Skip to main content
Erschienen in:
Buchtitelbild

2014 | OriginalPaper | Buchkapitel

Fundamental Aspects in Modelling the Constitutive Behaviour of Fibered Soft Tissues

verfasst von : Begoña Calvo, Estefanía Peña

Erschienen in: Advances in Numerical Simulation in Physics and Engineering

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Fibered soft tissues like ligament, tendons, cartilage or those composing the cardiovascular system among others are characterized by a complex behaviour derived from their specific internal composition and architecture that has to be considered when trying to simulate their response under physiological or pathological external loads, their interaction with external implants or during and after surgery. The evaluation of the acting stresses and strains on these tissues is essential in predicting possible failure (i.e., aneurisms, atherosclerotic plaques, ligaments rupture) or the evolution of their microstructure under changing mechanical environment (i.e. cardiac aging, atherosclerosis, ligament remodeling). As structural materials, fibered soft tissues undergo large deformations even under physiological loads and are almost incompressible and highly anisotropic, mainly due to the directional distribution of the different composing families of collagen fibers. In addition, they are non-linearly elastic under slowly-acting loads, viscoelastic, due both to the moving internal fluid in some tissues (i.e. cartilage) or to the inherent viscoelasticity of the solid matrix. They are also subjected to non-negligible initial stresses due to the growth and remodeling processes that act along their whole live. Finally, they are susceptible to suffer damage induced by the rupture of the fibers or tearing of the surrounding matrix. All these aspects should be considered for a full description of the constitutive behaviour of these materials, requiring an appropriate mathematical formulation and finite element implementation to get efficient simulations useful for a better understanding of their phsyiological function, the effect of pathologies or surgery as well as for surgery planning and design of implants among many other usual applications. In this work, formulations of all the different phenomena commented above in fibered soft tissues are presented. The effect of each of these aspects is analyzed in simplified examples to demonstrate the applicability of the models. Finally, different applications of clinical interest are discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Notice that x is a dummy variable used for integration purposes.
 
2
Note that, thinking about the numerical implementation of this procedure, the elastic strain tensor \(\boldsymbol{F}_{\mbox{ cp}}\) corresponds to the strain field associated to the displacement needed to make rs to satisfy the equilibrium equations. Thus, it constitutes an output of the Finite Element Method.
 
Literatur
1.
Zurück zum Zitat Alastrué, V.: Some inelastic problems in the modeling of blood vessels. Applications to non-physiological states and vascular surgery. Ph.D. thesis, University of Zaragoza, Spain, Division of Structural Mechanics (2008) Alastrué, V.: Some inelastic problems in the modeling of blood vessels. Applications to non-physiological states and vascular surgery. Ph.D. thesis, University of Zaragoza, Spain, Division of Structural Mechanics (2008)
2.
Zurück zum Zitat Alastrué, V., Calvo, B., Peña, E., Doblare, M.: Biomechanical modeling of refractive corneal surgery. ASME J. Biomech. Eng. 128, 150–160 (2006)CrossRef Alastrué, V., Calvo, B., Peña, E., Doblare, M.: Biomechanical modeling of refractive corneal surgery. ASME J. Biomech. Eng. 128, 150–160 (2006)CrossRef
3.
Zurück zum Zitat Alastrué, V., Peña, E., Martínez, M.A., Doblaré, M.: Assessing the use of the “opening angle method” to enforce residual stresses in patient-specific arteries. Ann. Biomed. Eng. 35, 1821–1837 (2007)CrossRef Alastrué, V., Peña, E., Martínez, M.A., Doblaré, M.: Assessing the use of the “opening angle method” to enforce residual stresses in patient-specific arteries. Ann. Biomed. Eng. 35, 1821–1837 (2007)CrossRef
4.
Zurück zum Zitat Alastrué, V., García, A., Peña, E., Rodríguez, J.F., Martínez, M.A., Doblaré, M.: Numerical framework for patient-specific computational modelling of vascular tissue. Commun. Numer. Meth. Eng. 26, 35–51 (2007) Alastrué, V., García, A., Peña, E., Rodríguez, J.F., Martínez, M.A., Doblaré, M.: Numerical framework for patient-specific computational modelling of vascular tissue. Commun. Numer. Meth. Eng. 26, 35–51 (2007)
5.
