Skip to main content

2024 | OriginalPaper | Buchkapitel

2. Fundamental Principles of Thermoplasmonics

verfasst von : Guohua Liu

Erschienen in: Thermoplasmonics

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Thermoplasmonic physics can be understood from different points of view (Matthew Pelton in Introduction to metal-nanoparticle plasmonics. Wiley, p 275, 2013 [1]; Besteiro et al. in ACS Photonics 4:2759–2781, 2017 [2]; Sio in Active plasmonic nanomaterials. CRC Press, Taylor & Francis Group, LLC, 2016 [3]; Camargo and Cortes in Plasmonic catalysis from fundamentals to applications. Wiley, 2021 [4]; Cunha et al. in Adv Opt Mater 8, 2020 [5]). A quantum–mechanical microscopic description defines plasmons as the collective oscillations of conduction electrons. Within this framework, plasmons manifest as charge-density waves, oscillating against a background of positive charge from atomic nuclei.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat G.B. Matthew Pelton, Introduction to Metal-Nanoparticle Plasmonics. (Wiley, 2013), p. 275 G.B. Matthew Pelton, Introduction to Metal-Nanoparticle Plasmonics. (Wiley, 2013), p. 275
2.
Zurück zum Zitat L.V. Besteiro, X.T. Kong, Z. Wang, G. Hartland, A.O. Govorov, Understanding hot-electron generation and plasmon relaxation in metal nanocrystals: quantum and classical mechanisms. ACS Photonics 4, 2759–2781 (2017)CrossRef L.V. Besteiro, X.T. Kong, Z. Wang, G. Hartland, A.O. Govorov, Understanding hot-electron generation and plasmon relaxation in metal nanocrystals: quantum and classical mechanisms. ACS Photonics 4, 2759–2781 (2017)CrossRef
3.
Zurück zum Zitat L.D. Sio, Active Plasmonic Nanomaterials. (CRC Press, Taylor & Francis Group, LLC, 2016) International Standard Book Number-13: 978-981-4613-4601-4619 L.D. Sio, Active Plasmonic Nanomaterials. (CRC Press, Taylor & Francis Group, LLC, 2016) International Standard Book Number-13: 978-981-4613-4601-4619
4.
Zurück zum Zitat E. Corte, P.H.C. Camargo, Plasmonic Catalysis from Fundamentals to Applications. (Wiley-VCH GmbH, 2021) E. Corte, P.H.C. Camargo, Plasmonic Catalysis from Fundamentals to Applications. (Wiley-VCH GmbH, 2021)
5.
Zurück zum Zitat J. Cunha, T.L. Guo, G. Della Valle, A.N. Koya, R. Proietti Zaccaria, A. Alabastri, Controlling light, heat, and vibrations in plasmonics and phononics. Adv. Opt. Mater. 8 (2020) J. Cunha, T.L. Guo, G. Della Valle, A.N. Koya, R. Proietti Zaccaria, A. Alabastri, Controlling light, heat, and vibrations in plasmonics and phononics. Adv. Opt. Mater. 8 (2020)
6.
Zurück zum Zitat A.M. Brown, R. Sundararaman, P. Narang, W.A. Goddard 3rd., H.A. Atwater, Nonradiative plasmon decay and hot carrier dynamics: effects of phonons, surfaces geometry. ACS Nano 10, 957–966 (2016)PubMedCrossRef A.M. Brown, R. Sundararaman, P. Narang, W.A. Goddard 3rd., H.A. Atwater, Nonradiative plasmon decay and hot carrier dynamics: effects of phonons, surfaces geometry. ACS Nano 10, 957–966 (2016)PubMedCrossRef
7.
Zurück zum Zitat M.S. Tame, K.R. McEnery, ŞK. Özdemir, J. Lee, S.A. Maier, M.S. Kim, Quantum plasmonics. Nat. Phys. 9, 329–340 (2013)CrossRef M.S. Tame, K.R. McEnery, ŞK. Özdemir, J. Lee, S.A. Maier, M.S. Kim, Quantum plasmonics. Nat. Phys. 9, 329–340 (2013)CrossRef
8.
Zurück zum Zitat J. Lee, D.J. Jeon, J.S. Yeo, Quantum plasmonics: energy transport through plasmonic gap. Adv. Mater. 33, e2006606 (2021)PubMedCrossRef J. Lee, D.J. Jeon, J.S. Yeo, Quantum plasmonics: energy transport through plasmonic gap. Adv. Mater. 33, e2006606 (2021)PubMedCrossRef
9.
Zurück zum Zitat A. Varas, P. García-González, J. Feist, F.J. García-Vidal, A. Rubio, Quantum plasmonics: from Jellium models to ab initio calculations. Nanophotonics 5, 409–426 (2016)CrossRef A. Varas, P. García-González, J. Feist, F.J. García-Vidal, A. Rubio, Quantum plasmonics: from Jellium models to ab initio calculations. Nanophotonics 5, 409–426 (2016)CrossRef
10.
Zurück zum Zitat L.V. Besteiro, P. Yu, Z. Wang, A.W. Holleitner, G.V. Hartland, G.P. Wiederrecht, A.O. Govorov, The fast and the furious: ultrafast hot electrons in plasmonic metastructures. Size d structure matter. Nano Today 27, 120–145 (2019)CrossRef L.V. Besteiro, P. Yu, Z. Wang, A.W. Holleitner, G.V. Hartland, G.P. Wiederrecht, A.O. Govorov, The fast and the furious: ultrafast hot electrons in plasmonic metastructures. Size d structure matter. Nano Today 27, 120–145 (2019)CrossRef
11.
Zurück zum Zitat G. Baffou, Thermoplasmonics Heating Metal Nanoparticles Using Light. (Cambridge University Press, 2018) ISBN 978-971-108-41832-41834 G. Baffou, Thermoplasmonics Heating Metal Nanoparticles Using Light. (Cambridge University Press, 2018) ISBN 978-971-108-41832-41834
12.
Zurück zum Zitat S.A. Maier, Plasmonics Fundamentals and Applications. (Springer Science+Business Media LLC, 2007) S.A. Maier, Plasmonics Fundamentals and Applications. (Springer Science+Business Media LLC, 2007)
13.
Zurück zum Zitat S. Enoch, N. Bonod, Plasmonics From Basics to Advanced Topics. (Springer Berlin Heidelberg 2012) ISBN 978-973-642-28078-28078 S. Enoch, N. Bonod, Plasmonics From Basics to Advanced Topics. (Springer Berlin Heidelberg 2012) ISBN 978-973-642-28078-28078
14.
Zurück zum Zitat S. Jones, Thermoplasmonic Effects in Microfluidic Systems, Thesis, Degree of Licentiate of Technology, Chalmers University of Technology, 2019) S. Jones, Thermoplasmonic Effects in Microfluidic Systems, Thesis, Degree of Licentiate of Technology, Chalmers University of Technology, 2019)
15.
Zurück zum Zitat C. Kuppe, K.R. Rusimova, L. Ohnoutek, D. Slavov, V.K. Valev, “Hot” in plasmonics: temperature-related concepts and applications of metal nanostructures. Adv. Opt. Mater. 8, 1901166 (2019)CrossRef C. Kuppe, K.R. Rusimova, L. Ohnoutek, D. Slavov, V.K. Valev, “Hot” in plasmonics: temperature-related concepts and applications of metal nanostructures. Adv. Opt. Mater. 8, 1901166 (2019)CrossRef
16.
Zurück zum Zitat L. De Sio, Active Plasmonic Nanomaterials. (CRC Press, Taylor & Francis Group, LLC, 2016) L. De Sio, Active Plasmonic Nanomaterials. (CRC Press, Taylor & Francis Group, LLC, 2016)
17.
Zurück zum Zitat Y. Dai, Z. Zhou, A. Ghosh, R.S.K. Mong, A. Kubo, C.B. Huang, H. Petek, Plasmonic topological quasiparticle on the nanometre and femtosecond scales. Nature 588, 616–619 (2020)PubMedCrossRef Y. Dai, Z. Zhou, A. Ghosh, R.S.K. Mong, A. Kubo, C.B. Huang, H. Petek, Plasmonic topological quasiparticle on the nanometre and femtosecond scales. Nature 588, 616–619 (2020)PubMedCrossRef
18.
Zurück zum Zitat N.J. Halas, S. Lal, W.S. Chang, S. Link, P. Nordlander, Plasmons in strongly coupled metallic nanostructures. Chem. Rev. 111, 3913–3961 (2011)PubMedCrossRef N.J. Halas, S. Lal, W.S. Chang, S. Link, P. Nordlander, Plasmons in strongly coupled metallic nanostructures. Chem. Rev. 111, 3913–3961 (2011)PubMedCrossRef
19.
Zurück zum Zitat E. Prodan, C. Radloff, N.J. Halas, P. Nordlander, A hybridization model for the plasmon response of complex nanostructures. Science 302, 419–422 (2003)PubMedCrossRef E. Prodan, C. Radloff, N.J. Halas, P. Nordlander, A hybridization model for the plasmon response of complex nanostructures. Science 302, 419–422 (2003)PubMedCrossRef
20.
Zurück zum Zitat O. Hess, J.B. Pendry, S.A. Maier, R.F. Oulton, J.M. Hamm, K.L. Tsakmakidis, Active nanoplasmonic metamaterials. Nat. Mater. 11, 573–584 (2012)PubMedCrossRef O. Hess, J.B. Pendry, S.A. Maier, R.F. Oulton, J.M. Hamm, K.L. Tsakmakidis, Active nanoplasmonic metamaterials. Nat. Mater. 11, 573–584 (2012)PubMedCrossRef
21.
Zurück zum Zitat B. Wang, P. Yu, W. Wang, X. Zhang, H.C. Kuo, H. Xu, Z.M. Wang, High-Q plasmonic resonances: fundamentals and applications. Adv. Opt. Mater. 9, 2001520 (2021)CrossRef B. Wang, P. Yu, W. Wang, X. Zhang, H.C. Kuo, H. Xu, Z.M. Wang, High-Q plasmonic resonances: fundamentals and applications. Adv. Opt. Mater. 9, 2001520 (2021)CrossRef
22.
