Skip to main content

2021 | OriginalPaper | Buchkapitel

10. Fundamentals of Bonding Technology and Process Materials for 2.5/3D Packages

verfasst von : Sangil Lee

Erschienen in: 3D Microelectronic Packaging

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A few leading semiconductors recently released high performance products adopting 3-dimensional (3D) packaging technology moved to the forefront in the electronic packaging industry in order to meet the requirements of device performance and form factor driven by consumer electronics trends. Even after 3D commercial products were produced into electronic markets, the leading companies still struggle to demonstrate a competitive 3D packaging assembly process compared to traditional packaging assembly process. In the 3D packaging process, bonding technology among technical challenges is most problematic. The in situ bonding technology referred to as Thermal Compression Bonding (TCB), typically controls force, temperature, and displacement simultaneously, which are applied to packages when to reflow microbump solder interconnect of 3D TSV die. Using the in situ bonding technology, a bonding cycle can be completed in several seconds, which means that bonding equipment and process materials sustain heavy process stress due to rapidly changing thermal conditions. Thus, this chapter reviews the newly developed TCB technology and related assembly materials to provide engineering sciences, fundamentals of the bonding technology, and process materials for advanced application. First, this chapter compares the new technology with traditional assembly process regarding process, material, and equipment. Next, the subsection presents traditional analytical methods and practical fundamental investigation methods to characterize material formulation. Then, a comprehensive analysis is presented to provide the pros and cons of major assembly building blocks. Consequently, this chapter would help to understand how to design assembly building blocks that are adequate to the package configuration. In addition, this chapter introduces a hybrid bonding technology and alternative interconnect technology to overcome throughput challenge induced by TCB bonding mechanism used for 3D stacking.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S. Lee, Fundamental study of underfill void formation in flip chip assembly (2009) S. Lee, Fundamental study of underfill void formation in flip chip assembly (2009)
2.
Zurück zum Zitat S. Lee, R. Master, D.F. Baldwin, Assembly Yields Characterization of High I/O Density, Fine Pitch Flip Chip in Package using No-Flow Underfill (Electronic Components and Technology Conference, 2007), p. 35 S. Lee, R. Master, D.F. Baldwin, Assembly Yields Characterization of High I/O Density, Fine Pitch Flip Chip in Package using No-Flow Underfill (Electronic Components and Technology Conference, 2007), p. 35
3.
Zurück zum Zitat S. Lee, R. Master, D.F. Baldwin, Assembly yields characterization and failure analysis of flip chip in package using no-flow underfill. Int. Wafer Level Packag. Cong. 169–175 (2007) S. Lee, R. Master, D.F. Baldwin, Assembly yields characterization and failure analysis of flip chip in package using no-flow underfill. Int. Wafer Level Packag. Cong. 169–175 (2007)
4.
Zurück zum Zitat S. Lee, R. Master, D.F. Baldwin, Void Formation Study of High I/O Density, Fine Pitch Flip Chip in Package Using No-Flow Underfill (Surface Mount Technology Association International, 2007), pp. 525–530 S. Lee, R. Master, D.F. Baldwin, Void Formation Study of High I/O Density, Fine Pitch Flip Chip in Package Using No-Flow Underfill (Surface Mount Technology Association International, 2007), pp. 525–530
5.
