Skip to main content
Erschienen in:

2022 | OriginalPaper | Buchkapitel

1. Fundamentals and Design Guides for Printed Flexible Electronics

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Three-dimensional (3D) printing, known as additive manufacturing, includes a family of technologies consisting of novel ink materials, flexible substrates, and unique processing methods that can be integrated to create flexible, stretchable, and wearable electronics. These technologies can be used to fabricate components and full systems mainly in a layer-by-layer manner and offer various options regarding cost, feature details, and organic and inorganic materials. The most popular materials are printable organic, inorganic, and hybrid semiconductors with various functional structures (i.e., 1D, 2D and 3D, even 4D), including polymers, metals, composites, ceramics, and nanomaterials. 3D printing enables the creation of complex geometric shapes and merging of selected functional components into any configuration thus supplying an innovative approach for the fabrication of multifunctional end-use devices that can potentially combine mechanical, optical, chemical, electronic, electromagnetic, fluidic, thermal, and acoustic features. On the other hand, rapid advances in modern electronics place ever-accelerating demands on innovation towards more robust and versatile functional components. In the flexible electronics domain, novel material solutions often involve creative uses of common materials to reduce cost, while maintaining uncompromised performance. Moreover, mechanically durable and highly stretchable materials are fundamentally important to the development of flexible and stretchable devices. Therefore, there has been enormous progress in the materials, designs, and associated assembly techniques as well as manufacturing processes for flexible/stretchable electronic systems and subcomponents, such as transistors, amplifiers, sensors, actuators, light-emitting diodes, photodetector arrays, photovoltaics, energy generation and storage devices, and bare die integrated circuits. This chapter will highlight the fundamentals and design guides for 3D-printed flexible electronics, including historical perspectives, printing requirements for printable materials, design strategies, and advanced fabrication technologies for printed flexible electronics.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Annett J, Cross GL (2016) Self-assembly of graphene ribbons by spontaneous self-tearing and peeling from a substrate. Nature 535:271–275CrossRef Annett J, Cross GL (2016) Self-assembly of graphene ribbons by spontaneous self-tearing and peeling from a substrate. Nature 535:271–275CrossRef
Zurück zum Zitat Armillotta A (2006) Assessment of surface quality on textured FDM prototypes. Rapid Prototyp J 12:35–41CrossRef Armillotta A (2006) Assessment of surface quality on textured FDM prototypes. Rapid Prototyp J 12:35–41CrossRef
Zurück zum Zitat Blaiszik B, Kramer S, Olugebefola S, Morre JS, Scottos NR, White SR (2010) Self-healing polymers and composites. Ann Rev Mater Res 40:179–211 Blaiszik B, Kramer S, Olugebefola S, Morre JS, Scottos NR, White SR (2010) Self-healing polymers and composites. Ann Rev Mater Res 40:179–211
Zurück zum Zitat Chae SH, Yu WJ, Bae JJ, Duong DL, Perello D, Jeong HY, Ta QH, Ly TH, Vu QA, Yun M, Duan X, Lee YH (2013) Transferred wrinkled Al2O3 for highly stretchable and transparent graphene-carbon nanotube transistors. Nat Mater 12(5):403–409CrossRef Chae SH, Yu WJ, Bae JJ, Duong DL, Perello D, Jeong HY, Ta QH, Ly TH, Vu QA, Yun M, Duan X, Lee YH (2013) Transferred wrinkled Al2O3 for highly stretchable and transparent graphene-carbon nanotube transistors. Nat Mater 12(5):403–409CrossRef