Zurück zum Zitat L. Feng, P. Huo, Y. Liang, T. Xu, Photonic metamaterial absorbers: morphology engineering and interdisciplinary applications. Adv. Mater. 32, e1903787 (2020)PubMedCrossRef L. Feng, P. Huo, Y. Liang, T. Xu, Photonic metamaterial absorbers: morphology engineering and interdisciplinary applications. Adv. Mater. 32, e1903787 (2020)PubMedCrossRef
23.
Zurück zum Zitat M. Hertzog, B. Munkhbat, D. Baranov, T. Shegai, K. Borjesson, Enhancing vibrational light-matter coupling strength beyond the molecular concentration limit using plasmonic arrays. Nano Lett. 21, 1320–1326 (2021)PubMedPubMedCentralCrossRef M. Hertzog, B. Munkhbat, D. Baranov, T. Shegai, K. Borjesson, Enhancing vibrational light-matter coupling strength beyond the molecular concentration limit using plasmonic arrays. Nano Lett. 21, 1320–1326 (2021)PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat J. Huang, H. Wang, Z. Qi, P. Lu, D. Zhang, B. Zhang, Z. He, H. Wang, Multifunctional metal-oxide nanocomposite thin film with plasmonic Au nanopillars embedded in magnetic La0.67Sr0.33MnO3 Matrix. Nano Lett. 21, 1032–1039 (2021) J. Huang, H. Wang, Z. Qi, P. Lu, D. Zhang, B. Zhang, Z. He, H. Wang, Multifunctional metal-oxide nanocomposite thin film with plasmonic Au nanopillars embedded in magnetic La0.67Sr0.33MnO3 Matrix. Nano Lett. 21, 1032–1039 (2021)
25.
Zurück zum Zitat A. Teulle, M. Bosman, C. Girard, K.L. Gurunatha, M. Li, S. Mann, E. Dujardin, Multimodal plasmonics in fused colloidal networks. Nat. Mater. 14, 87–94 (2015)PubMedCrossRef A. Teulle, M. Bosman, C. Girard, K.L. Gurunatha, M. Li, S. Mann, E. Dujardin, Multimodal plasmonics in fused colloidal networks. Nat. Mater. 14, 87–94 (2015)PubMedCrossRef
26.
Zurück zum Zitat B. Luk’yanchuk, N.I. Zheludev, S.A. Maier, N.J. Halas, P. Nordlander, H. Giessen, C.T. Chong, The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 9, 707–715 (2010)PubMedCrossRef B. Luk’yanchuk, N.I. Zheludev, S.A. Maier, N.J. Halas, P. Nordlander, H. Giessen, C.T. Chong, The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 9, 707–715 (2010)PubMedCrossRef
27.
Zurück zum Zitat C. Cherqui, M.R. Bourgeois, D. Wang, G.C. Schatz, Plasmonic surface lattice resonances: theory and computation. Acc. Chem. Res. 52, 2548–2558 (2019)PubMedCrossRef C. Cherqui, M.R. Bourgeois, D. Wang, G.C. Schatz, Plasmonic surface lattice resonances: theory and computation. Acc. Chem. Res. 52, 2548–2558 (2019)PubMedCrossRef
28.
Zurück zum Zitat K. Yang, X. Yao, B. Liu, B. Ren, Metallic plasmonic array structures: principles, fabrications, properties, and applications. Adv. Mater. e2007988 (2021) K. Yang, X. Yao, B. Liu, B. Ren, Metallic plasmonic array structures: principles, fabrications, properties, and applications. Adv. Mater. e2007988 (2021)
29.
Zurück zum Zitat J.G. Smith, J.A. Faucheaux, P.K. Jain, Plasmon resonances for solar energy harvesting: a mechanistic outlook. Nano Today 10, 67–80 (2015)CrossRef J.G. Smith, J.A. Faucheaux, P.K. Jain, Plasmon resonances for solar energy harvesting: a mechanistic outlook. Nano Today 10, 67–80 (2015)CrossRef
30.
Zurück zum Zitat D. Liu, C. Xue, Plasmonic coupling architectures for enhanced photocatalysis, Adv. Mater. e2005738 (2021) D. Liu, C. Xue, Plasmonic coupling architectures for enhanced photocatalysis, Adv. Mater. e2005738 (2021)
31.
Zurück zum Zitat G. Baffou, Thermoplasmonics Heating Metal Nanoparticles Using Light. (Cambridge University Press, 2017) G. Baffou, Thermoplasmonics Heating Metal Nanoparticles Using Light. (Cambridge University Press, 2017)
32.
Zurück zum Zitat J. Chen, Z. Ye, F. Yang, Y. Yin, Plasmonic nanostructures for photothermal conversion. Small Sci. 1, 2000055 (2021)CrossRef J. Chen, Z. Ye, F. Yang, Y. Yin, Plasmonic nanostructures for photothermal conversion. Small Sci. 1, 2000055 (2021)CrossRef
33.
Zurück zum Zitat J. Cunha, T.L. Guo, G. Della Valle, A.N. Koya, R. Proietti Zaccaria, A. Alabastri, Controlling light, heat, and vibrations in plasmonics and phononics. Adv. Opt. Mater. 8, 2001225 (2020) J. Cunha, T.L. Guo, G. Della Valle, A.N. Koya, R. Proietti Zaccaria, A. Alabastri, Controlling light, heat, and vibrations in plasmonics and phononics. Adv. Opt. Mater. 8, 2001225 (2020)
34.
35.
Zurück zum Zitat A. Shalabney, I. Abdulhalim, Sensitivity-enhancement methods for surface plasmon sensors. Laser Photonics Rev. 5, 571–606 (2011)CrossRef A. Shalabney, I. Abdulhalim, Sensitivity-enhancement methods for surface plasmon sensors. Laser Photonics Rev. 5, 571–606 (2011)CrossRef
36.
Zurück zum Zitat R. Ameling, H. Giessen, Cavity plasmonics: large normal mode splitting of electric and magnetic particle plasmons induced by a photonic microcavity. Nano Lett. 10, 4394–4398 (2010)PubMedCrossRef R. Ameling, H. Giessen, Cavity plasmonics: large normal mode splitting of electric and magnetic particle plasmons induced by a photonic microcavity. Nano Lett. 10, 4394–4398 (2010)PubMedCrossRef
37.
Zurück zum Zitat R. Ameling, H. Giessen, Microcavity plasmonics: strong coupling of photonic cavities and plasmons. Laser Photonics Rev. 7, 141–169 (2012)CrossRef R. Ameling, H. Giessen, Microcavity plasmonics: strong coupling of photonic cavities and plasmons. Laser Photonics Rev. 7, 141–169 (2012)CrossRef
38.
Zurück zum Zitat T. Xu, W. Zhu, H. Wang, C. Zhang, P.B. Deotare, A. Agrawal, H.J. Lezec, Surface plasmon polariton laser based on a metallic trench Fabry-Perot resonator. Sci. Adv. 3, e1700909 (2017) T. Xu, W. Zhu, H. Wang, C. Zhang, P.B. Deotare, A. Agrawal, H.J. Lezec, Surface plasmon polariton laser based on a metallic trench Fabry-Perot resonator. Sci. Adv. 3, e1700909 (2017)
39.
Zurück zum Zitat V.G. Kravets, A.V. Kabashin, W.L. Barnes, A.N. Grigorenko, Plasmonic surface lattice resonances: a review of properties and applications. Chem. Rev. 118, 5912–5951 (2018)PubMedPubMedCentralCrossRef V.G. Kravets, A.V. Kabashin, W.L. Barnes, A.N. Grigorenko, Plasmonic surface lattice resonances: a review of properties and applications. Chem. Rev. 118, 5912–5951 (2018)PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat M.F. Limonov, M.V. Rybin, A.N. Poddubny, Y.S. Kivshar, Fano resonances in photonics. Nat. Photonics 11, 543–554 (2017)CrossRef M.F. Limonov, M.V. Rybin, A.N. Poddubny, Y.S. Kivshar, Fano resonances in photonics. Nat. Photonics 11, 543–554 (2017)CrossRef
41.
Zurück zum Zitat Y.H. Fu, J.B. Zhang, Y.F. Yu, B. Luk’yanchuk, Generating and manipulating higher order fano resonances in dual-disk ring plasmonic nanostructures. ACS Nano 6, 5130–5137 (2012)PubMedCrossRef Y.H. Fu, J.B. Zhang, Y.F. Yu, B. Luk’yanchuk, Generating and manipulating higher order fano resonances in dual-disk ring plasmonic nanostructures. ACS Nano 6, 5130–5137 (2012)PubMedCrossRef
42.
Zurück zum Zitat M.G. Blaber, M.D. Arnold, M.J. Ford, A review of the optical properties of alloys and intermetallics for plasmonics, Journal of physics. Condensed matter : an Institute of Physics journal 22, 143201 (2010)CrossRef M.G. Blaber, M.D. Arnold, M.J. Ford, A review of the optical properties of alloys and intermetallics for plasmonics, Journal of physics. Condensed matter : an Institute of Physics journal 22, 143201 (2010)CrossRef
43.
Zurück zum Zitat P.R. West, S. Ishii, G.V. Naik, N.K. Emani, V.M. Shalaev, A. Boltasseva, Searching for better plasmonic materials. Laser Photonics Rev. 4, 795–808 (2010)CrossRef P.R. West, S. Ishii, G.V. Naik, N.K. Emani, V.M. Shalaev, A. Boltasseva, Searching for better plasmonic materials. Laser Photonics Rev. 4, 795–808 (2010)CrossRef
44.
Zurück zum Zitat R.B. Claire Deeb, J. Plain, A.-L. Baudrion, S. Jradi, A. Bouhelier, O. Soppera, P.K. Jain, L. Huang, C. Ecoffet, L. Balan, P. Royer, Quantitative analysis of localized surface plasmons based on molecular probing. ACS Nano. 4, 4579–4586 (2010) R.B. Claire Deeb, J. Plain, A.-L. Baudrion, S. Jradi, A. Bouhelier, O. Soppera, P.K. Jain, L. Huang, C. Ecoffet, L. Balan, P. Royer, Quantitative analysis of localized surface plasmons based on molecular probing. ACS Nano. 4, 4579–4586 (2010)
45.
