm 47:12292–12294CrossRef
94.
Zurück zum Zitat Yao R, Meng F, Zhang L, Ma D, Wang M (2009) Defluoridation of water using neodymium-modified chitosan. J Hazard Mater 165:454–460CrossRef Yao R, Meng F, Zhang L, Ma D, Wang M (2009) Defluoridation of water using neodymium-modified chitosan. J Hazard Mater 165:454–460CrossRef
95.
Zurück zum Zitat Zheng Y, Yi Y, Qi Y, Wang Y, Zhang W, Du M (2006) Preparation of chitosan–copper complexes and their antitumor activity. Bioorg Med Chem Lett 16:4127–4129CrossRef Zheng Y, Yi Y, Qi Y, Wang Y, Zhang W, Du M (2006) Preparation of chitosan–copper complexes and their antitumor activity. Bioorg Med Chem Lett 16:4127–4129CrossRef
96.
Zurück zum Zitat Zhao CZ, Egashira N, Kurauchi Y, Ohga K (1998) Electrochemiluminescence oxalic acid sensor having a platinum electrode coated with chitosan modified with a ruthenium (II) complex. Electrochim Acta 43:2167–2173CrossRef Zhao CZ, Egashira N, Kurauchi Y, Ohga K (1998) Electrochemiluminescence oxalic acid sensor having a platinum electrode coated with chitosan modified with a ruthenium (II) complex. Electrochim Acta 43:2167–2173CrossRef
97.
Zurück zum Zitat Liu Y, Luo S, Wei W, Liu X, Zeng X (2009) Methanol sensor based on the combined electrocatalytic oxidative effect of chitosan-immobilized nickel(II) and the antibiotic cefixime on the oxidation of methanol in alkaline medium. Microchim Acta 164:351–355CrossRef Liu Y, Luo S, Wei W, Liu X, Zeng X (2009) Methanol sensor based on the combined electrocatalytic oxidative effect of chitosan-immobilized nickel(II) and the antibiotic cefixime on the oxidation of methanol in alkaline medium. Microchim Acta 164:351–355CrossRef
98.
Zurück zum Zitat Chena S, Wua G, Zeng H (2005) Preparation of high antimicrobial activity thiourea chitosan–Ag+ complex. Carbohydr Polym 60:33–38CrossRef Chena S, Wua G, Zeng H (2005) Preparation of high antimicrobial activity thiourea chitosan–Ag+ complex. Carbohydr Polym 60:33–38CrossRef
99.
Zurück zum Zitat Shi Z, Neoh KG, Kang ET, Poh CK, Wang W (2009) Surface functionalization of titanium with carboxymethyl chitosan and immobilized bone morphogenetic protein-2 for enhanced osseointegration. Biomacromolecules 10:1603–1611CrossRef Shi Z, Neoh KG, Kang ET, Poh CK, Wang W (2009) Surface functionalization of titanium with carboxymethyl chitosan and immobilized bone morphogenetic protein-2 for enhanced osseointegration. Biomacromolecules 10:1603–1611CrossRef
100.
Zurück zum Zitat Madelung O, Schulz M, Weiss H (eds) (1982) Landolt-Bornstein: numerical data and functional relationships in science and technology. In: Crystal and solid state physics. New Series, Group III, vol III/17b. Springer, Berlin Madelung O, Schulz M, Weiss H (eds) (1982) Landolt-Bornstein: numerical data and functional relationships in science and technology. In: Crystal and solid state physics. New Series, Group III, vol III/17b. Springer, Berlin
101.
Zurück zum Zitat Weller H, Schmidt H, Koch U, Fojtik A, Baral S, Henglein A, Kunath W, Weiss K, Dieman E (1986) Photochemistry of colloidal semiconductors. Onset of light absorption as a function of size of extremely small CdS particles. Chem Phys Lett 124:557CrossRef Weller H, Schmidt H, Koch U, Fojtik A, Baral S, Henglein A, Kunath W, Weiss K, Dieman E (1986) Photochemistry of colloidal semiconductors. Onset of light absorption as a function of size of extremely small CdS particles. Chem Phys Lett 124:557CrossRef
102.
Zurück zum Zitat Spanhel L, Haase M, Weller H, Henglein A (1987) Photochemistry of colloidal semiconductors. 20. Surface modification and stability of strong luminescing CdS particles. J Am Chem Soc 109:5649–5655CrossRef Spanhel L, Haase M, Weller H, Henglein A (1987) Photochemistry of colloidal semiconductors. 20. Surface modification and stability of strong luminescing CdS particles. J Am Chem Soc 109:5649–5655CrossRef
103.
Zurück zum Zitat Henglein A (1989) Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem Rev 89:1861–1873CrossRef Henglein A (1989) Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem Rev 89:1861–1873CrossRef
104.
Zurück zum Zitat Steigerwald ML, Brus LE (1990) Semiconductor crystallites: a class of large molecules. Acc Chem Res 23:183–188CrossRef Steigerwald ML, Brus LE (1990) Semiconductor crystallites: a class of large molecules. Acc Chem Res 23:183–188CrossRef
105.
Zurück zum Zitat Brus L (1986) Electronic wave functions in semiconductor clusters: experiment and theory. J Phys Chem 90:2555–2560CrossRef Brus L (1986) Electronic wave functions in semiconductor clusters: experiment and theory. J Phys Chem 90:2555–2560CrossRef
106.
Zurück zum Zitat Brus LE (1984) Electron-electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J Chem Phys 80:4403–4409CrossRef Brus LE (1984) Electron-electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J Chem Phys 80:4403–4409CrossRef
107.
Zurück zum Zitat Murray CB, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc 115:8706–8715CrossRef Murray CB, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc 115:8706–8715CrossRef
108.
Zurück zum Zitat Sapsford KE, Algar WR, Berti L, Gemmill KB, Casey BJ, Oh E, Stewart MH, Medintz IL (2013) Developing chemistries that facilitate nanotechnology. Chem Rev 113:1904–2074CrossRef Sapsford KE, Algar WR, Berti L, Gemmill KB, Casey BJ, Oh E, Stewart MH, Medintz IL (2013) Developing chemistries that facilitate nanotechnology. Chem Rev 113:1904–2074CrossRef
109.
Zurück zum Zitat Algar WR, Prasuhn DE, Stewart MH, Jennings TL, Blanco-Canosa JB, Dawson PE, Medintz IL (2011) The controlled display of biomolecules on nanoparticles: a challenge suited to bioorthogonal chemistry. Bioconjug Chem 22:825–858CrossRef Algar WR, Prasuhn DE, Stewart MH, Jennings TL, Blanco-Canosa JB, Dawson PE, Medintz IL (2011) The controlled display of biomolecules on nanoparticles: a challenge suited to bioorthogonal chemistry. Bioconjug Chem 22:825–858CrossRef
110.
Zurück zum Zitat Parak WJ, Boudreau R, Le Gros M, Gerion D, Zanchet D (2002) Cell motility and metastatic potential studies based on quantum dot imaging of phagokinetic tracks. Adv Mater 14:882–885CrossRef Parak WJ, Boudreau R, Le Gros M, Gerion D, Zanchet D (2002) Cell motility and metastatic potential studies based on quantum dot imaging of phagokinetic tracks. Adv Mater 14:882–885CrossRef
111.
Zurück zum Zitat Mattoussi H, Mauro J, Goldman ER, Anderson GP, Sundar VC, Mikulec FV (2000) Selfassembly of CdSe–ZnS quantum dot bioconjugates using an engineered recombinant protein. J Am Chem Soc 122:12142–12150CrossRef Mattoussi H, Mauro J, Goldman ER, Anderson GP, Sundar VC, Mikulec FV (2000) Selfassembly of CdSe–ZnS quantum dot bioconjugates using an engineered recombinant protein. J Am Chem Soc 122:12142–12150CrossRef
112.