Zurück zum Zitat Alastrué, V., Sáez, P., Martínez, M.A., Doblaré, M.: On the use of the Bingham statistical distribution in microsphere-based constitutive models for arterial tissue. Mech. Res. Commun. 37, 700–706 (2007)CrossRef Alastrué, V., Sáez, P., Martínez, M.A., Doblaré, M.: On the use of the Bingham statistical distribution in microsphere-based constitutive models for arterial tissue. Mech. Res. Commun. 37, 700–706 (2007)CrossRef
6.
Zurück zum Zitat Alastrué, V., Martínez, M.A., Doblaré, M., Menzel, A.: Anisotropic micro-sphere-based finite elasticity applied to blood vessel modeling. J. Mech. Phys. Solids 57, 178–203 (2009)CrossRefMATH Alastrué, V., Martínez, M.A., Doblaré, M., Menzel, A.: Anisotropic micro-sphere-based finite elasticity applied to blood vessel modeling. J. Mech. Phys. Solids 57, 178–203 (2009)CrossRefMATH
7.
Zurück zum Zitat Arnoux, P.J., Chabrand, P., Jean, M., Bonnoit, J.: A visco-hyperelastic with damage for the knee ligaments under dynamic constraints. Comp. Meth, Biomech. Biomed. Eng. 5, 167–174 (2002) Arnoux, P.J., Chabrand, P., Jean, M., Bonnoit, J.: A visco-hyperelastic with damage for the knee ligaments under dynamic constraints. Comp. Meth, Biomech. Biomed. Eng. 5, 167–174 (2002)
8.
Zurück zum Zitat Arruda, E.M., Boyce, M.C.: A three-Ddimensional constitutive model for the large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids 41(2), 389–412 (1993)CrossRef Arruda, E.M., Boyce, M.C.: A three-Ddimensional constitutive model for the large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids 41(2), 389–412 (1993)CrossRef
10.
Zurück zum Zitat Bonet, J., Wood, R.D.: Nonlinear Continuum Mechanics for Finite Element Analysis. Cambridge University Press, Cambridge (2008)CrossRefMATH Bonet, J., Wood, R.D.: Nonlinear Continuum Mechanics for Finite Element Analysis. Cambridge University Press, Cambridge (2008)CrossRefMATH
11.
Zurück zum Zitat Butler, D.L., Guan, Y., Kay, M., Cummings, M., Feder, S., Levy, M.: Location-dependent variations in the material properties of the anterior cruciate ligament. J. Biomech. 25, 511–518 (1992)CrossRef Butler, D.L., Guan, Y., Kay, M., Cummings, M., Feder, S., Levy, M.: Location-dependent variations in the material properties of the anterior cruciate ligament. J. Biomech. 25, 511–518 (1992)CrossRef
12.
Zurück zum Zitat Calvo, B., Peña, E., Martínez, M.A., Doblare, M.: An uncoupled directional damage model for fibered biological soft tissues. Formulation and computational aspects. Int. J. Numer. Meth. Eng. 69, 2036–2057 (2007)CrossRefMATH Calvo, B., Peña, E., Martínez, M.A., Doblare, M.: An uncoupled directional damage model for fibered biological soft tissues. Formulation and computational aspects. Int. J. Numer. Meth. Eng. 69, 2036–2057 (2007)CrossRefMATH
13.
Zurück zum Zitat Calvo, B., Peña, E., Martínez, M.A., Doblare, M.: Computational modeling of ligaments at non-physiological situations. Int. J. Comput. Vision Biomech. IJV&B. 1, 107–115 (2008) Calvo, B., Peña, E., Martínez, M.A., Doblare, M.: Computational modeling of ligaments at non-physiological situations. Int. J. Comput. Vision Biomech. IJV&B. 1, 107–115 (2008)
14.
Zurück zum Zitat Calvo, B., Peña, E., Martins, P., Mascarenhas, T., Doblare, M., Natal, R., Ferreira, A.: On modeling damage process in vaginal tissue. J. Biomech. 42, 642–651 (2009)CrossRef Calvo, B., Peña, E., Martins, P., Mascarenhas, T., Doblare, M., Natal, R., Ferreira, A.: On modeling damage process in vaginal tissue. J. Biomech. 42, 642–651 (2009)CrossRef
15.