Zurück zum Zitat O. Nicoletti, F. de la Pena, R.K. Leary, D.J. Holland, C. Ducati, P.A. Midgley, Three-dimensional imaging of localized surface plasmon resonances of metal nanoparticles. Nature 502, 80–84 (2013)PubMedCrossRef O. Nicoletti, F. de la Pena, R.K. Leary, D.J. Holland, C. Ducati, P.A. Midgley, Three-dimensional imaging of localized surface plasmon resonances of metal nanoparticles. Nature 502, 80–84 (2013)PubMedCrossRef
46.
Zurück zum Zitat P. Dombi, Z. Pápa, J. Vogelsang, S.V. Yalunin, M. Sivis, G. Herink, S. Schäfer, P. Groß, C. Ropers, C. Lienau, Strong-field nano-optics. Rev. Mod. Phys. 92 (2020) P. Dombi, Z. Pápa, J. Vogelsang, S.V. Yalunin, M. Sivis, G. Herink, S. Schäfer, P. Groß, C. Ropers, C. Lienau, Strong-field nano-optics. Rev. Mod. Phys. 92 (2020)
47.
Zurück zum Zitat A. Lalisse, G. Tessier, J. Plain, G. Baffou, Quantifying the efficiency of plasmonic materials for near-field enhancement and photothermal conversion. J. Phys. Chem. C 119, 25518–25528 (2015)CrossRef A. Lalisse, G. Tessier, J. Plain, G. Baffou, Quantifying the efficiency of plasmonic materials for near-field enhancement and photothermal conversion. J. Phys. Chem. C 119, 25518–25528 (2015)CrossRef
48.
Zurück zum Zitat C. Deeb, R. Bachelot, J. Plain, A.L. Baudrion, S. Jradi, A. Bouhelier, O. Soppera, P.K. Jain, L. Huang, C. Ecoffet, L. Balan, P. Royer, Quantitative analysis of localized surface plasmons based on molecular probing. ACS Nano 4, 4579–4586 (2010)PubMedCrossRef C. Deeb, R. Bachelot, J. Plain, A.L. Baudrion, S. Jradi, A. Bouhelier, O. Soppera, P.K. Jain, L. Huang, C. Ecoffet, L. Balan, P. Royer, Quantitative analysis of localized surface plasmons based on molecular probing. ACS Nano 4, 4579–4586 (2010)PubMedCrossRef
49.
Zurück zum Zitat M.L. Brongersma, N.J. Halas, P. Nordlander, Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 10, 25–34 (2015)PubMedCrossRef M.L. Brongersma, N.J. Halas, P. Nordlander, Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 10, 25–34 (2015)PubMedCrossRef
50.
Zurück zum Zitat J. Cunha, T.L. Guo, A.N. Koya, A. Toma, M. Prato, G. Della Valle, A. Alabastri, R. Proietti Zaccaria, Photoinduced temperature gradients in sub-wavelength plasmonic structures: the thermoplasmonics of nanocones. Adv. Opt. Mater. 8, 2000568 (2020) J. Cunha, T.L. Guo, A.N. Koya, A. Toma, M. Prato, G. Della Valle, A. Alabastri, R. Proietti Zaccaria, Photoinduced temperature gradients in sub-wavelength plasmonic structures: the thermoplasmonics of nanocones. Adv. Opt. Mater. 8, 2000568 (2020)
51.
Zurück zum Zitat S. Jones, Mass Transport via Thermoplasmonics, Thesis Degree of Doctor of Philosophy, Department of Physics, Chalmers University of Technology (2021) S. Jones, Mass Transport via Thermoplasmonics, Thesis Degree of Doctor of Philosophy, Department of Physics, Chalmers University of Technology (2021)
52.
Zurück zum Zitat B. Yang, C. Li, Z. Wang, Q. Dai, Thermoplasmonics in solar energy conversion: materials, nanostructured designs, and applications. Adv. Mater. 34, e2107351 (2022)PubMedCrossRef B. Yang, C. Li, Z. Wang, Q. Dai, Thermoplasmonics in solar energy conversion: materials, nanostructured designs, and applications. Adv. Mater. 34, e2107351 (2022)PubMedCrossRef
53.
Zurück zum Zitat L. Jauffred, A. Samadi, H. Klingberg, P.M. Bendix, L.B. Oddershede, Plasmonic heating of nanostructures. Chem. Rev. 119, 8087–8130 (2019)PubMedCrossRef L. Jauffred, A. Samadi, H. Klingberg, P.M. Bendix, L.B. Oddershede, Plasmonic heating of nanostructures. Chem. Rev. 119, 8087–8130 (2019)PubMedCrossRef
54.
Zurück zum Zitat G. Baffou, R. Quidant, Thermo-plasmonics: using metallic nanostructures as nano-sources of heat. Laser Photonics Rev. 7, 171–187 (2013)CrossRef G. Baffou, R. Quidant, Thermo-plasmonics: using metallic nanostructures as nano-sources of heat. Laser Photonics Rev. 7, 171–187 (2013)CrossRef
55.
Zurück zum Zitat K.R. Berry, J.R. Dunklin, P.A. Blake, D.K. Roper, Thermal dynamics of plasmonic nanoparticle composites. J. Phys. Chem. C 119, 10550–10557 (2015)CrossRef K.R. Berry, J.R. Dunklin, P.A. Blake, D.K. Roper, Thermal dynamics of plasmonic nanoparticle composites. J. Phys. Chem. C 119, 10550–10557 (2015)CrossRef
56.
Zurück zum Zitat A.S. Lavine, T.L. Bergman, F.P. Incropera, D.P. DeWitt, Fundamentals of Heat and Mass Transfer, 8th edn. (Wiley, 2017) A.S. Lavine, T.L. Bergman, F.P. Incropera, D.P. DeWitt, Fundamentals of Heat and Mass Transfer, 8th edn. (Wiley, 2017)
57.
Zurück zum Zitat A. Yuksel, E.T. Yu, M. Cullinan, J. Murthy, Investigation of heat transfer modes in plasmonic nanoparticles. Int. J. Heat Mass Transf. 156, 119869 (2020)CrossRef A. Yuksel, E.T. Yu, M. Cullinan, J. Murthy, Investigation of heat transfer modes in plasmonic nanoparticles. Int. J. Heat Mass Transf. 156, 119869 (2020)CrossRef
58.
Zurück zum Zitat X. Chen, Y. Chen, M. Yan, M. Qiu, Nanosecond photothermal effects in plasmonic nanostructures. ACS Nano 6, 2550–2557 (2012)PubMedCrossRef X. Chen, Y. Chen, M. Yan, M. Qiu, Nanosecond photothermal effects in plasmonic nanostructures. ACS Nano 6, 2550–2557 (2012)PubMedCrossRef
59.
Zurück zum Zitat Z. Chen, X. Shan, Y. Guan, S. Wang, J.J. Zhu, N. Tao, Imaging local heating and thermal diffusion of nanomaterials with plasmonic thermal microscopy. ACS Nano 9, 11574–11581 (2015)PubMedCrossRef Z. Chen, X. Shan, Y. Guan, S. Wang, J.J. Zhu, N. Tao, Imaging local heating and thermal diffusion of nanomaterials with plasmonic thermal microscopy. ACS Nano 9, 11574–11581 (2015)PubMedCrossRef
60.
Zurück zum Zitat M.N. Özisik, D.W. Hahn, Heat Conduction, 3rd ed. (Wiley, 2012) M.N. Özisik, D.W. Hahn, Heat Conduction, 3rd ed. (Wiley, 2012)
61.
Zurück zum Zitat Z. Xu, Z. Li, Y. Jiang, G. Xu, M. Zhu, W.C. Law, K.T. Yong, Y. Wang, C. Yang, B. Dong, F. Xing, Recent advances in solar-driven evaporation systems. J. Mater. Chem. A 8, 25571–25600 (2020)CrossRef Z. Xu, Z. Li, Y. Jiang, G. Xu, M. Zhu, W.C. Law, K.T. Yong, Y. Wang, C. Yang, B. Dong, F. Xing, Recent advances in solar-driven evaporation systems. J. Mater. Chem. A 8, 25571–25600 (2020)CrossRef
62.
Zurück zum Zitat L. Zhu, M. Gao, C.K.N. Peh, G.W. Ho, Solar-driven photothermal nanostructured materials designs and prerequisites for evaporation and catalysis applications. Mater. Horiz. 5, 323–343 (2018)CrossRef L. Zhu, M. Gao, C.K.N. Peh, G.W. Ho, Solar-driven photothermal nanostructured materials designs and prerequisites for evaporation and catalysis applications. Mater. Horiz. 5, 323–343 (2018)CrossRef
63.
Zurück zum Zitat J.S. Donner, G. Baffou, D. McCloskey, R. Quidant, Plasmon-assisted optofluidics. ACS Nano 5, 5457–5462 (2011)PubMedCrossRef J.S. Donner, G. Baffou, D. McCloskey, R. Quidant, Plasmon-assisted optofluidics. ACS Nano 5, 5457–5462 (2011)PubMedCrossRef
64.
Zurück zum Zitat M.P. Menguc, J.R. Howell, K. Daun, R. Siegel, Thermal Radiation Heat Transfer, 7th edn. (CRC Press, 2021) M.P. Menguc, J.R. Howell, K. Daun, R. Siegel, Thermal Radiation Heat Transfer, 7th edn. (CRC Press, 2021)
65.
Zurück zum Zitat G. Jonsson, D. Tordera, T. Pakizeh, M. Jaysankar, V. Miljkovic, L. Tong, M.P. Jonsson, A. Dmitriev, Solar transparent radiators by optical nanoantennas. Nano Lett. 17, 6766–6772 (2017)PubMedCrossRef G. Jonsson, D. Tordera, T. Pakizeh, M. Jaysankar, V. Miljkovic, L. Tong, M.P. Jonsson, A. Dmitriev, Solar transparent radiators by optical nanoantennas. Nano Lett. 17, 6766–6772 (2017)PubMedCrossRef
66.