Zurück zum Zitat Ong WL, Rupich SM, Talapin DV, McGaughey AJ, Malen JA (2013) Surface chemistry mediates thermal transport in three-dimensional nanocrystal arrays. Nat Mater 12:410–415CrossRef Ong WL, Rupich SM, Talapin DV, McGaughey AJ, Malen JA (2013) Surface chemistry mediates thermal transport in three-dimensional nanocrystal arrays. Nat Mater 12:410–415CrossRef
113.
Zurück zum Zitat Bera D, Lei Qian L, Tseng TK, Holloway PH (2010) Quantum dots and their multimodal applications: a review. Mater 3:2260–2345CrossRef Bera D, Lei Qian L, Tseng TK, Holloway PH (2010) Quantum dots and their multimodal applications: a review. Mater 3:2260–2345CrossRef
114.
Zurück zum Zitat Talapin DV, Haubold S, Rogach AL, Kornowski A, Haase M, Weller H (2001) A novel organometallic synthesis of highly luminescent CdTe nanocrystals. J Phys Chem B 105:2260–2263CrossRef Talapin DV, Haubold S, Rogach AL, Kornowski A, Haase M, Weller H (2001) A novel organometallic synthesis of highly luminescent CdTe nanocrystals. J Phys Chem B 105:2260–2263CrossRef
115.
Zurück zum Zitat Hammer NI, Emrick T, Barnes MD (2007) Quantum dots coordinated with conjugated organic ligands: new nanomaterials with novel photophysics. Nanoscale Res Lett 2:282–290CrossRef Hammer NI, Emrick T, Barnes MD (2007) Quantum dots coordinated with conjugated organic ligands: new nanomaterials with novel photophysics. Nanoscale Res Lett 2:282–290CrossRef
116.
Zurück zum Zitat Mei BC, Susumu K, Medintz IL, Delehanty JB, Mountziaris TJ, Mattoussi H (2008) Modular poly(ethylene glycol) ligands for biocompatible semiconductor and gold nanocrystals with extended pH and ionic stability. J Mater Chem 18:4949–4958CrossRef Mei BC, Susumu K, Medintz IL, Delehanty JB, Mountziaris TJ, Mattoussi H (2008) Modular poly(ethylene glycol) ligands for biocompatible semiconductor and gold nanocrystals with extended pH and ionic stability. J Mater Chem 18:4949–4958CrossRef
117.
Zurück zum Zitat Bloemen M, Stappen TV, Willot P, Lammertyn J, Koeckelberghs G, Geukens N, Gils A, Verbiest T (2014) Heterobifunctional PEG ligands for bioconjugation reactions on iron oxide nanoparticles. PLoS ONE 9:e109475CrossRef Bloemen M, Stappen TV, Willot P, Lammertyn J, Koeckelberghs G, Geukens N, Gils A, Verbiest T (2014) Heterobifunctional PEG ligands for bioconjugation reactions on iron oxide nanoparticles. PLoS ONE 9:e109475CrossRef
118.
Zurück zum Zitat Kim S, Bawendi MG (2003) Oligomeric ligands for luminescent and stable nanocrystal quantum dots. J Am Chem Soc 125:14652–14653CrossRef Kim S, Bawendi MG (2003) Oligomeric ligands for luminescent and stable nanocrystal quantum dots. J Am Chem Soc 125:14652–14653CrossRef
119.
Zurück zum Zitat Zhang Y, Clapp A (2011) Overview of stabilizing ligands for biocompatible quantum dot nanocrystals. Sensors 11:11036–11055CrossRef Zhang Y, Clapp A (2011) Overview of stabilizing ligands for biocompatible quantum dot nanocrystals. Sensors 11:11036–11055CrossRef
120.
Zurück zum Zitat Kloepfer JA, Mielke RE, Wong MS, Nealson KH, Stucky G, Nadeau JL (2003) Quantum dots as strain- and metabolism-specific microbiological labels. Appl Environ Microbiol 69:4205–4213CrossRef Kloepfer JA, Mielke RE, Wong MS, Nealson KH, Stucky G, Nadeau JL (2003) Quantum dots as strain- and metabolism-specific microbiological labels. Appl Environ Microbiol 69:4205–4213CrossRef
121.
Zurück zum Zitat Derfus AM, Chan WC, Bhatia SN (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4:11–18CrossRef Derfus AM, Chan WC, Bhatia SN (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4:11–18CrossRef
122.
Zurück zum Zitat Dabbousi BO, Bawendi MG, Onitsuka O, Rubner MF (1995) Electroluminescence from CdSe quantumdot/polymer composites. Appl Phys Lett 66:1316–1320CrossRef Dabbousi BO, Bawendi MG, Onitsuka O, Rubner MF (1995) Electroluminescence from CdSe quantumdot/polymer composites. Appl Phys Lett 66:1316–1320CrossRef
123.
Zurück zum Zitat Mattoussi H, Mauro JM, Goldman ER, Anderson GP, Sundar VC, Mikulec FV, Bawendi MG (2000) Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein. J Am Chem Soc 122:12142–12150CrossRef Mattoussi H, Mauro JM, Goldman ER, Anderson GP, Sundar VC, Mikulec FV, Bawendi MG (2000) Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein. J Am Chem Soc 122:12142–12150CrossRef
124.
Zurück zum Zitat Gerion D, Pinaud F, Williams SC, Parak WJ, Zanchet D, Weiss Alivisatos AP (2001) Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots. J Phys Chem B 105:8861–8871CrossRef Gerion D, Pinaud F, Williams SC, Parak WJ, Zanchet D, Weiss Alivisatos AP (2001) Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots. J Phys Chem B 105:8861–8871CrossRef
125.
Zurück zum Zitat Palui G, Avellini T, Zhan N, Pan F, Gray D, Alabugin I, Mattoussi H (2012) Photoinduced phase transfer of luminescent quantum dots to polar and aqueous media. J Am Chem Soc 134:16370–16378CrossRef Palui G, Avellini T, Zhan N, Pan F, Gray D, Alabugin I, Mattoussi H (2012) Photoinduced phase transfer of luminescent quantum dots to polar and aqueous media. J Am Chem Soc 134:16370–16378CrossRef
126.
Zurück zum Zitat Mansur HS, Mansur AP (2011) CdSe quantum dots stabilized by carboxylic-functionalized PVA: synthesis and UV–vis spectroscopy characterization. Mater Chem Phys 125:709–717CrossRef Mansur HS, Mansur AP (2011) CdSe quantum dots stabilized by carboxylic-functionalized PVA: synthesis and UV–vis spectroscopy characterization. Mater Chem Phys 125:709–717CrossRef
127.
Zurück zum Zitat Zhou S, Chen Q, Hu X, Zhao T (2012) Bifunctional luminescent superparamagnetic nanocomposites of CdSe/CdS-Fe3O4 synthesized via a facile method. J Mater Chem 22:8263–8270CrossRef Zhou S, Chen Q, Hu X, Zhao T (2012) Bifunctional luminescent superparamagnetic nanocomposites of CdSe/CdS-Fe3O4 synthesized via a facile method. J Mater Chem 22:8263–8270CrossRef
128.
Zurück zum Zitat Yang Z, Chen S, Hu W, Yin N, Zhang W, Xiang C, Wang H (2012) Flexible luminescent CdSe/bacterial cellulose nanocomoposite membranes. Carbohydr Polym 88:173–178CrossRef Yang Z, Chen S, Hu W, Yin N, Zhang W, Xiang C, Wang H (2012) Flexible luminescent CdSe/bacterial cellulose nanocomoposite membranes. Carbohydr Polym 88:173–178CrossRef
129.