Zurück zum Zitat Chaudhry, H.R., Bukiet, B., Davis, A., Ritter, A.B., Findley, T.: Residual stress in oscillating thoracic arteries reduce circumferential stresses and stress gradient. J. Biomech. 30, 57–62 (1997)CrossRef Chaudhry, H.R., Bukiet, B., Davis, A., Ritter, A.B., Findley, T.: Residual stress in oscillating thoracic arteries reduce circumferential stresses and stress gradient. J. Biomech. 30, 57–62 (1997)CrossRef
16.
Zurück zum Zitat Chuong, C.J., Fung, Y.C.: On residual stress in arteries. ASME J. Biomech. Eng. 108, 189–192 (1986)CrossRef Chuong, C.J., Fung, Y.C.: On residual stress in arteries. ASME J. Biomech. Eng. 108, 189–192 (1986)CrossRef
17.
Zurück zum Zitat Crisco, J.J., Moore, D.C., McGovern, R.D.: Strain-rate sensityvity of the rabbit MCL diminishes at traumatic loading rates. J. Biomech. 35, 1379–1385 (2002)CrossRef Crisco, J.J., Moore, D.C., McGovern, R.D.: Strain-rate sensityvity of the rabbit MCL diminishes at traumatic loading rates. J. Biomech. 35, 1379–1385 (2002)CrossRef
18.
Zurück zum Zitat Dingemans, K., Teeling, P., Lagendijk, J.H., Becker, A.E.: Extracellular matrix of the human aortic media: an ultrastructural histochemical and immunohistochemical study of the adult aortic media. Anat. Rec. 258, 1–14 (2000)CrossRef Dingemans, K., Teeling, P., Lagendijk, J.H., Becker, A.E.: Extracellular matrix of the human aortic media: an ultrastructural histochemical and immunohistochemical study of the adult aortic media. Anat. Rec. 258, 1–14 (2000)CrossRef
19.
20.
Zurück zum Zitat Fung, Y.C.: Biomechanics. Mechanical propeties of living tissues. Springer, New York (1993)CrossRef Fung, Y.C.: Biomechanics. Mechanical propeties of living tissues. Springer, New York (1993)CrossRef
21.
Zurück zum Zitat Fung, Y.C., Liu, S.Q.: Changes of zero-stress state of rat pulmonary arteries in hypoxic hypertension. J. Appl. Physiol. 70, 2455–2470 (1991)CrossRef Fung, Y.C., Liu, S.Q.: Changes of zero-stress state of rat pulmonary arteries in hypoxic hypertension. J. Appl. Physiol. 70, 2455–2470 (1991)CrossRef
22.
Zurück zum Zitat García, A., Peña, E., Martínez, M.A.: Viscoelastic properties of the passive mechanical behavior of the porcine carotid artery: influence of proximal and distal positions. Biorheology 49, 271–288 (2012) García, A., Peña, E., Martínez, M.A.: Viscoelastic properties of the passive mechanical behavior of the porcine carotid artery: influence of proximal and distal positions. Biorheology 49, 271–288 (2012)
23.
Zurück zum Zitat Gardiner, J.C., Weiss, J.A., Rosenberg, T.D.: Strain in the human medial collateral ligament during valgus lading of the knee. Clin. Orthop. Relat. R. 391, 266–274 (2001)CrossRef Gardiner, J.C., Weiss, J.A., Rosenberg, T.D.: Strain in the human medial collateral ligament during valgus lading of the knee. Clin. Orthop. Relat. R. 391, 266–274 (2001)CrossRef
24.
Zurück zum Zitat Gasser, T.C., Ogden, R.W., Holzapfel, G.A.: Hyperelastic modeling of arterial layers with distributed collagen fibre orientations. J. R. Soc. Interface 3, 15–35 (2006)CrossRef Gasser, T.C., Ogden, R.W., Holzapfel, G.A.: Hyperelastic modeling of arterial layers with distributed collagen fibre orientations. J. R. Soc. Interface 3, 15–35 (2006)CrossRef
25.