Zurück zum Zitat Chaney RL, Hackler DR, Wilson DG, Brian N (2013) Meek FleX™ Silicon-on-Polymer™: flexible (pliable) ICs from commercial foundry processes. http://www.americansemi.com/uploads/8/5/5/7/85579512/gomac2013_31.2.pdf. Accessed 8 Feb 2018 Chaney RL, Hackler DR, Wilson DG, Brian N (2013) Meek FleX™ Silicon-on-Polymer™: flexible (pliable) ICs from commercial foundry processes. http://​www.​americansemi.​com/​uploads/​8/​5/​5/​7/​85579512/​gomac2013_​31.​2.​pdf.​ Accessed 8 Feb 2018
Zurück zum Zitat Chang J, He J, Mao M, Zhou W, Lei Q, Li X, Li D, Chua C-K, Zhao X (2018) Advanced material strategies for next-generation additive manufacturing. Materials 11:166CrossRef Chang J, He J, Mao M, Zhou W, Lei Q, Li X, Li D, Chua C-K, Zhao X (2018) Advanced material strategies for next-generation additive manufacturing. Materials 11:166CrossRef
Zurück zum Zitat Choi S, Lee H, Ghaffari R, Hyeon T, Kim D-H (2016) Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials. Adv Mater 28(22):4203–4218CrossRef Choi S, Lee H, Ghaffari R, Hyeon T, Kim D-H (2016) Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials. Adv Mater 28(22):4203–4218CrossRef
Zurück zum Zitat Coombs CF (1996) Printed circuits handbook. McGraw-Hill, New York Coombs CF (1996) Printed circuits handbook. McGraw-Hill, New York
Zurück zum Zitat Dang W, Vinciguerra V, Lorenzelli L, Dahiya R (2017) Printable stretchable interconnects. Flex Print Electron 2:013003CrossRef Dang W, Vinciguerra V, Lorenzelli L, Dahiya R (2017) Printable stretchable interconnects. Flex Print Electron 2:013003CrossRef
Zurück zum Zitat Daniel JH (2010) Printed electronics: technologies, challenges and applications. International workshop on flexible and printed electronics (IWFPE 10), Sept 8–10, Muju Resort, Korea Daniel JH (2010) Printed electronics: technologies, challenges and applications. International workshop on flexible and printed electronics (IWFPE 10), Sept 8–10, Muju Resort, Korea
Zurück zum Zitat Derby B (2010) Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution. Annu Rev Mater Res 40:395–414CrossRef Derby B (2010) Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution. Annu Rev Mater Res 40:395–414CrossRef
Zurück zum Zitat Eckstein R (2016) Aerosol jet printed electronic devices and systems. PhD dissertation, Karlsruhe Institute of Technology, Karlsruhe, Baden-Württemberg, Germany Eckstein R (2016) Aerosol jet printed electronic devices and systems. PhD dissertation, Karlsruhe Institute of Technology, Karlsruhe, Baden-Württemberg, Germany
Zurück zum Zitat Eom SH, Park H, Mujawar SH, Yoon SC, Kim S-S, Na S-I, Kang S-J, Khim D, Kim D-Y, Lee S-H (2010) High efficiency polymer solar cells via sequential inkjet-printing of PEDOT:PSS and P3HT:PCBM inks with additives. Org Electron 11:1516–1522CrossRef Eom SH, Park H, Mujawar SH, Yoon SC, Kim S-S, Na S-I, Kang S-J, Khim D, Kim D-Y, Lee S-H (2010) High efficiency polymer solar cells via sequential inkjet-printing of PEDOT:PSS and P3HT:PCBM inks with additives. Org Electron 11:1516–1522CrossRef
Zurück zum Zitat Fan JA, Yeo WH, Su Y, Hattori Y, Lee W, Jung SY, Zhang Y, Liu Z, Cheng H, Falgout L, Bajema M, Coleman T, Gregoire D, Larsen RJ, Huang Y, Rogers JA (2014) Fractal design concepts for stretchable electronics. Nat Commun 5:3266CrossRef Fan JA, Yeo WH, Su Y, Hattori Y, Lee W, Jung SY, Zhang Y, Liu Z, Cheng H, Falgout L, Bajema M, Coleman T, Gregoire D, Larsen RJ, Huang Y, Rogers JA (2014) Fractal design concepts for stretchable electronics. Nat Commun 5:3266CrossRef
Zurück zum Zitat Guo Y, Patanwala HS, Bognet B, Ma AWK (2017) Inkjet and inkjet-based 3D printing: connecting fluid properties and printing performance. Rapid Prototyp J 23(3):562–576CrossRef Guo Y, Patanwala HS, Bognet B, Ma AWK (2017) Inkjet and inkjet-based 3D printing: connecting fluid properties and printing performance. Rapid Prototyp J 23(3):562–576CrossRef
Zurück zum Zitat Hecht DS, Hu L, Irvin G (2011) Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv Mater 23:1482CrossRef Hecht DS, Hu L, Irvin G (2011) Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv Mater 23:1482CrossRef