Zurück zum Zitat Liu Y, Kim M, Wang Y, Wang YA, Peng X (2006) Highly luminescent, stable, and water-soluble CdSe/CdS core-shell dendron nanocrystals with carboxylate anchoring groups. Langmuir 22:6341–6634CrossRef Liu Y, Kim M, Wang Y, Wang YA, Peng X (2006) Highly luminescent, stable, and water-soluble CdSe/CdS core-shell dendron nanocrystals with carboxylate anchoring groups. Langmuir 22:6341–6634CrossRef
130.
Zurück zum Zitat Dong C, Ren J (2011) Water-soluble mercaptoundecanoic acid (MUA)-coated CdTe quantum dots: one-step microwave synthesis, characterization and cancer cell imaging. Luminescence 27:199–203CrossRef Dong C, Ren J (2011) Water-soluble mercaptoundecanoic acid (MUA)-coated CdTe quantum dots: one-step microwave synthesis, characterization and cancer cell imaging. Luminescence 27:199–203CrossRef
131.
Zurück zum Zitat Law WC, Yong KT, Roy I, Ding H, Hu R, Zhao W, Prasad PN (2009) Aqueous-phase synthesis of highly luminescent CdTe/ZnTe core/shell quantum dots optimized for targeted bioimaging. Small 5:1302–1310CrossRef Law WC, Yong KT, Roy I, Ding H, Hu R, Zhao W, Prasad PN (2009) Aqueous-phase synthesis of highly luminescent CdTe/ZnTe core/shell quantum dots optimized for targeted bioimaging. Small 5:1302–1310CrossRef
132.
Zurück zum Zitat Yuwen L, Bao B, Liu G, Tian J, Lu H, Luo Z, Zhu X, Boey F, Zhang H, Wang L (2011) One-pot encapsulation of luminescent quantum dots synthesized in aqueous solution by amphiphilic polymers. Small 7:1456–1463CrossRef Yuwen L, Bao B, Liu G, Tian J, Lu H, Luo Z, Zhu X, Boey F, Zhang H, Wang L (2011) One-pot encapsulation of luminescent quantum dots synthesized in aqueous solution by amphiphilic polymers. Small 7:1456–1463CrossRef
133.
Zurück zum Zitat Ma N, Marshall AF, Gambhir SS, Rao J (2010) Facile synthesis, silanization, and biodistribution of biocompatible quantum dots. Small 6:1520–1528CrossRef Ma N, Marshall AF, Gambhir SS, Rao J (2010) Facile synthesis, silanization, and biodistribution of biocompatible quantum dots. Small 6:1520–1528CrossRef
134.
Zurück zum Zitat Ananth DA, Rameshkumar A, Jeyadevi R, Jagadeeswari S, Nagarajan N, Renganathan R, Sivasudha T (2015) Antibacterial potential of rutin conjugated with thioglycolic acid capped cadmium telluride quantum dots (TGA-CdTe QDs). Spectrochim Acta 138:684–692CrossRef Ananth DA, Rameshkumar A, Jeyadevi R, Jagadeeswari S, Nagarajan N, Renganathan R, Sivasudha T (2015) Antibacterial potential of rutin conjugated with thioglycolic acid capped cadmium telluride quantum dots (TGA-CdTe QDs). Spectrochim Acta 138:684–692CrossRef
135.
Zurück zum Zitat Shavel A, Gaponik N, Eychmuller A (2004) Efficient UV-blue photoluminescing thiol-stabilized water-soluble alloyed ZnSe(S) nanocrystals. Phys Chem B 108:5905–5908CrossRef Shavel A, Gaponik N, Eychmuller A (2004) Efficient UV-blue photoluminescing thiol-stabilized water-soluble alloyed ZnSe(S) nanocrystals. Phys Chem B 108:5905–5908CrossRef
136.
Zurück zum Zitat Chen HS, Lo B, Hwang JY, Chang GY, Chen CM, Tasi SJ, Wang SJ (2004) Colloidal ZnSe, ZnSe/ZnS, and ZnSe/ZnSeS quantum dots synthesized from ZnO. J Phys Chem B 108:17119–17123CrossRef Chen HS, Lo B, Hwang JY, Chang GY, Chen CM, Tasi SJ, Wang SJ (2004) Colloidal ZnSe, ZnSe/ZnS, and ZnSe/ZnSeS quantum dots synthesized from ZnO. J Phys Chem B 108:17119–17123CrossRef
137.
Zurück zum Zitat Hering VR, Faulin TS, Triboni ER, Rodriguez SD, Bernik DL, Schumacher RI, Mammana VI, Alario AF, Abdalla DP, Gibson G, Politi JM (2004) Violet ZnSe/ZnS as an alternative to green CdSe/ZnS in nanocrystal-fluorescent protein FRET systems. Bioconjugate Chem 20:1237–124CrossRef Hering VR, Faulin TS, Triboni ER, Rodriguez SD, Bernik DL, Schumacher RI, Mammana VI, Alario AF, Abdalla DP, Gibson G, Politi JM (2004) Violet ZnSe/ZnS as an alternative to green CdSe/ZnS in nanocrystal-fluorescent protein FRET systems. Bioconjugate Chem 20:1237–124CrossRef
138.
Zurück zum Zitat Li C, Jiang D, Zhang L, Xia J, Li Q (2012) Controlled synthesis of ZnS quantum dots and ZnS quantum flakes with graphene as a template. Langmuir 28:9729–9734CrossRef Li C, Jiang D, Zhang L, Xia J, Li Q (2012) Controlled synthesis of ZnS quantum dots and ZnS quantum flakes with graphene as a template. Langmuir 28:9729–9734CrossRef
139.
Zurück zum Zitat Dong B, Cao L, Sua G, Liu W (2010) Facile synthesis of highly luminescent UV-blue emitting ZnSe/ZnS core/shell quantum dots by a two-step method. Chem Commun 46:7331–7333CrossRef Dong B, Cao L, Sua G, Liu W (2010) Facile synthesis of highly luminescent UV-blue emitting ZnSe/ZnS core/shell quantum dots by a two-step method. Chem Commun 46:7331–7333CrossRef
140.
Zurück zum Zitat Kim S, Park J, Kim T, Jang E, Jun S, Jang H, Kim B, Kim SK (2011) Reverse type-I ZnSe/InP/ZnS core/shell/shell nanocrystals: cadmium-free quantum dots for visible luminescence. Small 7:70–73CrossRef Kim S, Park J, Kim T, Jang E, Jun S, Jang H, Kim B, Kim SK (2011) Reverse type-I ZnSe/InP/ZnS core/shell/shell nanocrystals: cadmium-free quantum dots for visible luminescence. Small 7:70–73CrossRef
141.
Zurück zum Zitat Pradhan N, Battaglia DM, Liu Y, Peng X (2007) Efficient, stable, small, and water-soluble doped ZnSe nanocrystal emitters as non-cadmium biomedical labels. Nano Lett 7:312–317CrossRef Pradhan N, Battaglia DM, Liu Y, Peng X (2007) Efficient, stable, small, and water-soluble doped ZnSe nanocrystal emitters as non-cadmium biomedical labels. Nano Lett 7:312–317CrossRef
142.
Zurück zum Zitat Sun L, Wang Q (2014) PbS quantum dots capped with amorphous zns for bulk heterojunction solar cells: the solvent effect. ACS Appl Mater Interfaces 6:14239–14246CrossRef Sun L, Wang Q (2014) PbS quantum dots capped with amorphous zns for bulk heterojunction solar cells: the solvent effect. ACS Appl Mater Interfaces 6:14239–14246CrossRef
143.