Zurück zum Zitat Graft, B.K., Vanderby, R. Jr., Ulm, M.J.: Effect of preconditioning on the viscoelastic response of primate patellar tendon. Arthroscopy 10, 90–96 (1994)CrossRef Graft, B.K., Vanderby, R. Jr., Ulm, M.J.: Effect of preconditioning on the viscoelastic response of primate patellar tendon. Arthroscopy 10, 90–96 (1994)CrossRef
26.
Zurück zum Zitat Hayes, W.C., Mockros, L.F.: Viscoelastic constitutive relations for human articular cartilage. J. Appl. Physiol 18, 562–568 (1971) Hayes, W.C., Mockros, L.F.: Viscoelastic constitutive relations for human articular cartilage. J. Appl. Physiol 18, 562–568 (1971)
28.
Zurück zum Zitat Holzapfel, G.A., Ogden, R.W.: Constitutive modeling of passive myocardium: a structurally based framework for material characterization. Philos. Trans. A Math. Phys. Eng. Sci. 367, 3445–3475 (2009)CrossRefMATHMathSciNet Holzapfel, G.A., Ogden, R.W.: Constitutive modeling of passive myocardium: a structurally based framework for material characterization. Philos. Trans. A Math. Phys. Eng. Sci. 367, 3445–3475 (2009)CrossRefMATHMathSciNet
29.
Zurück zum Zitat Holzapfel, G.A., Ogden, R.W.: Constitutive modeling of arteries. Philos. Trans. A Math. Phys. Eng. Sci. 466, 1551–1597 (2010)CrossRefMATHMathSciNet Holzapfel, G.A., Ogden, R.W.: Constitutive modeling of arteries. Philos. Trans. A Math. Phys. Eng. Sci. 466, 1551–1597 (2010)CrossRefMATHMathSciNet
30.
Zurück zum Zitat Holzapfel, G.A., Gasser, T.C., Ogden, R.W.: A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elasticity 61, 1–48 (2000)CrossRefMATHMathSciNet Holzapfel, G.A., Gasser, T.C., Ogden, R.W.: A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elasticity 61, 1–48 (2000)CrossRefMATHMathSciNet
31.
Zurück zum Zitat Holzapfel, G.A., Gasser, T.C., Stadler, M.: A structural model for the viscoelastic behaviour of arterial walls: continuum formultaion and finite element analysis. Eur. J. Mech. A Solids 21, 441–463 (2002)CrossRefMATH Holzapfel, G.A., Gasser, T.C., Stadler, M.: A structural model for the viscoelastic behaviour of arterial walls: continuum formultaion and finite element analysis. Eur. J. Mech. A Solids 21, 441–463 (2002)CrossRefMATH
32.
Zurück zum Zitat Holzapfel, G.A., Gasser, C.T., Sommer, G., Regitnig, P.: Determination of the layer-specific mechanical properties of human coronary arteries with non-atherosclerotic intimal thickening, and related constitutive modeling. Am. J. Physiol Heart Circ. Physiol 289, H2048–H2058 (2005)CrossRef Holzapfel, G.A., Gasser, C.T., Sommer, G., Regitnig, P.: Determination of the layer-specific mechanical properties of human coronary arteries with non-atherosclerotic intimal thickening, and related constitutive modeling. Am. J. Physiol Heart Circ. Physiol 289, H2048–H2058 (2005)CrossRef
33.
Zurück zum Zitat Hsu, E.W., Muzikant, A.L., Matulevicius, S.A., Penland, R.C., Henriquez, C.S.: Magnetic resonance myocardial fiber-orientation mapping with direct histological correlation. Am. J. Physiol Heart Circ. Physiol 274, H1627–H1634 (1998) Hsu, E.W., Muzikant, A.L., Matulevicius, S.A., Penland, R.C., Henriquez, C.S.: Magnetic resonance myocardial fiber-orientation mapping with direct histological correlation. Am. J. Physiol Heart Circ. Physiol 274, H1627–H1634 (1998)
34.
Zurück zum Zitat Humphrey, J.D.: Mechanics of the arterial wall: review and directions. Crit. Rev. Biomed. Eng. 23, 1–162 (1995) Humphrey, J.D.: Mechanics of the arterial wall: review and directions. Crit. Rev. Biomed. Eng. 23, 1–162 (1995)
35.