Zurück zum Zitat A.O. Govorov, H.H. Richardson, Generating heat with metal nanoparticles. Nano Today 2, 30–38 (2007)CrossRef A.O. Govorov, H.H. Richardson, Generating heat with metal nanoparticles. Nano Today 2, 30–38 (2007)CrossRef
67.
Zurück zum Zitat M.I. Tribelsky, A.E. Miroshnichenko, Y.S. Kivshar, B.S. Luk’yanchuk, A.R. Khokhlov, Laser pulse heating of spherical metal particles. Phys. Rev. X 1 (2011) M.I. Tribelsky, A.E. Miroshnichenko, Y.S. Kivshar, B.S. Luk’yanchuk, A.R. Khokhlov, Laser pulse heating of spherical metal particles. Phys. Rev. X 1 (2011)
68.
Zurück zum Zitat G. Baffou, R. Quidant, F.J. Garcia de Abajo, Nanoscale control of optical heating in complex plasmonic systems. ACS Nano 4, 709–716 (2010)PubMedCrossRef G. Baffou, R. Quidant, F.J. Garcia de Abajo, Nanoscale control of optical heating in complex plasmonic systems. ACS Nano 4, 709–716 (2010)PubMedCrossRef
69.
Zurück zum Zitat J.T. Jorgensen, K. Norregaard, P. Tian, P.M. Bendix, A. Kjaer, L.B. Oddershede, Single particle and pet-based platform for identifying optimal plasmonic nano-heaters for photothermal cancer therapy. Sci. Rep. 6, 30076 (2016)PubMedPubMedCentralCrossRef J.T. Jorgensen, K. Norregaard, P. Tian, P.M. Bendix, A. Kjaer, L.B. Oddershede, Single particle and pet-based platform for identifying optimal plasmonic nano-heaters for photothermal cancer therapy. Sci. Rep. 6, 30076 (2016)PubMedPubMedCentralCrossRef
70.
Zurück zum Zitat G. Baffou, P. Berto, E. Bermudez Urena, R. Quidant, S. Monneret, J. Polleux, H. Rigneault, Photoinduced heating of nanoparticle arrays. ACS Nano 7, 6478–6488 (2013) G. Baffou, P. Berto, E. Bermudez Urena, R. Quidant, S. Monneret, J. Polleux, H. Rigneault, Photoinduced heating of nanoparticle arrays. ACS Nano 7, 6478–6488 (2013)
71.
Zurück zum Zitat S. Santoro, A.H. Avci, A. Politano, E. Curcio, The advent of thermoplasmonic membrane distillation. Chem. Soc. Rev. 51, 6087–6125 (2022)PubMedCrossRef S. Santoro, A.H. Avci, A. Politano, E. Curcio, The advent of thermoplasmonic membrane distillation. Chem. Soc. Rev. 51, 6087–6125 (2022)PubMedCrossRef
72.
Zurück zum Zitat V.K. Pustovalov, Light-to-heat conversion and heating of single nanoparticles, their assemblies, and the surrounding medium under laser pulses. RSC Adv. 6, 81266–81289 (2016)CrossRef V.K. Pustovalov, Light-to-heat conversion and heating of single nanoparticles, their assemblies, and the surrounding medium under laser pulses. RSC Adv. 6, 81266–81289 (2016)CrossRef
73.
Zurück zum Zitat S. Manrique-Bedoya, M. Abdul-Moqueet, P. Lopez, T. Gray, M. Disiena, A. Locker, S. Kwee, L. Tang, R.L. Hood, Y. Feng, N. Large, K.M. Mayer, Multiphysics modeling of plasmonic photothermal heating effects in gold nanoparticles and nanoparticle arrays. J. Phys. Chem. C 124, 17172–17182 (2020)CrossRef S. Manrique-Bedoya, M. Abdul-Moqueet, P. Lopez, T. Gray, M. Disiena, A. Locker, S. Kwee, L. Tang, R.L. Hood, Y. Feng, N. Large, K.M. Mayer, Multiphysics modeling of plasmonic photothermal heating effects in gold nanoparticles and nanoparticle arrays. J. Phys. Chem. C 124, 17172–17182 (2020)CrossRef
74.
Zurück zum Zitat A. Sepúlveda, D. Boudreau, Neighbors matter: leveraging collective thermoplasmonic effects for smart soft actuators. ACS Appl. Polym. Mater. 6, 2359–2370 (2024)CrossRef A. Sepúlveda, D. Boudreau, Neighbors matter: leveraging collective thermoplasmonic effects for smart soft actuators. ACS Appl. Polym. Mater. 6, 2359–2370 (2024)CrossRef
75.
Zurück zum Zitat M.T. Carlson, H.H. Richardson, P.J. Tandler, P. Hernandez, A.O. Govorov, Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions. Nano Lett., 9, 1139–1146 (2009) M.T. Carlson, H.H. Richardson, P.J. Tandler, P. Hernandez, A.O. Govorov, Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions. Nano Lett., 9, 1139–1146 (2009)
76.
Zurück zum Zitat G. Baffou, F. Cichos, R. Quidant, Applications and challenges of thermoplasmonics. Nat. Mater. 19, 946–958 (2020)PubMedCrossRef G. Baffou, F. Cichos, R. Quidant, Applications and challenges of thermoplasmonics. Nat. Mater. 19, 946–958 (2020)PubMedCrossRef
77.
Zurück zum Zitat M. Mutlu, J.H. Kang, S. Raza, D. Schoen, X. Zheng, P.G. Kik, M.L. Brongersma, Thermoplasmonic ignition of metal nanoparticles. Nano Lett. 18, 1699–1706 (2018)PubMedCrossRef M. Mutlu, J.H. Kang, S. Raza, D. Schoen, X. Zheng, P.G. Kik, M.L. Brongersma, Thermoplasmonic ignition of metal nanoparticles. Nano Lett. 18, 1699–1706 (2018)PubMedCrossRef
78.
Zurück zum Zitat P.B. Guillaume Baffou, E. Bermúdez Ureña, R. Quidan, S. Monneret, J. Polleux, H. Rigneault, Photoinduced Heating of Nanoparticle Arrays. ACS Nano 7, 6478–6488 (2013) P.B. Guillaume Baffou, E. Bermúdez Ureña, R. Quidan, S. Monneret, J. Polleux, H. Rigneault, Photoinduced Heating of Nanoparticle Arrays. ACS Nano 7, 6478–6488 (2013)
79.
Zurück zum Zitat P. Grua, J.P. Morreeuw, H. Bercegol, G. Jonusauskas, F. Vallée, Electron kinetics and emission for metal nanoparticles exposed to intense laser pulses. Phys. Rev. B 68 (2003) P. Grua, J.P. Morreeuw, H. Bercegol, G. Jonusauskas, F. Vallée, Electron kinetics and emission for metal nanoparticles exposed to intense laser pulses. Phys. Rev. B 68 (2003)
80.
Zurück zum Zitat S. Linic, S. Chavez, R. Elias, Flow and extraction of energy and charge carriers in hybrid plasmonic nanostructures. Nat. Mater. 20, 916–924 (2021)PubMedCrossRef S. Linic, S. Chavez, R. Elias, Flow and extraction of energy and charge carriers in hybrid plasmonic nanostructures. Nat. Mater. 20, 916–924 (2021)PubMedCrossRef
81.
Zurück zum Zitat G. Baffou, R. Quidant, Thermo-plasmonics: using metallic nanostructures as nano-sources of heat. Laser Photonics Rev. 7, 171–187 (2012)CrossRef G. Baffou, R. Quidant, Thermo-plasmonics: using metallic nanostructures as nano-sources of heat. Laser Photonics Rev. 7, 171–187 (2012)CrossRef
82.
Zurück zum Zitat R.W. Schoenlein, W.Z. Lin, J.G. Fujimoto, G.L. Eesley, Femtosecond studies of nonequilibrium electronic processes in metals. Phys. Rev. Lett. 58, 1680–1683 (1987)PubMedCrossRef R.W. Schoenlein, W.Z. Lin, J.G. Fujimoto, G.L. Eesley, Femtosecond studies of nonequilibrium electronic processes in metals. Phys. Rev. Lett. 58, 1680–1683 (1987)PubMedCrossRef
83.
Zurück zum Zitat A. Block, M. Liebel, R. Yu, M. Spector, Y. Sivan, F.J. Garcia de Abajo, N.F. van Hulst, Tracking ultrafast hot-electron diffusion in space and time by ultrafast thermomodulation microscopy. Sci. Adv. 5, eaav8965 (2019) A. Block, M. Liebel, R. Yu, M. Spector, Y. Sivan, F.J. Garcia de Abajo, N.F. van Hulst, Tracking ultrafast hot-electron diffusion in space and time by ultrafast thermomodulation microscopy. Sci. Adv. 5, eaav8965 (2019)
84.
Zurück zum Zitat M. Da Browski, Y. Dai, H. Petek, Ultrafast photoemission electron microscopy: imaging plasmons in space and time. Chem. Rev. 120, 6247–6287 (2020)PubMedCrossRef M. Da Browski, Y. Dai, H. Petek, Ultrafast photoemission electron microscopy: imaging plasmons in space and time. Chem. Rev. 120, 6247–6287 (2020)PubMedCrossRef
85.
Zurück zum Zitat P. Samolis, M.K. Hong, R. Rajagopal, M.Y. Sander, S. Erramilli, O. Narayan, Heat transport in photothermal microscopy: newton vs fourier. J. Phys. Chem. C 128, 961–967 (2024)CrossRef P. Samolis, M.K. Hong, R. Rajagopal, M.Y. Sander, S. Erramilli, O. Narayan, Heat transport in photothermal microscopy: newton vs fourier. J. Phys. Chem. C 128, 961–967 (2024)CrossRef
86.