Zurück zum Zitat Neo MS, Venkatram N, Li GS, Chin WS, Ji W (2010) Synthesis of PbS/CdS Core-Shell QDs and their nonlinear optical properties. J Phys Chem C 114:18037–18044CrossRef Neo MS, Venkatram N, Li GS, Chin WS, Ji W (2010) Synthesis of PbS/CdS Core-Shell QDs and their nonlinear optical properties. J Phys Chem C 114:18037–18044CrossRef
144.
Zurück zum Zitat Bradshaw TD, Junor M, Patane A, Clarke P, Thomas NR, Li M, Mann S, Turyanska L (2013) Apoferritin encapsulated PbS quantum dots significantly inhibit growth of colorectal carcinoma cells. J Mater Chem 1:6254–6260CrossRef Bradshaw TD, Junor M, Patane A, Clarke P, Thomas NR, Li M, Mann S, Turyanska L (2013) Apoferritin encapsulated PbS quantum dots significantly inhibit growth of colorectal carcinoma cells. J Mater Chem 1:6254–6260CrossRef
145.
Zurück zum Zitat Zhao H, Chaker M, Ma D (2011) Effect of CdS shell thickness on the optical properties of water-soluble, amphiphilic polymer-encapsulated PbS/CdS core/shell quantum dots. J Mater Chem 21:17483–17491CrossRef Zhao H, Chaker M, Ma D (2011) Effect of CdS shell thickness on the optical properties of water-soluble, amphiphilic polymer-encapsulated PbS/CdS core/shell quantum dots. J Mater Chem 21:17483–17491CrossRef
146.
Zurück zum Zitat Nakane Y, Tsukasaki Y, Sakata T, Yasuda H, Jin T (2013) Aqueous synthesis of glutathione-coated PbS quantum dots with tunable emission for non-invasive fluorescence imaging in the second near-infrared biological window (1000–1400 nm). Chem Commun 9:7584–7586CrossRef Nakane Y, Tsukasaki Y, Sakata T, Yasuda H, Jin T (2013) Aqueous synthesis of glutathione-coated PbS quantum dots with tunable emission for non-invasive fluorescence imaging in the second near-infrared biological window (1000–1400 nm). Chem Commun 9:7584–7586CrossRef
147.
Zurück zum Zitat Xu X, Ray R, Gu Y, Ploehn HJ, Gearheart L, Raker K, Scrivens WA (2004) Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc 126:12736CrossRef Xu X, Ray R, Gu Y, Ploehn HJ, Gearheart L, Raker K, Scrivens WA (2004) Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc 126:12736CrossRef
148.
Zurück zum Zitat Shen JH, Zhu YH, Yang XL, Li CZ (2012) Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem Commun 48:3686CrossRef Shen JH, Zhu YH, Yang XL, Li CZ (2012) Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem Commun 48:3686CrossRef
149.
Zurück zum Zitat Cao L, Wang X, Meziani MJ, Lu F, Wang H, Luo PG, Lin Y, Harruff BA, Veca LM, Murray D, Xie SY, Sun YP (2007) Carbon dots for multiphoton bioimaging. J Am Chem Soc 129:11318–11319CrossRef Cao L, Wang X, Meziani MJ, Lu F, Wang H, Luo PG, Lin Y, Harruff BA, Veca LM, Murray D, Xie SY, Sun YP (2007) Carbon dots for multiphoton bioimaging. J Am Chem Soc 129:11318–11319CrossRef
150.
Zurück zum Zitat Hu SL, Niu KY, Sun J, Yang J, Zhao NQ, Du XW (2009) One-step synthesis of fluorescent carbon nanoparticles by laser irradiation. J Mater Chem 19:484–488CrossRef Hu SL, Niu KY, Sun J, Yang J, Zhao NQ, Du XW (2009) One-step synthesis of fluorescent carbon nanoparticles by laser irradiation. J Mater Chem 19:484–488CrossRef
151.
Zurück zum Zitat Sun YP, Wang X, Lu F, Cao L, Meziani MJ, Luo PG, Gu L, Veca LM (2008) Doped carbon nanoparticles as a new platform for highly photoluminescent dots. J Phys Chem C 112:18295–18298CrossRef Sun YP, Wang X, Lu F, Cao L, Meziani MJ, Luo PG, Gu L, Veca LM (2008) Doped carbon nanoparticles as a new platform for highly photoluminescent dots. J Phys Chem C 112:18295–18298CrossRef
152.
Zurück zum Zitat Sun YP, Zhou B, Lin Y, Wang W, Fernando KA, Pathak P, Meziani MJ, Harruff BA, Wang X, Wang H, Luo PG, Yang H, Kose ME, Chen B, Veca LM, Xie SY (2006) Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc 128:7756–7757CrossRef Sun YP, Zhou B, Lin Y, Wang W, Fernando KA, Pathak P, Meziani MJ, Harruff BA, Wang X, Wang H, Luo PG, Yang H, Kose ME, Chen B, Veca LM, Xie SY (2006) Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc 128:7756–7757CrossRef
153.
Zurück zum Zitat Lu J, Yang JX, Wang J, Lim A, Wang S, Loh KP (2009) One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano 3:2367–2375CrossRef Lu J, Yang JX, Wang J, Lim A, Wang S, Loh KP (2009) One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano 3:2367–2375CrossRef
154.
Zurück zum Zitat Zhao QL, Zhang ZL, Huang BH, Peng J, Zhang M, Pang DW (2008) Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite. Chem Commun 41:5116–5118CrossRef Zhao QL, Zhang ZL, Huang BH, Peng J, Zhang M, Pang DW (2008) Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite. Chem Commun 41:5116–5118CrossRef
155.
Zurück zum Zitat Zheng L, Chi Y, Dong Y, Lin J, Wang B (2009) Electrochemiluminescence of water-soluble carbon nanocrystals released electrochemically from graphite. J Am Chem Soc 131:4564–4565CrossRef Zheng L, Chi Y, Dong Y, Lin J, Wang B (2009) Electrochemiluminescence of water-soluble carbon nanocrystals released electrochemically from graphite. J Am Chem Soc 131:4564–4565CrossRef
156.
Zurück zum Zitat Zhou J, Booker C, Li R, Zhou X, Sham TK, Sun X, Ding Z (2007) An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs). J Am Chem Soc 129:744–745CrossRef Zhou J, Booker C, Li R, Zhou X, Sham TK, Sun X, Ding Z (2007) An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs). J Am Chem Soc 129:744–745CrossRef
157.
Zurück zum Zitat Bourlinos AB, Stassinopoulos A, Anglos D, Zboril R, Karakassides M, Giannelis EP (2008) Surface functionalized carbogenic quantum dots. Small 4:455–458CrossRef Bourlinos AB, Stassinopoulos A, Anglos D, Zboril R, Karakassides M, Giannelis EP (2008) Surface functionalized carbogenic quantum dots. Small 4:455–458CrossRef
158.
Zurück zum Zitat Bourlinos AB, Stassinopoulos A, Anglos D, Zboril R, Georgakilas V, Giannelis EP (2008) Photoluminescent carbogenic dots. Chem Mater 20:4539–4541CrossRef Bourlinos AB, Stassinopoulos A, Anglos D, Zboril R, Georgakilas V, Giannelis EP (2008) Photoluminescent carbogenic dots. Chem Mater 20:4539–4541CrossRef
159.
Zurück zum Zitat Dutta PK, Ghosh T, Kumar H, Jain T, Singh Y (2015) Hydrothermal and solvothermal synthesis of carbon dots from chitosan-ethanol system. Asian Chitin J 11:1–4 Dutta PK, Ghosh T, Kumar H, Jain T, Singh Y (2015) Hydrothermal and solvothermal synthesis of carbon dots from chitosan-ethanol system. Asian Chitin J 11:1–4
160.