Zurück zum Zitat Humphrey, J.D., Yin, F.C.P.: Constitutive relations and finite deformations of passive cardiac tissue II: stress analysis in the left ventricle. Circ. Res. 65, 805–817 (1989)CrossRef Humphrey, J.D., Yin, F.C.P.: Constitutive relations and finite deformations of passive cardiac tissue II: stress analysis in the left ventricle. Circ. Res. 65, 805–817 (1989)CrossRef
36.
Zurück zum Zitat Johnson, G.A., Livesay, G.A., Woo, S.L.Y., Rajagopal, K.I.R.: A single integral finite strain viscoelastic model of ligaments and tendons. ASME J. Biomech. Eng. 118, 221–226 (1996)CrossRef Johnson, G.A., Livesay, G.A., Woo, S.L.Y., Rajagopal, K.I.R.: A single integral finite strain viscoelastic model of ligaments and tendons. ASME J. Biomech. Eng. 118, 221–226 (1996)CrossRef
37.
Zurück zum Zitat Lanir, Y.: A structural theory for the homogeneous biaxial stress-strain relationship in flat collageneous tissues. J. Biomech. 12, 423–436 (1979)CrossRef Lanir, Y.: A structural theory for the homogeneous biaxial stress-strain relationship in flat collageneous tissues. J. Biomech. 12, 423–436 (1979)CrossRef
38.
Zurück zum Zitat Lanir, Y.: Constitutive equations for fibrous connective tissues. J. Biomech. 16, 1–12 (1983)CrossRef Lanir, Y.: Constitutive equations for fibrous connective tissues. J. Biomech. 16, 1–12 (1983)CrossRef
39.
Zurück zum Zitat Lin, D.H.S., Yin, F.C.P.: A multiaxial constitutive law for mammalian left ventricular myocardium in steady-state barium contracture or tetanus. ASME J. Biomech. Eng. 120, 504–517 (1998)CrossRef Lin, D.H.S., Yin, F.C.P.: A multiaxial constitutive law for mammalian left ventricular myocardium in steady-state barium contracture or tetanus. ASME J. Biomech. Eng. 120, 504–517 (1998)CrossRef
40.
Zurück zum Zitat Marsden, J.E., Hughes, T.J.R.: Mathematical Foundations of Elasticity. Dover, New York (1994) Marsden, J.E., Hughes, T.J.R.: Mathematical Foundations of Elasticity. Dover, New York (1994)
41.
Zurück zum Zitat Martins, P., Peña, E., Calvo, B., Doblaré, M., Mascarenhas, T., Jorge, R.N., Ferreira, A.: Prediction of nonlinear elastic behavior of vaginal tissue: experimental results and model formulation. Comp. Meth. Biomech. Biomed. Eng. 13(3), 327–337 (2010, in press) Martins, P., Peña, E., Calvo, B., Doblaré, M., Mascarenhas, T., Jorge, R.N., Ferreira, A.: Prediction of nonlinear elastic behavior of vaginal tissue: experimental results and model formulation. Comp. Meth. Biomech. Biomed. Eng. 13(3), 327–337 (2010, in press)
42.
Zurück zum Zitat Natali, A.N., Pavan, P.G., Carniel, E.L., Dorow, C.: A transverselly isotropic elasto-damage constitutive model for the periodontal ligament. Comp. Meth. Biomech. Biomed. Eng. 6, 329–336 (2003)CrossRef Natali, A.N., Pavan, P.G., Carniel, E.L., Dorow, C.: A transverselly isotropic elasto-damage constitutive model for the periodontal ligament. Comp. Meth. Biomech. Biomed. Eng. 6, 329–336 (2003)CrossRef
43.
Zurück zum Zitat Ogden, R.W.: Large deformation isotropic elasticity II: on the correlation of theory and experiment for compresible rubberlike solids. Proc. R. Soc. Lond. A Math. Phys. Sci. 328, 567–583 (1972)CrossRefMATH Ogden, R.W.: Large deformation isotropic elasticity II: on the correlation of theory and experiment for compresible rubberlike solids. Proc. R. Soc. Lond. A Math. Phys. Sci. 328, 567–583 (1972)CrossRefMATH
44.
Zurück zum Zitat Peña, E.: Evolution equations for the internal damage variables for soft biological fibred tissues. Mech. Res. Commun. 38, 610–615 (2011)CrossRefMATH Peña, E.: Evolution equations for the internal damage variables for soft biological fibred tissues. Mech. Res. Commun. 38, 610–615 (2011)CrossRefMATH
45.