Zurück zum Zitat S.A. Lindley, Q. An, W.A. Goddard 3rd., J.K. Cooper, Spatiotemporal temperature and pressure in thermoplasmonic gold nanosphere-water systems. ACS Nano 15, 6276–6288 (2021)PubMedCrossRef S.A. Lindley, Q. An, W.A. Goddard 3rd., J.K. Cooper, Spatiotemporal temperature and pressure in thermoplasmonic gold nanosphere-water systems. ACS Nano 15, 6276–6288 (2021)PubMedCrossRef
87.
Zurück zum Zitat A. Sanchot, G. Baffou, R. Marty, A. Arbouet, R. Quidant, C. Girard, E. Dujardin, Plasmonic nanoparticle networks for light and heat concentration. ACS Nano 6, 3434–3440 (2012)PubMedCrossRef A. Sanchot, G. Baffou, R. Marty, A. Arbouet, R. Quidant, C. Girard, E. Dujardin, Plasmonic nanoparticle networks for light and heat concentration. ACS Nano 6, 3434–3440 (2012)PubMedCrossRef
88.
Zurück zum Zitat F. Magaletti, L. Marino, C.M. Casciola, Shock wave formation in the collapse of a vapor nanobubble. Phys. Rev. Lett. 114, 064501 (2015)PubMedCrossRef F. Magaletti, L. Marino, C.M. Casciola, Shock wave formation in the collapse of a vapor nanobubble. Phys. Rev. Lett. 114, 064501 (2015)PubMedCrossRef
90.
Zurück zum Zitat J. Rieser, M.A. Ciampini, H. Rudolph, N. Kiesel, K. Hornberger, B.A. Stickler, M. Aspelmeyer, U. Delic, Tunable light-induced dipole-dipole interaction between optically levitated nanoparticles. Science 377, 987–990 (2022)PubMedCrossRef J. Rieser, M.A. Ciampini, H. Rudolph, N. Kiesel, K. Hornberger, B.A. Stickler, M. Aspelmeyer, U. Delic, Tunable light-induced dipole-dipole interaction between optically levitated nanoparticles. Science 377, 987–990 (2022)PubMedCrossRef
91.
Zurück zum Zitat S.A. Mezzasalma, J. Kruse, S. Merkens, E. Lopez, A. Seifert, R. Morandotti, M. Grzelczak, Light-driven self-oscillation of thermoplasmonic nanocolloids. Adv. Mater. 35, e2302987 (2023)PubMedCrossRef S.A. Mezzasalma, J. Kruse, S. Merkens, E. Lopez, A. Seifert, R. Morandotti, M. Grzelczak, Light-driven self-oscillation of thermoplasmonic nanocolloids. Adv. Mater. 35, e2302987 (2023)PubMedCrossRef
92.
Zurück zum Zitat A.V. Mahulkar, P.S. Bapat, A.B. Pandit, F.M. Lewis, Steam bubble cavitation. AIChE J. 54, 1711–1724 (2008)CrossRef A.V. Mahulkar, P.S. Bapat, A.B. Pandit, F.M. Lewis, Steam bubble cavitation. AIChE J. 54, 1711–1724 (2008)CrossRef
93.
Zurück zum Zitat S. Moon, Q. Zhang, Z. Xu, D. Huang, S. Kim, J. Schiffbauer, E. Lee, T. Luo, Plasmonic nanobubbles—a perspective. J. Phys. Chem. C 125, 25357–25368 (2021)CrossRef S. Moon, Q. Zhang, Z. Xu, D. Huang, S. Kim, J. Schiffbauer, E. Lee, T. Luo, Plasmonic nanobubbles—a perspective. J. Phys. Chem. C 125, 25357–25368 (2021)CrossRef
94.
Zurück zum Zitat A.S. Kostyukov, I.L. Isaev, A.E. Ershov, V.S. Gerasimov, S.P. Polyutov, S.V. Karpov, Part I. Nanobubbles in pulsed laser fields for anticancer therapy: in search of adequate models and simulation approaches. J. Phys. D: Appl. Phys. 55, 175401 (2022)CrossRef A.S. Kostyukov, I.L. Isaev, A.E. Ershov, V.S. Gerasimov, S.P. Polyutov, S.V. Karpov, Part I. Nanobubbles in pulsed laser fields for anticancer therapy: in search of adequate models and simulation approaches. J. Phys. D: Appl. Phys. 55, 175401 (2022)CrossRef
95.
Zurück zum Zitat S. Merabia, S. Shenogin, L. Joly, P. Keblinski, J.L. Barrat, Heat transfer from nanoparticles: a corresponding state analysis. Proc. Natl. Acad. Sci. U.S.A. 106, 15113–15118 (2009)PubMedPubMedCentralCrossRef S. Merabia, S. Shenogin, L. Joly, P. Keblinski, J.L. Barrat, Heat transfer from nanoparticles: a corresponding state analysis. Proc. Natl. Acad. Sci. U.S.A. 106, 15113–15118 (2009)PubMedPubMedCentralCrossRef
96.
Zurück zum Zitat J. Lombard, J. Lam, F. Detcheverry, T. Biben, S. Merabia, Strong and fast rising pressure waves emitted by plasmonic vapor nanobubbles. Phys. Rev. Res. 3 (2021) J. Lombard, J. Lam, F. Detcheverry, T. Biben, S. Merabia, Strong and fast rising pressure waves emitted by plasmonic vapor nanobubbles. Phys. Rev. Res. 3 (2021)
97.
Zurück zum Zitat J. Lombard, T. Biben, S. Merabia, Kinetics of nanobubble generation around overheated nanoparticles. Phys. Rev. Lett. 112, 105701 (2014)PubMedCrossRef J. Lombard, T. Biben, S. Merabia, Kinetics of nanobubble generation around overheated nanoparticles. Phys. Rev. Lett. 112, 105701 (2014)PubMedCrossRef
98.
Zurück zum Zitat G. Baffou, H. Rigneault, Femtosecond-pulsed optical heating of gold nanoparticles. Phys. Rev. B 84 (2011) G. Baffou, H. Rigneault, Femtosecond-pulsed optical heating of gold nanoparticles. Phys. Rev. B 84 (2011)
99.
Zurück zum Zitat A. Alabastri, A. Toma, M. Malerba, F. De Angelis, R. Proietti Zaccaria, High temperature nanoplasmonics: the key role of nonlinear effects. ACS Photonics 2, 115–120 (2014) A. Alabastri, A. Toma, M. Malerba, F. De Angelis, R. Proietti Zaccaria, High temperature nanoplasmonics: the key role of nonlinear effects. ACS Photonics 2, 115–120 (2014)
100.
Zurück zum Zitat H. Lee, S. Im, C. Lee, H. Lee, S.W. Chu, A.H. Ho, D. Kim, Probing temperature-induced plasmonic nonlinearity: unveiling opto-thermal effects on light absorption and near-field enhancement. Nano Lett. 24, 3598–3605 (2024)PubMedCrossRef H. Lee, S. Im, C. Lee, H. Lee, S.W. Chu, A.H. Ho, D. Kim, Probing temperature-induced plasmonic nonlinearity: unveiling opto-thermal effects on light absorption and near-field enhancement. Nano Lett. 24, 3598–3605 (2024)PubMedCrossRef
101.
Zurück zum Zitat C. Zhao, Y. Liu, Y. Zhao, N. Fang, T.J. Huang, A reconfigurable plasmofluidic lens. Nat. Commun. 4, 2305 (2013)PubMedCrossRef C. Zhao, Y. Liu, Y. Zhao, N. Fang, T.J. Huang, A reconfigurable plasmofluidic lens. Nat. Commun. 4, 2305 (2013)PubMedCrossRef
102.
Zurück zum Zitat E. Haque, M. Anwar Hossain, Y. Namihira, F. Ahmed, Microchannel-based plasmonic refractive index sensor for low refractive index detection. Appl. Opt. 58, 1547 (2019) E. Haque, M. Anwar Hossain, Y. Namihira, F. Ahmed, Microchannel-based plasmonic refractive index sensor for low refractive index detection. Appl. Opt. 58, 1547 (2019)
103.
Zurück zum Zitat D. Madaan, A. Kapoor, V.K. Sharma, Ultrahigh sensitivity plasmonic refractive-index sensor for aqueous environment. IEEE Photonics Technol. Lett. 30, 149–152 (2018)CrossRef D. Madaan, A. Kapoor, V.K. Sharma, Ultrahigh sensitivity plasmonic refractive-index sensor for aqueous environment. IEEE Photonics Technol. Lett. 30, 149–152 (2018)CrossRef
104.
Zurück zum Zitat J.S. Donner, J. Morales-Dalmau, I. Alda, R. Marty, R. Quidant, Fast and transparent adaptive lens based on plasmonic heating. ACS Photonics 2, 355–360 (2015)CrossRef J.S. Donner, J. Morales-Dalmau, I. Alda, R. Marty, R. Quidant, Fast and transparent adaptive lens based on plasmonic heating. ACS Photonics 2, 355–360 (2015)CrossRef
105.
Zurück zum Zitat Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z.K. Zhou, X. Wang, C. Jin, J. Wang, Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit. Nat. Commun. 4, 2381 (2013)PubMedCrossRef Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z.K. Zhou, X. Wang, C. Jin, J. Wang, Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit. Nat. Commun. 4, 2381 (2013)PubMedCrossRef
106.
Zurück zum Zitat M.J. Horton, O.S. Ojambati, R. Chikkaraddy, W.M. Deacon, N. Kongsuwan, A. Demetriadou, O. Hess, J.J. Baumberg, Nanoscopy through a plasmonic nanolens. Proc. Natl. Acad. Sci. 117, 2275–2281 (2020)PubMedPubMedCentralCrossRef M.J. Horton, O.S. Ojambati, R. Chikkaraddy, W.M. Deacon, N. Kongsuwan, A. Demetriadou, O. Hess, J.J. Baumberg, Nanoscopy through a plasmonic nanolens. Proc. Natl. Acad. Sci. 117, 2275–2281 (2020)PubMedPubMedCentralCrossRef
107.
Zurück zum Zitat P.T. David Boyer, A. Maali, B. Lounis, M. Orrit, Photothermal imaging of nanometer-sized metal particles among scatterers. Science 297, 1160–1163 (2002) P.T. David Boyer, A. Maali, B. Lounis, M. Orrit, Photothermal imaging of nanometer-sized metal particles among scatterers. Science 297, 1160–1163 (2002)
108.