Zurück zum Zitat Zhu H, Wang XL, Li YL, Wang ZJ, Yang F, Yang XR (2009) Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties. Chem Commun 34:5118–5120CrossRef Zhu H, Wang XL, Li YL, Wang ZJ, Yang F, Yang XR (2009) Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties. Chem Commun 34:5118–5120CrossRef
161.
Zurück zum Zitat Kumar H, Dutta PK (2014) Chitosan-QD nanocomposite: synthetic strategy and application. Asian Chitin J 10:19–24 Kumar H, Dutta PK (2014) Chitosan-QD nanocomposite: synthetic strategy and application. Asian Chitin J 10:19–24
162.
Zurück zum Zitat Dallinger D, Kappe CO (2007) Microwave-assisted synthesis in water as solvent. Chem Rev 107:2563–2591CrossRef Dallinger D, Kappe CO (2007) Microwave-assisted synthesis in water as solvent. Chem Rev 107:2563–2591CrossRef
163.
Zurück zum Zitat Maeng YJ, Choi SW, Kim HO, Kim JH (2010) Culture of human mesenchymal stem cells using electrosprayed porous chitosan microbeads. J Biomed Mater Res, Part A 92:869–876 Maeng YJ, Choi SW, Kim HO, Kim JH (2010) Culture of human mesenchymal stem cells using electrosprayed porous chitosan microbeads. J Biomed Mater Res, Part A 92:869–876
164.
Zurück zum Zitat Jayakumar R, Prabaharan M, Nair SV, Tamura H (2010) Novel chitin and chitosan nanofibers in biomedical applications. Biotechnol Adv 28:142–150CrossRef Jayakumar R, Prabaharan M, Nair SV, Tamura H (2010) Novel chitin and chitosan nanofibers in biomedical applications. Biotechnol Adv 28:142–150CrossRef
165.
Zurück zum Zitat Wan MW, Petrisor IG, Lai HT, Kim D, Yen TF (2004) Copper adsorption through chitosan immobilized on sand to demonstrate the feasibility for in situ decontamination. Carbohydr Polym 55:249–254CrossRef Wan MW, Petrisor IG, Lai HT, Kim D, Yen TF (2004) Copper adsorption through chitosan immobilized on sand to demonstrate the feasibility for in situ decontamination. Carbohydr Polym 55:249–254CrossRef
166.
Zurück zum Zitat Ngah WS, Fatinathan S (2010) Adsorption characterization of Pb(II) and Cu(II) by chitosan- tripolyphosphate beads. J Environ Manage 91:958–969CrossRef Ngah WS, Fatinathan S (2010) Adsorption characterization of Pb(II) and Cu(II) by chitosan- tripolyphosphate beads. J Environ Manage 91:958–969CrossRef
167.
Zurück zum Zitat Futalan CM, Kan CC, Dalida ML, Hsien KJ, Pascua C, Wan MW (2011) Comparative and competitive adsorption of copper, lead and nickel using chitosan immobilized on bentonite. Carbohydr Polym 83:528–536CrossRef Futalan CM, Kan CC, Dalida ML, Hsien KJ, Pascua C, Wan MW (2011) Comparative and competitive adsorption of copper, lead and nickel using chitosan immobilized on bentonite. Carbohydr Polym 83:528–536CrossRef
168.
Zurück zum Zitat Popuri SR, Vijaya Y, Boddu VM, Krishnaiah A (2009) Adsorptive removal of copper and nickel ions from water using chitosan coated PVC beads. Bioresour Technol 100:194–199CrossRef Popuri SR, Vijaya Y, Boddu VM, Krishnaiah A (2009) Adsorptive removal of copper and nickel ions from water using chitosan coated PVC beads. Bioresour Technol 100:194–199CrossRef
169.
Zurück zum Zitat Laus R, de Favere VD (2011) Competitive adsorption of Cu(II) and Cd(II) ions by chitosan crosslinked with epichlorohydrin-triphosphate. Bioresour Technol 02:8769–8776CrossRef Laus R, de Favere VD (2011) Competitive adsorption of Cu(II) and Cd(II) ions by chitosan crosslinked with epichlorohydrin-triphosphate. Bioresour Technol 02:8769–8776CrossRef
170.
Zurück zum Zitat Gupta N, Kushwaha AK, Chattopadhyaya MC (2012) Adsorptive removal of Pb(II), Co(II) and Ni(II) by hydroxyapatite/chitosan composite from aqueous solution. J Taiwan Inst Chem Eng 43:125–131CrossRef Gupta N, Kushwaha AK, Chattopadhyaya MC (2012) Adsorptive removal of Pb(II), Co(II) and Ni(II) by hydroxyapatite/chitosan composite from aqueous solution. J Taiwan Inst Chem Eng 43:125–131CrossRef
171.
Zurück zum Zitat Suguna M, Siva Kumar N, Subba Reddy A, Boddu VM, Krishnaiah A (2011) Biosorption of Lead(II) and from aqueous solutions on glutaraldehyde cross-linked chitosan beads. Can J Che Eng 89:833–843CrossRef Suguna M, Siva Kumar N, Subba Reddy A, Boddu VM, Krishnaiah A (2011) Biosorption of Lead(II) and from aqueous solutions on glutaraldehyde cross-linked chitosan beads. Can J Che Eng 89:833–843CrossRef
172.
Zurück zum Zitat Monier M, Abdel-Latif DA (2012) Preparation of cross-linked magnetic chitosan-phenylthiourea resin for adsorption of Hg(II), Cd(II) and Zn(II) ions from aqueous solutions. J Hazard Mater 209–210:240–249CrossRef Monier M, Abdel-Latif DA (2012) Preparation of cross-linked magnetic chitosan-phenylthiourea resin for adsorption of Hg(II), Cd(II) and Zn(II) ions from aqueous solutions. J Hazard Mater 209–210:240–249CrossRef
173.
Zurück zum Zitat Monier M, Ayad DM, Abdel-Latif DA (2012) Adsorption of Cu(II), Cd(II) and Ni(II) ions by cross-linked magnetic chitosan-2-aminopyridine glyoxal Schiff’s base. Colloid Surf B: Biointerf 94:250–258CrossRef Monier M, Ayad DM, Abdel-Latif DA (2012) Adsorption of Cu(II), Cd(II) and Ni(II) ions by cross-linked magnetic chitosan-2-aminopyridine glyoxal Schiff’s base. Colloid Surf B: Biointerf 94:250–258CrossRef
174.
Zurück zum Zitat Li Z, Du Y, Zhang Z, Pang D (2003) Preparation and characterization of CdS quantum dots chitosan biocomposite. React Funct Polym 55:35–43CrossRef Li Z, Du Y, Zhang Z, Pang D (2003) Preparation and characterization of CdS quantum dots chitosan biocomposite. React Funct Polym 55:35–43CrossRef
175.
Zurück zum Zitat Mansur AAP, Mansur HS, Ramanery FP, Oliveira LC, Souza PP (2014) “Green” colloidal ZnS quantum dots/chitosan nano-photocatalysts for advanced oxidation processes: Study of the photodegradation oforganic dye pollutants. Appl Catal B 158–159:269–279CrossRef Mansur AAP, Mansur HS, Ramanery FP, Oliveira LC, Souza PP (2014) “Green” colloidal ZnS quantum dots/chitosan nano-photocatalysts for advanced oxidation processes: Study of the photodegradation oforganic dye pollutants. Appl Catal B 158–159:269–279CrossRef
176.
Zurück zum Zitat Chang SQ, Kang B, Dai YD, Zhang HX, Chen D (2011) One-step fabrication of biocompatible chitosan coated ZnS and ZnS:Mn2+quantum dots via γ gradiation route. Nanoscale Res Lett 6:591CrossRef Chang SQ, Kang B, Dai YD, Zhang HX, Chen D (2011) One-step fabrication of biocompatible chitosan coated ZnS and ZnS:Mn2+quantum dots via γ gradiation route. Nanoscale Res Lett 6:591CrossRef
177.