Zurück zum Zitat Hu L, Hecht DS, Grüner G (2010) Carbon nanotube thin films: fabrication, properties, and applications. Chem Rev 110:5790CrossRef Hu L, Hecht DS, Grüner G (2010) Carbon nanotube thin films: fabrication, properties, and applications. Chem Rev 110:5790CrossRef
Zurück zum Zitat Huang W et al (2012) On-chip inductors with self-rolled-up SiNx nanomembrane tubes: a novel design platform for extreme miniaturization. Nano Lett 12:6283–6288CrossRef Huang W et al (2012) On-chip inductors with self-rolled-up SiNx nanomembrane tubes: a novel design platform for extreme miniaturization. Nano Lett 12:6283–6288CrossRef
Zurück zum Zitat Jones J, Lacour SP, Wagner S, Suo ZG (2004) Stretchable wavy metal interconnects. J Vac Sci Technol A 22(4):1723–1725CrossRef Jones J, Lacour SP, Wagner S, Suo ZG (2004) Stretchable wavy metal interconnects. J Vac Sci Technol A 22(4):1723–1725CrossRef
Zurück zum Zitat Kim S, Wu J, Carlson A, Jin SH, Kovalsky A, Glass P, Liu Z, Ahmed N, Elgan SL, Chen W, Ferreira PM, Sitti M, Huang Y, Rogers JA (2010) Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing. Proc Natl Acad Sci U S A 107(40):17095–17100CrossRef Kim S, Wu J, Carlson A, Jin SH, Kovalsky A, Glass P, Liu Z, Ahmed N, Elgan SL, Chen W, Ferreira PM, Sitti M, Huang Y, Rogers JA (2010) Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing. Proc Natl Acad Sci U S A 107(40):17095–17100CrossRef
Zurück zum Zitat Kim J, Kumar R, Bandodkar AJ, Wang J (2017) Advanced materials for printed wearable electrochemical devices: a review. Adv Electron Mater 3:1600260CrossRef Kim J, Kumar R, Bandodkar AJ, Wang J (2017) Advanced materials for printed wearable electrochemical devices: a review. Adv Electron Mater 3:1600260CrossRef
Zurück zum Zitat Ko H, Kapadia R, Takei K, Takahashi T, Zhang X, Javey A (2012) Multifunctional, flexible electronic systems based on engineered nanostructured materials. Nanotechnology 23(34):344001CrossRef Ko H, Kapadia R, Takei K, Takahashi T, Zhang X, Javey A (2012) Multifunctional, flexible electronic systems based on engineered nanostructured materials. Nanotechnology 23(34):344001CrossRef
Zurück zum Zitat Lee J, Kim H-C, Choi J-W, Lee IH (2017) A review on 3D printed smart devices for 4D printing. Int J Precis Eng Manuf Green Technol 4(3):373–383CrossRef Lee J, Kim H-C, Choi J-W, Lee IH (2017) A review on 3D printed smart devices for 4D printing. Int J Precis Eng Manuf Green Technol 4(3):373–383CrossRef
Zurück zum Zitat Ligon SC, Liska R, Stampfl J, Gurr M, Mülhaupt R (2017) Polymers for 3D printing and customized additive manufacturing. Chem Rev 117:10212–10290CrossRef Ligon SC, Liska R, Stampfl J, Gurr M, Mülhaupt R (2017) Polymers for 3D printing and customized additive manufacturing. Chem Rev 117:10212–10290CrossRef
Zurück zum Zitat Lipomi DJ, Vosgueritchian M, Tee BC-K, Fox CH, Lee JA, Bao ZN (2011) Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat Nanotechnol 6:788–792CrossRef Lipomi DJ, Vosgueritchian M, Tee BC-K, Fox CH, Lee JA, Bao ZN (2011) Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat Nanotechnol 6:788–792CrossRef
Zurück zum Zitat Lipomi DJ, Lee JA, Vosgueritchian M, Tee BC-K, Bolander JA, Bao ZN (2012) Electronic properties of transparent conductive films of PEDOT:PSS on stretchable substrates. Chem Mater 24:373–382CrossRef Lipomi DJ, Lee JA, Vosgueritchian M, Tee BC-K, Bolander JA, Bao ZN (2012) Electronic properties of transparent conductive films of PEDOT:PSS on stretchable substrates. Chem Mater 24:373–382CrossRef
Zurück zum Zitat Loo Y-L, Ng TN (2013) Flexible electronics. In: Frontiers of engineering reports on leading-edge engineering from the 2013 symposium. National Academies Press, Washington, DC, pp 111–112 Loo Y-L, Ng TN (2013) Flexible electronics. In: Frontiers of engineering reports on leading-edge engineering from the 2013 symposium. National Academies Press, Washington, DC, pp 111–112