Zurück zum Zitat D.G. Baranov, Y. Xiao, I.A. Nechepurenko, A. Krasnok, A. Alù, M.A. Kats, Nanophotonic engineering of far-field thermal emitters. Nat. Mater. 18, 920–930 (2019)PubMedCrossRef D.G. Baranov, Y. Xiao, I.A. Nechepurenko, A. Krasnok, A. Alù, M.A. Kats, Nanophotonic engineering of far-field thermal emitters. Nat. Mater. 18, 920–930 (2019)PubMedCrossRef
109.
Zurück zum Zitat S. Fan, Thermal photonics and energy applications. Joule 1, 264–273 (2017)CrossRef S. Fan, Thermal photonics and energy applications. Joule 1, 264–273 (2017)CrossRef
110.
Zurück zum Zitat H. Kallel, R. Carminati, K. Joulain, Temperature of a nanoparticle above a substrate under radiative heating and cooling. Phys. Rev. B 95 (2017) H. Kallel, R. Carminati, K. Joulain, Temperature of a nanoparticle above a substrate under radiative heating and cooling. Phys. Rev. B 95 (2017)
111.
Zurück zum Zitat B. Liu, W. Gong, B. Yu, P. Li, S. Shen, Perfect thermal emission by nanoscale transmission line resonators. Nano Lett. 17, 666–672 (2017)PubMedCrossRef B. Liu, W. Gong, B. Yu, P. Li, S. Shen, Perfect thermal emission by nanoscale transmission line resonators. Nano Lett. 17, 666–672 (2017)PubMedCrossRef
112.
Zurück zum Zitat J.W. Cho, S.J. Park, S.J. Park, Y.B. Kim, Y.J. Moon, S.K. Kim, Cooling metals via gap plasmon resonance. Nano Lett. 21, 3974–3980 (2021)PubMedCrossRef J.W. Cho, S.J. Park, S.J. Park, Y.B. Kim, Y.J. Moon, S.K. Kim, Cooling metals via gap plasmon resonance. Nano Lett. 21, 3974–3980 (2021)PubMedCrossRef
113.
Zurück zum Zitat J. Li, B. Yu, S. Shen, Scale law of far-field thermal radiation from plasmonic metasurfaces. Phys. Rev. Lett. 124 (2020) J. Li, B. Yu, S. Shen, Scale law of far-field thermal radiation from plasmonic metasurfaces. Phys. Rev. Lett. 124 (2020)
114.
Zurück zum Zitat A.C. Overvig, S.A. Mann, A. Alù, Thermal metasurfaces: complete emission control by combining local and nonlocal light-matter interactions. Phys. Rev. X 11 (2021) A.C. Overvig, S.A. Mann, A. Alù, Thermal metasurfaces: complete emission control by combining local and nonlocal light-matter interactions. Phys. Rev. X 11 (2021)
115.
Zurück zum Zitat J. Li, J. Wuenschell, Z. Li, S. Bera, K. Liu, R. Tang, H. Du, P.R. Ohodnicki, S. Shen, Fiber coupled near-field thermoplasmonic emission from gold nanorods at 1100 K. Small 17, 2007274 (2021)CrossRef J. Li, J. Wuenschell, Z. Li, S. Bera, K. Liu, R. Tang, H. Du, P.R. Ohodnicki, S. Shen, Fiber coupled near-field thermoplasmonic emission from gold nanorods at 1100 K. Small 17, 2007274 (2021)CrossRef
116.
Zurück zum Zitat A.B. Taylor, A.M. Siddiquee, J.W.M. Chon, Below melting point photothermal reshaping of single gold nanorods driven by surface diffusion. ACS Nano 8, 12071–12079 (2014)PubMedCrossRef A.B. Taylor, A.M. Siddiquee, J.W.M. Chon, Below melting point photothermal reshaping of single gold nanorods driven by surface diffusion. ACS Nano 8, 12071–12079 (2014)PubMedCrossRef
117.
Zurück zum Zitat G. Gonzalez-Rubio, A. Guerrero-Martinez, L.M. Liz-Marzan, Reshaping, fragmentation, and assembly of gold nanoparticles assisted by pulse lasers. Acc. Chem. Res. 49, 678–686 (2016)PubMedPubMedCentralCrossRef G. Gonzalez-Rubio, A. Guerrero-Martinez, L.M. Liz-Marzan, Reshaping, fragmentation, and assembly of gold nanoparticles assisted by pulse lasers. Acc. Chem. Res. 49, 678–686 (2016)PubMedPubMedCentralCrossRef
118.
Zurück zum Zitat D. Dalacu, L. Martinu, Temperature dependence of the surface plasmon resonance of Au/SiO2 nanocomposite films. Appl. Phys. Lett. 77, 4283–4285 (2000)CrossRef D. Dalacu, L. Martinu, Temperature dependence of the surface plasmon resonance of Au/SiO2 nanocomposite films. Appl. Phys. Lett. 77, 4283–4285 (2000)CrossRef
119.
Zurück zum Zitat T. Krekeler, S.S. Rout, G.V. Krishnamurthy, M. Störmer, M. Arya, A. Ganguly, D.S. Sutherland, S.I. Bozhevolnyi, M. Ritter, K. Pedersen, A.Y. Petrov, M. Eich, M. Chirumamilla, Unprecedented thermal stability of plasmonic titanium nitride films up to 1400 °C. Adv. Opt. Mater. 2100323 (2021) T. Krekeler, S.S. Rout, G.V. Krishnamurthy, M. Störmer, M. Arya, A. Ganguly, D.S. Sutherland, S.I. Bozhevolnyi, M. Ritter, K. Pedersen, A.Y. Petrov, M. Eich, M. Chirumamilla, Unprecedented thermal stability of plasmonic titanium nitride films up to 1400 °C. Adv. Opt. Mater. 2100323 (2021)
120.
Zurück zum Zitat Y. Li, C. Lin, Z. Wu, Z. Chen, C. Chi, F. Cao, D. Mei, H. Yan, C.Y. Tso, C.Y.H. Chao, B. Huang, Solution-processed all-ceramic plasmonic metamaterials for efficient solar-thermal conversion over 100–727 °C. Adv. Mater. 33, e2005074 (2021) Y. Li, C. Lin, Z. Wu, Z. Chen, C. Chi, F. Cao, D. Mei, H. Yan, C.Y. Tso, C.Y.H. Chao, B. Huang, Solution-processed all-ceramic plasmonic metamaterials for efficient solar-thermal conversion over 100–727 °C. Adv. Mater. 33, e2005074 (2021)
121.
Zurück zum Zitat H.H. Richardson, Z.N. Hickman, A.O. Govorov, A.C. Thomas, W. Zhang, M.E. Kordesch, Thermooptical properties of gold nanoparticles embedded in Ice: characterization of heat generation and melting. Nano Lett. 6, 783–788 (2006)PubMedCrossRef H.H. Richardson, Z.N. Hickman, A.O. Govorov, A.C. Thomas, W. Zhang, M.E. Kordesch, Thermooptical properties of gold nanoparticles embedded in Ice: characterization of heat generation and melting. Nano Lett. 6, 783–788 (2006)PubMedCrossRef
122.
Zurück zum Zitat F. Meder, G.A. Naselli, A. Sadeghi, B. Mazzolai, Remotely light-powered soft fluidic actuators based on plasmonic-driven phase transitions in elastic constraint. Adv. Mater. 31, 1905671 (2019)CrossRef F. Meder, G.A. Naselli, A. Sadeghi, B. Mazzolai, Remotely light-powered soft fluidic actuators based on plasmonic-driven phase transitions in elastic constraint. Adv. Mater. 31, 1905671 (2019)CrossRef
123.
Zurück zum Zitat M.S. Zielinski, J.W. Choi, T. La Grange, M. Modestino, S.M. Hashemi, Y. Pu, S. Birkhold, J.A. Hubbell, D. Psaltis, Hollow mesoporous plasmonic nanoshells for enhanced solar vapor generation. Nano Lett. 16, 2159–2167 (2016)PubMedCrossRef M.S. Zielinski, J.W. Choi, T. La Grange, M. Modestino, S.M. Hashemi, Y. Pu, S. Birkhold, J.A. Hubbell, D. Psaltis, Hollow mesoporous plasmonic nanoshells for enhanced solar vapor generation. Nano Lett. 16, 2159–2167 (2016)PubMedCrossRef
124.
Zurück zum Zitat S. Jones, D. Andren, T.J. Antosiewicz, M. Kall, Ultrafast modulation of thermoplasmonic nanobubbles in water. Nano Lett. 19, 8294–8302 (2019)PubMedCrossRef S. Jones, D. Andren, T.J. Antosiewicz, M. Kall, Ultrafast modulation of thermoplasmonic nanobubbles in water. Nano Lett. 19, 8294–8302 (2019)PubMedCrossRef
125.
Zurück zum Zitat K. Metwally, S. Mensah, G. Baffou, Fluence Threshold for photothermal bubble generation using plasmonic nanoparticles. J. Phys. Chem. C 119, 28586–28596 (2015)CrossRef K. Metwally, S. Mensah, G. Baffou, Fluence Threshold for photothermal bubble generation using plasmonic nanoparticles. J. Phys. Chem. C 119, 28586–28596 (2015)CrossRef
126.
Zurück zum Zitat S. Jones, D. Andren, T.J. Antosiewicz, A. Stilgoe, H. Rubinsztein-Dunlop, M. Kall, Strong transient flows generated by Thermoplasmonic bubble nucleation. ACS Nano (2020) S. Jones, D. Andren, T.J. Antosiewicz, A. Stilgoe, H. Rubinsztein-Dunlop, M. Kall, Strong transient flows generated by Thermoplasmonic bubble nucleation. ACS Nano (2020)
127.