Zurück zum Zitat Wang L, Sun Y, Xie X (2014) Structural and optical properties of Cu-doped ZnS nanoparticles formed in chitosan/sodium alginate multilayer films. Luminescence 29:288–292CrossRef Wang L, Sun Y, Xie X (2014) Structural and optical properties of Cu-doped ZnS nanoparticles formed in chitosan/sodium alginate multilayer films. Luminescence 29:288–292CrossRef
178.
Zurück zum Zitat Xia H, He G, Peng J, Li W, Fang Y (2010) Preparation and fluorescent sensing applications of novel CdSe–chitosan hybrid films. Appl Surf Sci 256:7270–7275CrossRef Xia H, He G, Peng J, Li W, Fang Y (2010) Preparation and fluorescent sensing applications of novel CdSe–chitosan hybrid films. Appl Surf Sci 256:7270–7275CrossRef
179.
Zurück zum Zitat Kang B, Chang SQ, Dai YD, Chen D (2008) Synthesis of green CdSe/chitosan quantum dots using a polymer-assisted γ-radiation route. Radiat Phys Chem 77:859–863CrossRef Kang B, Chang SQ, Dai YD, Chen D (2008) Synthesis of green CdSe/chitosan quantum dots using a polymer-assisted γ-radiation route. Radiat Phys Chem 77:859–863CrossRef
180.
Zurück zum Zitat Gong HM, Wang XH, Du YM, Wang QQ (2006) Optical nonlinear absorption and refraction of CdS and CdS-Ag core-shell quantum dots. J Chem Phys 125:024707CrossRef Gong HM, Wang XH, Du YM, Wang QQ (2006) Optical nonlinear absorption and refraction of CdS and CdS-Ag core-shell quantum dots. J Chem Phys 125:024707CrossRef
181.
Zurück zum Zitat Mansur AAP, Mansur HS, Soriano-Araújo A, Lobato ZIP (2014) Fluorescent nanohybrids based on quantum dot−chitosan−antibody as potential cancer biomarkers. ACS Appl Mater Interfaces 6:11403–11412CrossRef Mansur AAP, Mansur HS, Soriano-Araújo A, Lobato ZIP (2014) Fluorescent nanohybrids based on quantum dot−chitosan−antibody as potential cancer biomarkers. ACS Appl Mater Interfaces 6:11403–11412CrossRef
182.
Zurück zum Zitat Jiang Z, Zhao C, Liu X (2014) Synthesis of poly(ethylene glycol)-graft-chitosan and using as ligandfor fabrication of water-soluble quantum dots. Colloids Surf, B 115:260–266CrossRef Jiang Z, Zhao C, Liu X (2014) Synthesis of poly(ethylene glycol)-graft-chitosan and using as ligandfor fabrication of water-soluble quantum dots. Colloids Surf, B 115:260–266CrossRef
183.
Zurück zum Zitat Wu W, Shen J, Banerjee P, Zhou S (2010) Chitosan-based responsive hybrid nanogels for integration of optical pH-sensing, tumor cell imaging and controlled drug delivery. Biomaterials 31:8371–8381CrossRef Wu W, Shen J, Banerjee P, Zhou S (2010) Chitosan-based responsive hybrid nanogels for integration of optical pH-sensing, tumor cell imaging and controlled drug delivery. Biomaterials 31:8371–8381CrossRef
184.
Zurück zum Zitat Shen M, Jia W, Lin C, Fan G, Jin Y, Chen X, Chen G (2014) Facile synthesis of folate-conjugated magnetic/fluorescent bifunctional microspheres. Nanoscale Res Lett 9:558CrossRef Shen M, Jia W, Lin C, Fan G, Jin Y, Chen X, Chen G (2014) Facile synthesis of folate-conjugated magnetic/fluorescent bifunctional microspheres. Nanoscale Res Lett 9:558CrossRef
185.
Zurück zum Zitat Wang Y, Geng Z, Guo M, Chen Y, Guo X, Wang X (2014) Electroaddressing of ZnS quantum dots by codeposition with chitosan to construct fluorescent and patterned device surface. ACS Appl Mater Interf 6:15510–15515 Wang Y, Geng Z, Guo M, Chen Y, Guo X, Wang X (2014) Electroaddressing of ZnS quantum dots by codeposition with chitosan to construct fluorescent and patterned device surface. ACS Appl Mater Interf 6:15510–15515
186.
Zurück zum Zitat Ma Q, Lin ZH, Yang N, Li Y, Su XG (2014) A novel carboxymethyl chitosan–quantum dot-based intracellular probe for Zn2+ ion sensing in prostate cancer cells. Acta Biomater 10:868–874CrossRef Ma Q, Lin ZH, Yang N, Li Y, Su XG (2014) A novel carboxymethyl chitosan–quantum dot-based intracellular probe for Zn2+ ion sensing in prostate cancer cells. Acta Biomater 10:868–874CrossRef
187.
Zurück zum Zitat Li Y, Chen WC, Chen SM, Lou BS, Ali MA, Al-Hemaid FMA (2014) Detection of real sample DNA at a cadmium sulfide—chitosan/gelatin modified electrode. Colloids Surf, B 113:85–91CrossRef Li Y, Chen WC, Chen SM, Lou BS, Ali MA, Al-Hemaid FMA (2014) Detection of real sample DNA at a cadmium sulfide—chitosan/gelatin modified electrode. Colloids Surf, B 113:85–91CrossRef
188.
Zurück zum Zitat He Z, Zhu H, Zhou P (2012) Microwave-assisted aqueous synthesis of highly luminescent carboxymethyl chitosan-coated CdTe/CdS quantum dots as fluorescent probe for live cell imaging. J Fluoresc 22:193–199CrossRef He Z, Zhu H, Zhou P (2012) Microwave-assisted aqueous synthesis of highly luminescent carboxymethyl chitosan-coated CdTe/CdS quantum dots as fluorescent probe for live cell imaging. J Fluoresc 22:193–199CrossRef
189.
Zurück zum Zitat Lee JI, Ha KS, Yoo HS (2008) Quantum-dot-assisted fluorescence resonance energy transfer approach for intracellular trafficking of chitosan/DNA complex. Acta Biomater 4:791–798CrossRef Lee JI, Ha KS, Yoo HS (2008) Quantum-dot-assisted fluorescence resonance energy transfer approach for intracellular trafficking of chitosan/DNA complex. Acta Biomater 4:791–798CrossRef
190.
Zurück zum Zitat Udaybhaskar P, Iyengar L, Rao AVSP (1990) Cr(VI) interaction with chitosan. J Appl Polym Sci 39:739–747CrossRef Udaybhaskar P, Iyengar L, Rao AVSP (1990) Cr(VI) interaction with chitosan. J Appl Polym Sci 39:739–747CrossRef
191.
Zurück zum Zitat Bhattarai N, Edmondson D, Veiseh O, Matsen FA, Zhang M (2005) Electrospun chitosan-based nanofibers and their cellular compatibility. Biomaterials 26:6176–6184CrossRef Bhattarai N, Edmondson D, Veiseh O, Matsen FA, Zhang M (2005) Electrospun chitosan-based nanofibers and their cellular compatibility. Biomaterials 26:6176–6184CrossRef
192.
Zurück zum Zitat Yang TC, Zall RR (1984) Absorption of metals by natural polymers generated from seafood processing wastes. Ind Eng Chem Prod Res Dev 23:168–172CrossRef Yang TC, Zall RR (1984) Absorption of metals by natural polymers generated from seafood processing wastes. Ind Eng Chem Prod Res Dev 23:168–172CrossRef
193.