Zurück zum Zitat Lopes AJ, Lee IH, MacDonald E, Quintana R, Wicker R (2014) Laser curing of silver-based conductive inks for in situ 3D structural electronics fabrication in stereolithography. J Mater Process Technol 214:1935–1945 Lopes AJ, Lee IH, MacDonald E, Quintana R, Wicker R (2014) Laser curing of silver-based conductive inks for in situ 3D structural electronics fabrication in stereolithography. J Mater Process Technol 214:1935–1945
Zurück zum Zitat Mark JE (1999) Polymer data handbook. Oxford University Press, Oxford, UK Mark JE (1999) Polymer data handbook. Oxford University Press, Oxford, UK
Zurück zum Zitat Maruo S, Fourkas JT (2008) Recent progress in multiphoton microfabrication. Laser Photonics Rev 2:100–111CrossRef Maruo S, Fourkas JT (2008) Recent progress in multiphoton microfabrication. Laser Photonics Rev 2:100–111CrossRef
Zurück zum Zitat Münzenrieder N, Cantarella G, Vogt C, Petti L, Büthe L, Salvatore GA, Fang Y, Andri R, Lam Y, Libanori R, Widner D, Studart AR, Tröster G (2015) Stretchable and conformable oxide thin-film electronics. Adv Electron Mater 1:1400038CrossRef Münzenrieder N, Cantarella G, Vogt C, Petti L, Büthe L, Salvatore GA, Fang Y, Andri R, Lam Y, Libanori R, Widner D, Studart AR, Tröster G (2015) Stretchable and conformable oxide thin-film electronics. Adv Electron Mater 1:1400038CrossRef
Zurück zum Zitat Nan K et al (2017) Engineered elastomer substrates for guided assembly of complex 3D mesostructures by spatially nonuniform compressive buckling. Adv Funct Mater 27:1604281CrossRef Nan K et al (2017) Engineered elastomer substrates for guided assembly of complex 3D mesostructures by spatially nonuniform compressive buckling. Adv Funct Mater 27:1604281CrossRef
Zurück zum Zitat Odom SA, Chayanupatkul S, Blaiszik BJ, Zhao O, Jackson AC, Braun PV, Sottos NR, White SR, Moore JS (2012) A self-healing conductive ink. Adv Mater 24:2578–2581CrossRef Odom SA, Chayanupatkul S, Blaiszik BJ, Zhao O, Jackson AC, Braun PV, Sottos NR, White SR, Moore JS (2012) A self-healing conductive ink. Adv Mater 24:2578–2581CrossRef
Zurück zum Zitat Oropallo W, Piegl LA (2016) Ten challenges in 3D printing. Eng Comput 32(1):135–148CrossRef Oropallo W, Piegl LA (2016) Ten challenges in 3D printing. Eng Comput 32(1):135–148CrossRef
Zurück zum Zitat Pandey PM, Reddy NV, Dhande SG (2003) Slicing procedures in layered manufacturing: a review. Rapid Prototyp J 9(5):274–288CrossRef Pandey PM, Reddy NV, Dhande SG (2003) Slicing procedures in layered manufacturing: a review. Rapid Prototyp J 9(5):274–288CrossRef
Zurück zum Zitat Printz AD, Savagatrup S, Burke DJ, Purdy TN, Lipomi DJ (2014) Increased elasticity of a low-bandgap conjugated copolymer by random segmentation for mechanically robust solar cells. RSC Adv 4:13635–13643CrossRef Printz AD, Savagatrup S, Burke DJ, Purdy TN, Lipomi DJ (2014) Increased elasticity of a low-bandgap conjugated copolymer by random segmentation for mechanically robust solar cells. RSC Adv 4:13635–13643CrossRef
Zurück zum Zitat Rim YS, Bae S-H, Chen H, Marco ND, Yang Y (2016) Recent progress in materials and devices toward printable and flexible sensors. Adv Mater 28:4415–4440CrossRef Rim YS, Bae S-H, Chen H, Marco ND, Yang Y (2016) Recent progress in materials and devices toward printable and flexible sensors. Adv Mater 28:4415–4440CrossRef
Zurück zum Zitat Sankir ND (2005) Flexible electronics: materials and device fabrication. PhD dissertation, Virginia Polytechnic Institute and State University, Blacksburg, Virginia Sankir ND (2005) Flexible electronics: materials and device fabrication. PhD dissertation, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
Zurück zum Zitat Savagatrup S, Printz AD, O’Connor TF, Zaretski AV, Lipomi DJ (2014) Molecularly stretchable electronics. Chem Mater 26(10):3028–3041CrossRef Savagatrup S, Printz AD, O’Connor TF, Zaretski AV, Lipomi DJ (2014) Molecularly stretchable electronics. Chem Mater 26(10):3028–3041CrossRef
Zurück zum Zitat Stoppa M, Chiolerio A (2014) Wearable electronics and smart textiles: a critical review. Sensors 14:11957–11992CrossRef Stoppa M, Chiolerio A (2014) Wearable electronics and smart textiles: a critical review. Sensors 14:11957–11992CrossRef