Zurück zum Zitat Y. Wang, M.E. Zaytsev, G. Lajoinie, H.L. The, J.C.T. Eijkel, A. van den Berg, M. Versluis, B.M. Weckhuysen, X. Zhang, H.J.W. Zandvliet, D. Lohse, Giant and explosive plasmonic bubbles by delayed nucleation. Proc. Natl. Acad. Sci. 115, 7676–7681 (2018)PubMedPubMedCentralCrossRef Y. Wang, M.E. Zaytsev, G. Lajoinie, H.L. The, J.C.T. Eijkel, A. van den Berg, M. Versluis, B.M. Weckhuysen, X. Zhang, H.J.W. Zandvliet, D. Lohse, Giant and explosive plasmonic bubbles by delayed nucleation. Proc. Natl. Acad. Sci. 115, 7676–7681 (2018)PubMedPubMedCentralCrossRef
128.
Zurück zum Zitat Z. Fang, Y.R. Zhen, O. Neumann, A. Polman, F.J. Garcia de Abajo, P. Nordlander, N.J. Halas, Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle. Nano Lett. 13, 1736–1742 (2013)PubMedPubMedCentralCrossRef Z. Fang, Y.R. Zhen, O. Neumann, A. Polman, F.J. Garcia de Abajo, P. Nordlander, N.J. Halas, Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle. Nano Lett. 13, 1736–1742 (2013)PubMedPubMedCentralCrossRef
129.
Zurück zum Zitat O. Neumann, A.S. Urban, J. Day, S. Lal, P. Nordlander, N.J. Halas, Solar vapor generation enabled by nanoparticles. ACS Nano 7, 42–49 (2013)PubMedCrossRef O. Neumann, A.S. Urban, J. Day, S. Lal, P. Nordlander, N.J. Halas, Solar vapor generation enabled by nanoparticles. ACS Nano 7, 42–49 (2013)PubMedCrossRef
130.
Zurück zum Zitat Y. Wang, M.E. Zaytsev, H.L. The, J.C. Eijkel, H.J. Zandvliet, X. Zhang, D. Lohse, Vapor and gas-bubble growth dynamics around laser-irradiated, water-immersed plasmonic nanoparticles. ACS Nano 11, 2045–2051 (2017)PubMedCrossRef Y. Wang, M.E. Zaytsev, H.L. The, J.C. Eijkel, H.J. Zandvliet, X. Zhang, D. Lohse, Vapor and gas-bubble growth dynamics around laser-irradiated, water-immersed plasmonic nanoparticles. ACS Nano 11, 2045–2051 (2017)PubMedCrossRef
131.
Zurück zum Zitat Y. Zhang, A. Prosperetti, Dynamics, heat and mass transfer of a plasmonic bubble on a solid surface. Int. J. Heat Mass Transf. 167, 120814 (2021)CrossRef Y. Zhang, A. Prosperetti, Dynamics, heat and mass transfer of a plasmonic bubble on a solid surface. Int. J. Heat Mass Transf. 167, 120814 (2021)CrossRef
132.
Zurück zum Zitat L. Hou, M. Yorulmaz, N.R. Verhart, M. Orrit, Explosive formation and dynamics of vapor nanobubbles around a continuously heated gold nanosphere. New J. Phys. 17, 013050 (2015)CrossRef L. Hou, M. Yorulmaz, N.R. Verhart, M. Orrit, Explosive formation and dynamics of vapor nanobubbles around a continuously heated gold nanosphere. New J. Phys. 17, 013050 (2015)CrossRef
133.
Zurück zum Zitat A.N. Volkov, C. Sevilla, L.V. Zhigilei, Numerical modeling of short pulse laser interaction with Au nanoparticle surrounded by water. Appl. Surf. Sci. 253, 6394–6399 (2007)CrossRef A.N. Volkov, C. Sevilla, L.V. Zhigilei, Numerical modeling of short pulse laser interaction with Au nanoparticle surrounded by water. Appl. Surf. Sci. 253, 6394–6399 (2007)CrossRef
134.
Zurück zum Zitat F. Magaletti, L. Marino, C.M. Casciola, Shock wave formation in the collapse of a vapor nanobubble. Phys. Rev. Lett. 114 (2015) F. Magaletti, L. Marino, C.M. Casciola, Shock wave formation in the collapse of a vapor nanobubble. Phys. Rev. Lett. 114 (2015)
135.
Zurück zum Zitat A. Dagallier, E. Boulais, C. Boutopoulos, R. Lachaine, M. Meunier, Multiscale modeling of plasmonic enhanced energy transfer and cavitation around laser-excited nanoparticles. Nanoscale 9, 3023–3032 (2017)PubMedCrossRef A. Dagallier, E. Boulais, C. Boutopoulos, R. Lachaine, M. Meunier, Multiscale modeling of plasmonic enhanced energy transfer and cavitation around laser-excited nanoparticles. Nanoscale 9, 3023–3032 (2017)PubMedCrossRef
136.
Zurück zum Zitat L. Wang, Y. Feng, K. Wang, G. Liu, Solar water sterilization enabled by photothermal nanomaterials. Nano Energy 87, 106158 (2021)CrossRef L. Wang, Y. Feng, K. Wang, G. Liu, Solar water sterilization enabled by photothermal nanomaterials. Nano Energy 87, 106158 (2021)CrossRef
137.
Zurück zum Zitat H. Sipova-Jungova, D. Andren, S. Jones, M. Kall, Nanoscale inorganic motors driven by light: principles, realizations, and opportunities. Chem. Rev. 120, 269–287 (2020)PubMedCrossRef H. Sipova-Jungova, D. Andren, S. Jones, M. Kall, Nanoscale inorganic motors driven by light: principles, realizations, and opportunities. Chem. Rev. 120, 269–287 (2020)PubMedCrossRef
138.
Zurück zum Zitat I. Buttinoni, G. Volpe, F. Kümmel, G. Volpe, C. Bechinger, Active brownian motion tunable by light. J. Phys. Condens. Matter 24, 284129 (2012)PubMedCrossRef I. Buttinoni, G. Volpe, F. Kümmel, G. Volpe, C. Bechinger, Active brownian motion tunable by light. J. Phys. Condens. Matter 24, 284129 (2012)PubMedCrossRef
139.
Zurück zum Zitat B. ten Hagen, S. van Teeffelen, H. Löwen, Brownian motion of a self-propelled particle. J. Phys. Condens. Matter 23, 194119 (2011)PubMedCrossRef B. ten Hagen, S. van Teeffelen, H. Löwen, Brownian motion of a self-propelled particle. J. Phys. Condens. Matter 23, 194119 (2011)PubMedCrossRef
140.
Zurück zum Zitat B. Ciraulo, J. Garcia-Guirado, I. de Miguel, J. Ortega Arroyo, R. Quidant, Long-range optofluidic control with plasmon heating. Nature communications 12 (2021) B. Ciraulo, J. Garcia-Guirado, I. de Miguel, J. Ortega Arroyo, R. Quidant, Long-range optofluidic control with plasmon heating. Nature communications 12 (2021)
141.
Zurück zum Zitat L. Lin, X. Peng, M. Wang, L. Scarabelli, Z. Mao, L.M. Liz-Marzan, M.F. Becker, Y. Zheng, Light-directed reversible assembly of plasmonic nanoparticles using plasmon-enhanced thermophoresis. ACS Nano 10, 9659–9668 (2016)PubMedCrossRef L. Lin, X. Peng, M. Wang, L. Scarabelli, Z. Mao, L.M. Liz-Marzan, M.F. Becker, Y. Zheng, Light-directed reversible assembly of plasmonic nanoparticles using plasmon-enhanced thermophoresis. ACS Nano 10, 9659–9668 (2016)PubMedCrossRef
142.
Zurück zum Zitat Z. Chen, P.S. Kollipara, H. Ding, A. Pughazhendi, Y. Zheng, Liquid optothermoelectrics: fundamentals and applications. Langmuir ACS J. Surf. Colloids 37, 1315–1336 (2021)CrossRef Z. Chen, P.S. Kollipara, H. Ding, A. Pughazhendi, Y. Zheng, Liquid optothermoelectrics: fundamentals and applications. Langmuir ACS J. Surf. Colloids 37, 1315–1336 (2021)CrossRef
143.
144.
Zurück zum Zitat L. Lin, M. Wang, X. Peng, E.N. Lissek, Z. Mao, L. Scarabelli, E. Adkins, S. Coskun, H.E. Unalan, B.A. Korgel, L.M. Liz-Marzan, E.L. Florin, Y. Zheng, Opto-thermoelectric nanotweezers. Nat. Photonics 12, 195–201 (2018)PubMedPubMedCentralCrossRef L. Lin, M. Wang, X. Peng, E.N. Lissek, Z. Mao, L. Scarabelli, E. Adkins, S. Coskun, H.E. Unalan, B.A. Korgel, L.M. Liz-Marzan, E.L. Florin, Y. Zheng, Opto-thermoelectric nanotweezers. Nat. Photonics 12, 195–201 (2018)PubMedPubMedCentralCrossRef
145.
Zurück zum Zitat J. Gargiulo, T. Brick, I.L. Violi, F.C. Herrera, T. Shibanuma, P. Albella, F.G. Requejo, E. Cortés, S.A. Maier, F.D. Stefani, Understanding and reducing photothermal forces for the fabrication of Au nanoparticle dimers by optical printing. Nano Lett. 17, 5747–5755 (2017)PubMedCrossRef J. Gargiulo, T. Brick, I.L. Violi, F.C. Herrera, T. Shibanuma, P. Albella, F.G. Requejo, E. Cortés, S.A. Maier, F.D. Stefani, Understanding and reducing photothermal forces for the fabrication of Au nanoparticle dimers by optical printing. Nano Lett. 17, 5747–5755 (2017)PubMedCrossRef
146.
Zurück zum Zitat B.J. Roxworthy, A.M. Bhuiya, S.P. Vanka, K.C. Toussaint Jr., Understanding and controlling plasmon-induced convection. Nat. Commun. 5, 3173 (2014)PubMedCrossRef B.J. Roxworthy, A.M. Bhuiya, S.P. Vanka, K.C. Toussaint Jr., Understanding and controlling plasmon-induced convection. Nat. Commun. 5, 3173 (2014)PubMedCrossRef
147.