Zurück zum Zitat Maeng YJ, Choi SW, Kim HO, Kim JH (2010) Culture of human mesenchymal stem cells using electrosprayed porous chitosan microbeads. J Biomed Mater Res, Part A 92:869–876 Maeng YJ, Choi SW, Kim HO, Kim JH (2010) Culture of human mesenchymal stem cells using electrosprayed porous chitosan microbeads. J Biomed Mater Res, Part A 92:869–876
194.
Zurück zum Zitat Choi SW, Zhang Y, Yeh YC, Wooten AL, Xia Y (2012) Biodegradable porous beads and their potential applications in regenerative medicine. J Mater Chem 22:11442CrossRef Choi SW, Zhang Y, Yeh YC, Wooten AL, Xia Y (2012) Biodegradable porous beads and their potential applications in regenerative medicine. J Mater Chem 22:11442CrossRef
195.
Zurück zum Zitat Bhumiratana S, Vunjak-Novakovic G (2012) Concise review: personalized human bone grafts for reconstructing head and face. Stem Cells Transl Med 1:64–69CrossRef Bhumiratana S, Vunjak-Novakovic G (2012) Concise review: personalized human bone grafts for reconstructing head and face. Stem Cells Transl Med 1:64–69CrossRef
196.
Zurück zum Zitat Ghosh P, Rameshbabu AP, Dogra N, Dhara S (2014) 2,5-Dimethoxy 2,5-dihydrofuran crosslinked chitosan fibers enhance bone regeneration in rabbit femur defects. RSC Adv 4:19516CrossRef Ghosh P, Rameshbabu AP, Dogra N, Dhara S (2014) 2,5-Dimethoxy 2,5-dihydrofuran crosslinked chitosan fibers enhance bone regeneration in rabbit femur defects. RSC Adv 4:19516CrossRef
197.
Zurück zum Zitat Wang Z, Ruan J, Cui DX (2009) Advances and prospect of nanotechnology in stem cells. Nanoscale Res Lett 4:593–605CrossRef Wang Z, Ruan J, Cui DX (2009) Advances and prospect of nanotechnology in stem cells. Nanoscale Res Lett 4:593–605CrossRef
198.
Zurück zum Zitat Ruan J, Ji JJ, Song H, Qian QR, Wang K, Wang C, Cui DX (2012) Fluorescent magnetic nanoparticle-labeled mesenchymal stem cells for targeted imaging and hyperthermia therapy of in vivo gastric cancer. Nanoscale Res Lett 7:309CrossRef Ruan J, Ji JJ, Song H, Qian QR, Wang K, Wang C, Cui DX (2012) Fluorescent magnetic nanoparticle-labeled mesenchymal stem cells for targeted imaging and hyperthermia therapy of in vivo gastric cancer. Nanoscale Res Lett 7:309CrossRef
199.
Zurück zum Zitat Patel D, Kell A, Simard B, Deng J, Xiang B, Lin HY, Gruwel M, Tian G (2010) Cu2+-labeled, SPION loaded porous silica nanoparticles for cell labeling and multifunctional imaging probes. Biomaterials 31:2866–2873CrossRef Patel D, Kell A, Simard B, Deng J, Xiang B, Lin HY, Gruwel M, Tian G (2010) Cu2+-labeled, SPION loaded porous silica nanoparticles for cell labeling and multifunctional imaging probes. Biomaterials 31:2866–2873CrossRef
200.
Zurück zum Zitat Shi Z, Neoh KG, Kang ET, Shuter B, Wang SC (2010) Bifunctional Eu3+-doped Gd2O3 nanoparticles as a luminescent and T1 contrast agent for stem cell labeling. Contrast Media Mol Imaging 5:105–111 Shi Z, Neoh KG, Kang ET, Shuter B, Wang SC (2010) Bifunctional Eu3+-doped Gd2O3 nanoparticles as a luminescent and T1 contrast agent for stem cell labeling. Contrast Media Mol Imaging 5:105–111
201.
Zurück zum Zitat Tseng CL, Shih IL, Stobinski L, Lin FH (2010) Gadolinium hexanedione nanoparticles for stem cell labeling and tracking via magnetic resonance imaging. Biomaterials 31:5427–5435CrossRef Tseng CL, Shih IL, Stobinski L, Lin FH (2010) Gadolinium hexanedione nanoparticles for stem cell labeling and tracking via magnetic resonance imaging. Biomaterials 31:5427–5435CrossRef
202.
Zurück zum Zitat Shah BS, Clark PA, Moioli EK, Stroscio MA, Mao JJ (2007) Labeling of mesenchymal stem cells by bioconjugated quantum dots. Nano Lett 7:3071–3079CrossRef Shah BS, Clark PA, Moioli EK, Stroscio MA, Mao JJ (2007) Labeling of mesenchymal stem cells by bioconjugated quantum dots. Nano Lett 7:3071–3079CrossRef
203.
Zurück zum Zitat Yang K, Li Z, Cao Y, Yu X, Mei J (2009) Effect of peptide-conjugated near-infrared fluorescent quantum dots (NIRF-QDs) on the invasion and metastasis of human tongue squamous cell carcinoma cell line Tca8113 in vitro. Int J Mol Sci 10:4418–4427CrossRef Yang K, Li Z, Cao Y, Yu X, Mei J (2009) Effect of peptide-conjugated near-infrared fluorescent quantum dots (NIRF-QDs) on the invasion and metastasis of human tongue squamous cell carcinoma cell line Tca8113 in vitro. Int J Mol Sci 10:4418–4427CrossRef
204.
Zurück zum Zitat Seleverstov O, Zabirnyk O, Zscharnack M, Bulavina L, Nowicki M, Heinrich JM, Yezhelyev M, Emmrich F, O’Regan R, Bader A (2006) Quantum dots for human mesenchymal stem cells labelling. A size-dependent autophagy activation. Nano Lett 6:2826–2832 Seleverstov O, Zabirnyk O, Zscharnack M, Bulavina L, Nowicki M, Heinrich JM, Yezhelyev M, Emmrich F, O’Regan R, Bader A (2006) Quantum dots for human mesenchymal stem cells labelling. A size-dependent autophagy activation. Nano Lett 6:2826–2832
205.
Zurück zum Zitat Solanki A, Kim JD, Lee KB (2008) Nanotechnology for regenerative medicine: nanomaterials for stem cell imaging. Nanomedicine 3:567–578CrossRef Solanki A, Kim JD, Lee KB (2008) Nanotechnology for regenerative medicine: nanomaterials for stem cell imaging. Nanomedicine 3:567–578CrossRef
206.
Zurück zum Zitat Lin S, Xie X, Patel MR, Yang YH, Li Z, Cao F, Gheysens O, Zhang Y, Gambhir SS, Rao JH (2007) Quantum dot imaging for embryonic stem cells. BMC Biotechnol 7:67–76CrossRef Lin S, Xie X, Patel MR, Yang YH, Li Z, Cao F, Gheysens O, Zhang Y, Gambhir SS, Rao JH (2007) Quantum dot imaging for embryonic stem cells. BMC Biotechnol 7:67–76CrossRef
207.
Zurück zum Zitat Muller-Borer BJ, Collins MC, Gunst PR, Cascio WE, Kypson AP (2007) Quantum dot labelling of mesenchymal stem cells. J Nanobiotechnol 5:9CrossRef Muller-Borer BJ, Collins MC, Gunst PR, Cascio WE, Kypson AP (2007) Quantum dot labelling of mesenchymal stem cells. J Nanobiotechnol 5:9CrossRef
208.
Zurück zum Zitat Shang W, Zhang X, Zhang M, Fan Z, Sun Y, Han M, Fan L (2014) The uptake mechanism and biocompatibility of graphene quantum dots with human neural stem cells. Nanoscale 6:5799–5806CrossRef Shang W, Zhang X, Zhang M, Fan Z, Sun Y, Han M, Fan L (2014) The uptake mechanism and biocompatibility of graphene quantum dots with human neural stem cells. Nanoscale 6:5799–5806CrossRef
209.