Zurück zum Zitat Peña, E.: A rate dependent directional damage model for fibred materials. Application to soft biological tissues. Comp. Mech. 48, 407–420 (2011)MATH Peña, E.: A rate dependent directional damage model for fibred materials. Application to soft biological tissues. Comp. Mech. 48, 407–420 (2011)MATH
46.
Zurück zum Zitat Peña, E., Calvo, B., Martinez, M.A., Doblaré, M.: A finite element simulation of the effect of graft stiffness and graft tensioning in ACL reconstruction. C. Biomech. 20, 636–644 (2005)CrossRef Peña, E., Calvo, B., Martinez, M.A., Doblaré, M.: A finite element simulation of the effect of graft stiffness and graft tensioning in ACL reconstruction. C. Biomech. 20, 636–644 (2005)CrossRef
47.
Zurück zum Zitat Peña, E., Calvo, B., Martinez, M.A., Doblaré, M.: A three-dimensional finite element analysis of the combined behavior of ligaments and menisci in the healthy human knee joint. J. Biomech. 39(9), 1686–1701 (2006)CrossRef Peña, E., Calvo, B., Martinez, M.A., Doblaré, M.: A three-dimensional finite element analysis of the combined behavior of ligaments and menisci in the healthy human knee joint. J. Biomech. 39(9), 1686–1701 (2006)CrossRef
48.
Zurück zum Zitat Peña, E., Calvo, B., Martínez, M.A., Doblaré, M.: On the numerical treatment of initial strains in soft biological tissues. Int. J. Numer. Meth. Eng. 68, 836–860 (2006)CrossRefMATH Peña, E., Calvo, B., Martínez, M.A., Doblaré, M.: On the numerical treatment of initial strains in soft biological tissues. Int. J. Numer. Meth. Eng. 68, 836–860 (2006)CrossRefMATH
49.
Zurück zum Zitat Peña, E., Calvo, B., Martínez, M.A., Doblaré, M.: An anisotropic visco-hyperelastic model for ligaments at finite strains: formulation and computational aspects. Int. J. Solids Struct. 44, 760–778 (2007)CrossRefMATH Peña, E., Calvo, B., Martínez, M.A., Doblaré, M.: An anisotropic visco-hyperelastic model for ligaments at finite strains: formulation and computational aspects. Int. J. Solids Struct. 44, 760–778 (2007)CrossRefMATH
50.
Zurück zum Zitat Peña, E., del Palomar, A.P., Calvo, B., Martínez, M.A., Doblaré, M.: Computational modeling of diarthrodial joints. Physiological, pathological and pos-surgery simulations. Arch. Comput. Method Eng. 14(1), 47–91 (2007) Peña, E., del Palomar, A.P., Calvo, B., Martínez, M.A., Doblaré, M.: Computational modeling of diarthrodial joints. Physiological, pathological and pos-surgery simulations. Arch. Comput. Method Eng. 14(1), 47–91 (2007)
51.
Zurück zum Zitat Peña, E., Calvo, B., Martínez, M.A., Doblaré, M.: Computer simulation of damage on distal femoral articular cartilage after meniscectomies. Comput. Biol. Med. 38, 69–81 (2008)CrossRef Peña, E., Calvo, B., Martínez, M.A., Doblaré, M.: Computer simulation of damage on distal femoral articular cartilage after meniscectomies. Comput. Biol. Med. 38, 69–81 (2008)CrossRef
52.
Zurück zum Zitat Peña, E., Calvo, B., Martínez, M.A., Doblaré, M.: On finite strain damage of viscoelastic fibred materials: application to soft biological tissues. Int. J. Numer. Meth. Eng. 74, 1198–1218 (2008)CrossRefMATH Peña, E., Calvo, B., Martínez, M.A., Doblaré, M.: On finite strain damage of viscoelastic fibred materials: application to soft biological tissues. Int. J. Numer. Meth. Eng. 74, 1198–1218 (2008)CrossRefMATH
53.