Zurück zum Zitat Suganuma K (2014) Introduction to printed electronics. Springer, New YorkCrossRef Suganuma K (2014) Introduction to printed electronics. Springer, New YorkCrossRef
Zurück zum Zitat Sun H-B, Kawata S (2004) Two-photon photopolymerization and 3D lithographic microfabrication. APS 170:169–273 Sun H-B, Kawata S (2004) Two-photon photopolymerization and 3D lithographic microfabrication. APS 170:169–273
Zurück zum Zitat Takahashi T, Takei K, Gillies AG, Fearing RS, Javey A (2011) Carbon nanotube active-matrix backplanes for conformal electronics and sensors. Nano Lett 11:5408–5413CrossRef Takahashi T, Takei K, Gillies AG, Fearing RS, Javey A (2011) Carbon nanotube active-matrix backplanes for conformal electronics and sensors. Nano Lett 11:5408–5413CrossRef
Zurück zum Zitat Tibbits S (2014) 4D printing: multi-material shape change. Archit Design 84:116–121CrossRef Tibbits S (2014) 4D printing: multi-material shape change. Archit Design 84:116–121CrossRef
Zurück zum Zitat Tong XC (2017) Functional metamaterials and metadevices. Springer, New York Tong XC (2017) Functional metamaterials and metadevices. Springer, New York
Zurück zum Zitat Trung TQ, Lee N-E (2017) Materials and devices for transparent stretchable electronics. J Mater Chem C 5:2202–2222CrossRef Trung TQ, Lee N-E (2017) Materials and devices for transparent stretchable electronics. J Mater Chem C 5:2202–2222CrossRef
Zurück zum Zitat Tumbleston JR, Shirvanyants D, Ermoshkin N, Janusziewicz R, Johnson AR, Kelly D, Chen K, Pinschmidt R, Rolland JP, Ermoshkin A, Samulski ET, DeSimone JM (2015) Continuous liquid interface production of 3D objects. Science 347:1349–1352CrossRef Tumbleston JR, Shirvanyants D, Ermoshkin N, Janusziewicz R, Johnson AR, Kelly D, Chen K, Pinschmidt R, Rolland JP, Ermoshkin A, Samulski ET, DeSimone JM (2015) Continuous liquid interface production of 3D objects. Science 347:1349–1352CrossRef
Zurück zum Zitat Wang Q, Sun J, Yao Q et al (2018) 3D printing with cellulose materials. Cellulose 25:4275–4301CrossRef Wang Q, Sun J, Yao Q et al (2018) 3D printing with cellulose materials. Cellulose 25:4275–4301CrossRef
Zurück zum Zitat Yang Y, Yang X, Tan Y, Yuan Q (2017) Recent progress in flexible and wearable bio-electronics based on nanomaterials. Nano Res 10(5):1560–1583CrossRef Yang Y, Yang X, Tan Y, Yuan Q (2017) Recent progress in flexible and wearable bio-electronics based on nanomaterials. Nano Res 10(5):1560–1583CrossRef
Zurück zum Zitat Yang H, Leow WR, Chen X (2018) 3D printing of flexible electronic devices. Small Methods 2:1700259CrossRef Yang H, Leow WR, Chen X (2018) 3D printing of flexible electronic devices. Small Methods 2:1700259CrossRef
Zurück zum Zitat Zhang Y, Zhang F, Yan Z, Ma Q, Li X, Huang Y, Rogers JA (2017) Printing, folding and assembly methods for forming 3D mesostructures in advanced materials. Nat Rev 2(4):17019 Zhang Y, Zhang F, Yan Z, Ma Q, Li X, Huang Y, Rogers JA (2017) Printing, folding and assembly methods for forming 3D mesostructures in advanced materials. Nat Rev 2(4):17019
Zurück zum Zitat Zheng X, Smith W, Jackson J, Moran B, Cui H, Chen D, Spadaccini CM (2016) Multiscale metallic metamaterials. Nat Mater 15:1100–1106CrossRef Zheng X, Smith W, Jackson J, Moran B, Cui H, Chen D, Spadaccini CM (2016) Multiscale metallic metamaterials. Nat Mater 15:1100–1106CrossRef
Zurück zum Zitat Zocchi G (2016) New developments in 3D printing of composites: photocurable resins for UV-assisted processes. Master thesis, Polytechnic University of Milan, Milan, Italy Zocchi G (2016) New developments in 3D printing of composites: photocurable resins for UV-assisted processes. Master thesis, Polytechnic University of Milan, Milan, Italy
Metadaten
Titel
Fundamentals and Design Guides for Printed Flexible Electronics
verfasst von
Colin Tong
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-030-79804-8_1