Zurück zum Zitat M. Mittasch, P. Gross, M. Nestler, A.W. Fritsch, C. Iserman, M. Kar, M. Munder, A. Voigt, S. Alberti, S.W. Grill, M. Kreysing, Non-invasive perturbations of intracellular flow reveal physical principles of cell organization. Nat. Cell Biol. 20, 344–351 (2018)PubMedCrossRef M. Mittasch, P. Gross, M. Nestler, A.W. Fritsch, C. Iserman, M. Kar, M. Munder, A. Voigt, S. Alberti, S.W. Grill, M. Kreysing, Non-invasive perturbations of intracellular flow reveal physical principles of cell organization. Nat. Cell Biol. 20, 344–351 (2018)PubMedCrossRef
148.
Zurück zum Zitat F.C. Martin Fränzl, Hydrodynamic Manipulation of Nano-objects by Thermo-Osmotic Flows. Cornell University (2021) F.C. Martin Fränzl, Hydrodynamic Manipulation of Nano-objects by Thermo-Osmotic Flows. Cornell University (2021)
149.
Zurück zum Zitat S. Linic, P. Christopher, D.B. Ingram, Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 10, 911–921 (2011)PubMedCrossRef S. Linic, P. Christopher, D.B. Ingram, Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 10, 911–921 (2011)PubMedCrossRef
150.
Zurück zum Zitat Z.J. Wang, H. Song, H. Liu, J. Ye, Coupling of solar energy and thermal energy for carbon dioxide reduction: status and prospects. Angew. Chem. 59, 8016–8035 (2020)CrossRef Z.J. Wang, H. Song, H. Liu, J. Ye, Coupling of solar energy and thermal energy for carbon dioxide reduction: status and prospects. Angew. Chem. 59, 8016–8035 (2020)CrossRef
151.
Zurück zum Zitat G. Baffou, I. Bordacchini, A. Baldi, R. Quidant, Simple experimental procedures to distinguish photothermal from hot-carrier processes in plasmonics. Light Sci. Appl. 9 (2020) G. Baffou, I. Bordacchini, A. Baldi, R. Quidant, Simple experimental procedures to distinguish photothermal from hot-carrier processes in plasmonics. Light Sci. Appl. 9 (2020)
152.
Zurück zum Zitat Y. Zhang, S. He, W. Guo, Y. Hu, J. Huang, J.R. Mulcahy, W.D. Wei, Surface-plasmon-driven hot electron photochemistry. Chem. Rev. 118, 2927–2954 (2018)PubMedCrossRef Y. Zhang, S. He, W. Guo, Y. Hu, J. Huang, J.R. Mulcahy, W.D. Wei, Surface-plasmon-driven hot electron photochemistry. Chem. Rev. 118, 2927–2954 (2018)PubMedCrossRef
153.
Zurück zum Zitat C. Zhan, Q.X. Wang, J. Yi, L. Chen, D.Y. Wu, Y. Wang, Z.X. Xie, M. Moskovits, Z.Q. Tian, Plasmonic nanoreactors regulating selective oxidation by energetic electrons and nanoconfined thermal fields. Sci. Adv. 7, eabf0962 (2021) C. Zhan, Q.X. Wang, J. Yi, L. Chen, D.Y. Wu, Y. Wang, Z.X. Xie, M. Moskovits, Z.Q. Tian, Plasmonic nanoreactors regulating selective oxidation by energetic electrons and nanoconfined thermal fields. Sci. Adv. 7, eabf0962 (2021)
154.
Zurück zum Zitat J. Li, S.K. Cushing, F. Meng, T.R. Senty, A.D. Bristow, N. Wu, Plasmon-induced resonance energy transfer for solar energy conversion. Nat. Photonics 9, 601–607 (2015)CrossRef J. Li, S.K. Cushing, F. Meng, T.R. Senty, A.D. Bristow, N. Wu, Plasmon-induced resonance energy transfer for solar energy conversion. Nat. Photonics 9, 601–607 (2015)CrossRef
156.
Zurück zum Zitat L. Zhou, D.F. Swearer, C. Zhang, H. Robatjazi, H. Zhao, L. Henderson, L. Dong, P. Christopher, E.A. Carter, P. Nordlander, N.J. Halas, Quantifying hot carrier and thermal contributions in plasmonic photocatalysis. Science 362, 69–72 (2018)PubMedCrossRef L. Zhou, D.F. Swearer, C. Zhang, H. Robatjazi, H. Zhao, L. Henderson, L. Dong, P. Christopher, E.A. Carter, P. Nordlander, N.J. Halas, Quantifying hot carrier and thermal contributions in plasmonic photocatalysis. Science 362, 69–72 (2018)PubMedCrossRef
157.
Zurück zum Zitat Z. Zhang, C. Zhang, H. Zheng, H. Xu, Plasmon-driven catalysis on molecules and nanomaterials. Acc. Chem. Res. 52, 2506–2515 (2019)PubMedCrossRef Z. Zhang, C. Zhang, H. Zheng, H. Xu, Plasmon-driven catalysis on molecules and nanomaterials. Acc. Chem. Res. 52, 2506–2515 (2019)PubMedCrossRef
158.
Zurück zum Zitat C. Zhan, M. Moskovits, Z.Q. Tian, Recent progress and prospects in plasmon-mediated chemical reaction. Matter 3, 42–56 (2020)CrossRef C. Zhan, M. Moskovits, Z.Q. Tian, Recent progress and prospects in plasmon-mediated chemical reaction. Matter 3, 42–56 (2020)CrossRef
159.
Zurück zum Zitat U. Aslam, V.G. Rao, S. Chavez, S. Linic, Catalytic conversion of solar to chemical energy on plasmonic metal nanostructures. Nat. Catal. 1, 656–665 (2018)CrossRef U. Aslam, V.G. Rao, S. Chavez, S. Linic, Catalytic conversion of solar to chemical energy on plasmonic metal nanostructures. Nat. Catal. 1, 656–665 (2018)CrossRef
160.
Zurück zum Zitat S. Linic, U. Aslam, C. Boerigter, M. Morabito, Photochemical transformations on plasmonic metal nanoparticles. Nat. Mater. 14, 567–576 (2015)PubMedCrossRef S. Linic, U. Aslam, C. Boerigter, M. Morabito, Photochemical transformations on plasmonic metal nanoparticles. Nat. Mater. 14, 567–576 (2015)PubMedCrossRef
161.
Zurück zum Zitat J.M.P. Martirez, J.L. Bao, E.A. Carter, First-principles Insights into plasmon-induced catalysis. Annu. Rev. Phys. Chem. 72, 99–119 (2021)PubMedCrossRef J.M.P. Martirez, J.L. Bao, E.A. Carter, First-principles Insights into plasmon-induced catalysis. Annu. Rev. Phys. Chem. 72, 99–119 (2021)PubMedCrossRef
162.
Zurück zum Zitat E. Kazuma, J. Jung, H. Ueba, M. Trenary, Y. Kim, Real-space and real-time observation of a plasmon-induced chemical reaction of a single molecule. Science 360, 521–526 (2018)PubMedCrossRef E. Kazuma, J. Jung, H. Ueba, M. Trenary, Y. Kim, Real-space and real-time observation of a plasmon-induced chemical reaction of a single molecule. Science 360, 521–526 (2018)PubMedCrossRef
163.
Zurück zum Zitat J.W. Hong, D.H. Wi, S.U. Lee, S.W. Han, Metal-semiconductor heteronanocrystals with desired configurations for plasmonic photocatalysis. J. Am. Chem. Soc. 138, 15766–15773 (2016)PubMedCrossRef J.W. Hong, D.H. Wi, S.U. Lee, S.W. Han, Metal-semiconductor heteronanocrystals with desired configurations for plasmonic photocatalysis. J. Am. Chem. Soc. 138, 15766–15773 (2016)PubMedCrossRef
164.
Zurück zum Zitat J.A. Tomko, E.L. Runnerstrom, Y.S. Wang, W. Chu, J.R. Nolen, D.H. Olson, K.P. Kelley, A. Cleri, J. Nordlander, J.D. Caldwell, O.V. Prezhdo, J.P. Maria, P.E. Hopkins, Long-lived modulation of plasmonic absorption by ballistic thermal injection. Nat. Nanotechnol. 16, 47–51 (2021)PubMedCrossRef J.A. Tomko, E.L. Runnerstrom, Y.S. Wang, W. Chu, J.R. Nolen, D.H. Olson, K.P. Kelley, A. Cleri, J. Nordlander, J.D. Caldwell, O.V. Prezhdo, J.P. Maria, P.E. Hopkins, Long-lived modulation of plasmonic absorption by ballistic thermal injection. Nat. Nanotechnol. 16, 47–51 (2021)PubMedCrossRef
165.
Zurück zum Zitat K. Wu, J. Chen, J.R. McBride, T. Lian, Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition. Science 349, 632–635 (2015)PubMedCrossRef K. Wu, J. Chen, J.R. McBride, T. Lian, Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition. Science 349, 632–635 (2015)PubMedCrossRef
166.
Zurück zum Zitat M. Wang, M. Ye, J. Iocozzia, C. Lin, Z. Lin, Plasmon-mediated solar energy conversion via photocatalysis in noble metal/semiconductor composites. Adv Sci (Weinh) 3, 1600024 (2016)PubMedCrossRef M. Wang, M. Ye, J. Iocozzia, C. Lin, Z. Lin, Plasmon-mediated solar energy conversion via photocatalysis in noble metal/semiconductor composites. Adv Sci (Weinh) 3, 1600024 (2016)PubMedCrossRef
167.
Zurück zum Zitat P. Christopher, M. Moskovits, Hot charge carrier transmission from plasmonic nanostructures. Annu. Rev. Phys. Chem. 68, 379–398 (2017) P. Christopher, M. Moskovits, Hot charge carrier transmission from plasmonic nanostructures. Annu. Rev. Phys. Chem. 68, 379–398 (2017)
Metadaten
Titel
Fundamental Principles of Thermoplasmonics
verfasst von
Guohua Liu
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-8332-8_2