Zurück zum Zitat Peña, E., Peña, J.A., Doblaré, M.: On the Mullins effect and hysteresis of fibered biological materials: a comparison between continuous and discontinuous damage models. Int. J. Solids Struct. 46, 1727–1735 (2009)CrossRefMATH Peña, E., Peña, J.A., Doblaré, M.: On the Mullins effect and hysteresis of fibered biological materials: a comparison between continuous and discontinuous damage models. Int. J. Solids Struct. 46, 1727–1735 (2009)CrossRefMATH
54.
Zurück zum Zitat Peña, E., Alastrue, V., Laborda, A., Martínez, M.A., Doblare, M.: A constitutive formulation of vascular tissue mechanics including viscoelasticity and softening behaviour. J. Biomech. 43, 984–989 (2010)CrossRef Peña, E., Alastrue, V., Laborda, A., Martínez, M.A., Doblare, M.: A constitutive formulation of vascular tissue mechanics including viscoelasticity and softening behaviour. J. Biomech. 43, 984–989 (2010)CrossRef
55.
Zurück zum Zitat Pinsky, P.M., Datye, V.: A microstructurally-based finite element model of the incised human cornea. J. Biomech. 10, 907–922 (1991)CrossRef Pinsky, P.M., Datye, V.: A microstructurally-based finite element model of the incised human cornea. J. Biomech. 10, 907–922 (1991)CrossRef
56.
Zurück zum Zitat Pioletti, D.P., Rakotomanana, L., Leyvraz, P.F., Benvenuti, J.F.: Finite element model of the anterior cruciate ligament. Comp. Meth. Biomech. Biomed. Eng. (1997) Pioletti, D.P., Rakotomanana, L., Leyvraz, P.F., Benvenuti, J.F.: Finite element model of the anterior cruciate ligament. Comp. Meth. Biomech. Biomed. Eng. (1997)
57.
Zurück zum Zitat Provenzano, P.P., Heisey, D., Hayashi, K., Lakes, R., Vanderby, R.: Subfailure damage in ligament: a structural and cellular evaluation. J. Appl. Physiol 92, 362–371 (2002) Provenzano, P.P., Heisey, D., Hayashi, K., Lakes, R., Vanderby, R.: Subfailure damage in ligament: a structural and cellular evaluation. J. Appl. Physiol 92, 362–371 (2002)
58.
Zurück zum Zitat Puso, M.A., Weiss, J.A.: Finite element implementation of anisotropic quasilinear viscoelasticity. ASME J. Biomech. Eng. 120, 162–170 (1998)CrossRef Puso, M.A., Weiss, J.A.: Finite element implementation of anisotropic quasilinear viscoelasticity. ASME J. Biomech. Eng. 120, 162–170 (1998)CrossRef
59.
Zurück zum Zitat Rachev, A., Hayashi, K.: Theoretical study of the effects of vascular smooth muscle contraction on strain and stress distributions in arteries. Ann. Biomed. Eng. 27(4), 459–468 (1999)CrossRef Rachev, A., Hayashi, K.: Theoretical study of the effects of vascular smooth muscle contraction on strain and stress distributions in arteries. Ann. Biomed. Eng. 27(4), 459–468 (1999)CrossRef
60.
Zurück zum Zitat Rodríguez, J.F., Cacho, F., Bea, J.A., Doblaré, M.: A stochastic-structurally based three dimensional finite-strain damage model for fibrous soft tissue. J. Mech. Phys. Solids 54, 564–886 (2006)CrossRef Rodríguez, J.F., Cacho, F., Bea, J.A., Doblaré, M.: A stochastic-structurally based three dimensional finite-strain damage model for fibrous soft tissue. J. Mech. Phys. Solids 54, 564–886 (2006)CrossRef
61.
Zurück zum Zitat Rodríguez, J.F., Alastrue, V., Doblaré, M.: Finite element implementation of a stochastic three dimensional finite-strain damage model for fibrous soft tissue. Comput. Methods Appl. Mech. Eng. 197, 946–958 (2008)CrossRefMATH Rodríguez, J.F., Alastrue, V., Doblaré, M.: Finite element implementation of a stochastic three dimensional finite-strain damage model for fibrous soft tissue. Comput. Methods Appl. Mech. Eng. 197, 946–958 (2008)CrossRefMATH
62.