Zurück zum Zitat Zhang M, Bai L, Shang W, Xie W, Ma H, Fu Y, Fang D, Sun H, Fan L, Han M, Liub C, Yang S Facile synthesis of water-soluble, highly fluorescent graphene quantum dots as a robust biological label for stem cells. J Mater Chem 22:7461 Zhang M, Bai L, Shang W, Xie W, Ma H, Fu Y, Fang D, Sun H, Fan L, Han M, Liub C, Yang S Facile synthesis of water-soluble, highly fluorescent graphene quantum dots as a robust biological label for stem cells. J Mater Chem 22:7461
210.
Zurück zum Zitat Baruah S, Ortinero C, Shipin OV, Dutta J (2012) Manganese doped zinc sulfide quantum dots for detection of Escherichia coli. J Fluoresc 22:403–408CrossRef Baruah S, Ortinero C, Shipin OV, Dutta J (2012) Manganese doped zinc sulfide quantum dots for detection of Escherichia coli. J Fluoresc 22:403–408CrossRef
211.
Zurück zum Zitat Abdelhamid HN, Wu HF (2013) Probing the interactions of chitosan capped CdS quantum dots with pathogenic bacteria and their biosensing application. J Mater Chem B 1:6094CrossRef Abdelhamid HN, Wu HF (2013) Probing the interactions of chitosan capped CdS quantum dots with pathogenic bacteria and their biosensing application. J Mater Chem B 1:6094CrossRef
212.
Zurück zum Zitat Tan WB, Jiang S, Zhang Y (2007) Quantum-dot based nanoparticles for targeted silencing of HER2/neu gene via RNA interference. Biomaterials 28:1565–1571CrossRef Tan WB, Jiang S, Zhang Y (2007) Quantum-dot based nanoparticles for targeted silencing of HER2/neu gene via RNA interference. Biomaterials 28:1565–1571CrossRef
213.
Zurück zum Zitat Ho YP, Chen HH, Leong KW, Wang TH (2006) Evaluating the intracellular stability and unpacking of DNA nanocomplexes by quantum dots-FRET. J Control Release 116:83–89CrossRef Ho YP, Chen HH, Leong KW, Wang TH (2006) Evaluating the intracellular stability and unpacking of DNA nanocomplexes by quantum dots-FRET. J Control Release 116:83–89CrossRef
214.
Zurück zum Zitat Lai S, Chang X, Fu C (2009) Cadmium sulfide quantum dots modified by chitosan as fluorescence probe for copper (II) ion determination. Microchim Acta 165:39–44CrossRef Lai S, Chang X, Fu C (2009) Cadmium sulfide quantum dots modified by chitosan as fluorescence probe for copper (II) ion determination. Microchim Acta 165:39–44CrossRef
215.
Zurück zum Zitat Sharma A, Pandey CM, Sumana G, Soni U, Sapra S, Srivastava AK, Chatterjee T, Malhotra BD (2012) Chitosan encapsulated quantum dots platform for leukemia detection. Biosens Bioelectron 38:107–113CrossRef Sharma A, Pandey CM, Sumana G, Soni U, Sapra S, Srivastava AK, Chatterjee T, Malhotra BD (2012) Chitosan encapsulated quantum dots platform for leukemia detection. Biosens Bioelectron 38:107–113CrossRef
216.
Zurück zum Zitat Chen Y, Yao R, Wang Y, Chen M, Qiu T, Zhang C (2015) CdS QDs-chitosan microcapsules with stimuli-responsive propertygenerated by gas–liquid microfluidic technique. Colloids Surf, B 125:21–27CrossRef Chen Y, Yao R, Wang Y, Chen M, Qiu T, Zhang C (2015) CdS QDs-chitosan microcapsules with stimuli-responsive propertygenerated by gas–liquid microfluidic technique. Colloids Surf, B 125:21–27CrossRef
217.
Zurück zum Zitat Ma L, Liu C (2010) Preparation of chitosan microspheres by ionotropic gelation under a high voltage electrostatic field for protein delivery. Colloids Surf B Biointerfaces 75:448–453CrossRef Ma L, Liu C (2010) Preparation of chitosan microspheres by ionotropic gelation under a high voltage electrostatic field for protein delivery. Colloids Surf B Biointerfaces 75:448–453CrossRef
218.
Zurück zum Zitat Chang CH, Tsao CT, Chang KY, Young TH, Han JL, Hsieh KH (2010) Chitosan membrane with surface-bonded growth factor in guided tissue regeneration applications. J Bioact Compat Polym 25:465–482CrossRef Chang CH, Tsao CT, Chang KY, Young TH, Han JL, Hsieh KH (2010) Chitosan membrane with surface-bonded growth factor in guided tissue regeneration applications. J Bioact Compat Polym 25:465–482CrossRef
219.
Zurück zum Zitat Saber A, Strand SP, Ulfendahl M (2010) Use of the biodegradable polymer chitosan as a vehicle for applying drugs to the inner ear. Eur J Pharm Sci 39:110–115CrossRef Saber A, Strand SP, Ulfendahl M (2010) Use of the biodegradable polymer chitosan as a vehicle for applying drugs to the inner ear. Eur J Pharm Sci 39:110–115CrossRef
220.
Zurück zum Zitat Ghendon Y, Markushin S, Vasiliev Y, Akopova I, Koptiaeva I, Krivtsov G, Borisova O, Ahmatova N, Kurbatova E, Mazurina S, Gervazieva V Evaluation of properties of chitosan as an adjuvant for inactivated influenza vaccines administered parenterally. J Med Virol 81:494–506 Ghendon Y, Markushin S, Vasiliev Y, Akopova I, Koptiaeva I, Krivtsov G, Borisova O, Ahmatova N, Kurbatova E, Mazurina S, Gervazieva V Evaluation of properties of chitosan as an adjuvant for inactivated influenza vaccines administered parenterally. J Med Virol 81:494–506
221.
Zurück zum Zitat Mahkam M (2010) Modified chitosan cross-linked starch polymers for oral insulin delivery. J Bioact Compat Polym 25:406–418CrossRef Mahkam M (2010) Modified chitosan cross-linked starch polymers for oral insulin delivery. J Bioact Compat Polym 25:406–418CrossRef
222.
Zurück zum Zitat Zhang N, Li J, Jiang W, Ren C, Li J, Xin J, Li K (2010) Effective protection and controlled release of insulin by cationic β-cyclodextrin polymers from alginate/chitosan nanoparticles. Int J Pharm 393:213–219CrossRef Zhang N, Li J, Jiang W, Ren C, Li J, Xin J, Li K (2010) Effective protection and controlled release of insulin by cationic β-cyclodextrin polymers from alginate/chitosan nanoparticles. Int J Pharm 393:213–219CrossRef
223.
Zurück zum Zitat Kamari A, Ngah WSW (2009) Isotherm, kinetic and thermodynamic studies of lead and copper uptake by H2SO4 modified chitosan. Colloid Surf B: Biointerf 73:257–266CrossRef Kamari A, Ngah WSW (2009) Isotherm, kinetic and thermodynamic studies of lead and copper uptake by H2SO4 modified chitosan. Colloid Surf B: Biointerf 73:257–266CrossRef
Metadaten
Titel
Functionalized Chitosan: A Quantum Dot-Based Approach for Regenerative Medicine
verfasst von
Hridyesh Kumar
Pradip Kumar Dutta
Copyright-Jahr
2016
Verlag
Springer India
DOI
https://doi.org/10.1007/978-81-322-2511-9_12

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.