Zurück zum Zitat Simo, J.C.: On a fully three-dimensional finite-strain viscoelastic damage model: formulation and computational aspects. Comput. Methods Appl. Mech. Eng. 60, 153–173 (1987)CrossRefMATHMathSciNet Simo, J.C.: On a fully three-dimensional finite-strain viscoelastic damage model: formulation and computational aspects. Comput. Methods Appl. Mech. Eng. 60, 153–173 (1987)CrossRefMATHMathSciNet
63.
Zurück zum Zitat Simo, J.C., Hughes, T.J.R.: Computational Inelasticity. Springer, New York (1998)MATH Simo, J.C., Hughes, T.J.R.: Computational Inelasticity. Springer, New York (1998)MATH
64.
Zurück zum Zitat Simo, J.C., Ju, J.W.: Strain- and stress-based continuum damage models. I. Formulation. Int. J. Solids Struct. 23, 821–840 (1987)CrossRefMATH Simo, J.C., Ju, J.W.: Strain- and stress-based continuum damage models. I. Formulation. Int. J. Solids Struct. 23, 821–840 (1987)CrossRefMATH
65.
Zurück zum Zitat Simo, J.C., Taylor, R.L., Pister, K.S.: Variational and projection methods for the volume constraint in finite deformation elasto-plasticity. Comput. Methods Appl. Mech. Eng. 51, 177–208 (1985)CrossRefMATHMathSciNet Simo, J.C., Taylor, R.L., Pister, K.S.: Variational and projection methods for the volume constraint in finite deformation elasto-plasticity. Comput. Methods Appl. Mech. Eng. 51, 177–208 (1985)CrossRefMATHMathSciNet
66.
Zurück zum Zitat Spencer, A.J.M.: Theory of Invariants. In: Continuum Physics, pp. 239–253. Academic, New York (1971) Spencer, A.J.M.: Theory of Invariants. In: Continuum Physics, pp. 239–253. Academic, New York (1971)
67.
Zurück zum Zitat Viidik, A.: Structure and function of normal and healing tendons and ligaments. In: Mow, V.C., Ratchiffe, A., Woo, S.L.Y. (eds) Biomecanics of Diarthorial Joints. Springer, New York (1990) Viidik, A.: Structure and function of normal and healing tendons and ligaments. In: Mow, V.C., Ratchiffe, A., Woo, S.L.Y. (eds) Biomecanics of Diarthorial Joints. Springer, New York (1990)
68.
Zurück zum Zitat Weiss, J.A., Maker, B.N., Govindjee, S.: Finite element implementation of incompressible, transversely isotropic hyperelasticity. Comput. Methods Appl. Mech. Eng. 135, 107–128 (1996)CrossRefMATH Weiss, J.A., Maker, B.N., Govindjee, S.: Finite element implementation of incompressible, transversely isotropic hyperelasticity. Comput. Methods Appl. Mech. Eng. 135, 107–128 (1996)CrossRefMATH
69.
Zurück zum Zitat Weiss, J.A., Gardiner, J.C., Bonifasi-Lista, C.: Ligament material behavior is nonlinear, viscoelastic and rate-independent under shear loading. J. Biomech. 35, 943–950 (1996)CrossRef Weiss, J.A., Gardiner, J.C., Bonifasi-Lista, C.: Ligament material behavior is nonlinear, viscoelastic and rate-independent under shear loading. J. Biomech. 35, 943–950 (1996)CrossRef
70.
Zurück zum Zitat Woo, S.L.Y., Peterson, R.H., Ohland, K.J., Sites, T.J., Danto, M.I.: The effects of strain rate on the properties of the medial collateral ligament in skeletally inmatura and mature rabbits: a biomechanical and histological study. J. Orthopaed. Res. 8, 712–721 (1990)CrossRef Woo, S.L.Y., Peterson, R.H., Ohland, K.J., Sites, T.J., Danto, M.I.: The effects of strain rate on the properties of the medial collateral ligament in skeletally inmatura and mature rabbits: a biomechanical and histological study. J. Orthopaed. Res. 8, 712–721 (1990)CrossRef
Metadaten
Titel
Fundamental Aspects in Modelling the Constitutive Behaviour of Fibered Soft Tissues
verfasst von
Begoña Calvo
Estefanía Peña
Copyright-Jahr
2014
DOI
https://doi.org/10.1007/978-3-319-02839-2_1

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.