Zurück zum Zitat S. Lee et al., Void formation study of flip chip in package using no-flow underfill. IEEE Trans. Electron. Packag. Manuf. 31(4), 297–305 (2008)CrossRefADS S. Lee et al., Void formation study of flip chip in package using no-flow underfill. IEEE Trans. Electron. Packag. Manuf. 31(4), 297–305 (2008)CrossRefADS
6.
Zurück zum Zitat S. Lee, et al., Assembly Yield Characterization and Void Formation Study on High I/O Density and Fine Pitch Flip Chip in Package Using No-Flow Underfill (Surface Mount Technology Association International, 2008), p. 673 S. Lee, et al., Assembly Yield Characterization and Void Formation Study on High I/O Density and Fine Pitch Flip Chip in Package Using No-Flow Underfill (Surface Mount Technology Association International, 2008), p. 673
7.
Zurück zum Zitat S. Lee, M.J. Yim, D. Baldwin, Void formation mechanism of flip chip in package using no-flow underfill. J. Electron. Packag. 131, 0310141–0310145 (2009) S. Lee, M.J. Yim, D. Baldwin, Void formation mechanism of flip chip in package using no-flow underfill. J. Electron. Packag. 131, 0310141–0310145 (2009)
8.
Zurück zum Zitat S. Lee et al., Near void-free assembly development of flip chip using no-flow underfill. IEEE Trans. Electron. Packag. Manuf. 32(2), 106–114 (2009)CrossRef S. Lee et al., Near void-free assembly development of flip chip using no-flow underfill. IEEE Trans. Electron. Packag. Manuf. 32(2), 106–114 (2009)CrossRef
9.
Zurück zum Zitat S. Lee, D. Baldwin, Heterogeneous void nucleation study in flip chip assembly process using no-flow underfill. ASME J. Electron. Packag. (In publishing) (2010) S. Lee, D. Baldwin, Heterogeneous void nucleation study in flip chip assembly process using no-flow underfill. ASME J. Electron. Packag. (In publishing) (2010)
10.
Zurück zum Zitat S. Lee, H.-M. Zhou, D. Baldwin, A numerical study of void nucleation and growth in flip chip assembly process. Model. Simul. Mater. Sci. Eng. 18(6), 065005–065025 (2010)CrossRefADS S. Lee, H.-M. Zhou, D. Baldwin, A numerical study of void nucleation and growth in flip chip assembly process. Model. Simul. Mater. Sci. Eng. 18(6), 065005–065025 (2010)CrossRefADS
11.
Zurück zum Zitat A. Eitan, K.Y. Hung, Thermo-Compression Bonding for fine-pitch copper-pillar flip-chip interconnect—tool features as enablers of unique technology. in 2015 IEEE 65th Electronic Components and Technology Conference (ECTC) (2015) A. Eitan, K.Y. Hung, Thermo-Compression Bonding for fine-pitch copper-pillar flip-chip interconnect—tool features as enablers of unique technology. in 2015 IEEE 65th Electronic Components and Technology Conference (ECTC) (2015)
12.
Zurück zum Zitat J.H. Lau, The future of interposer for semiconductor IC packaging. Chip Scale Rev. 18(1), 32–36 (2014) J.H. Lau, The future of interposer for semiconductor IC packaging. Chip Scale Rev. 18(1), 32–36 (2014)
13.
Zurück zum Zitat Package Analysis of the SK-Hynix High Bandwidth Memory (HBM) (2015) Package Analysis of the SK-Hynix High Bandwidth Memory (HBM) (2015)
14.
Zurück zum Zitat W.-S. Kwon, et al., Enabling a manufacturable 3D technologies and ecosystem using 28 nm FPGA with stack silicon interconnect technology. in International Symposium on Microelectronics (International Microelectronics Assembly and Packaging Society, 2013) W.-S. Kwon, et al., Enabling a manufacturable 3D technologies and ecosystem using 28 nm FPGA with stack silicon interconnect technology. in International Symposium on Microelectronics (International Microelectronics Assembly and Packaging Society, 2013)
15.
Zurück zum Zitat K. Ichikawa, Key Technology Challenges in Computing Package and Assembly (Assembly Technology Development Japan, Intel Corporation, 2014) K. Ichikawa, Key Technology Challenges in Computing Package and Assembly (Assembly Technology Development Japan, Intel Corporation, 2014)
16.
Zurück zum Zitat S. Lau, Thermo-compression bonding for fine-pitch copper pillar flip chip interconnect, in SEMICON Advanced Packaging Symposium (ASMPT, Taiwan, 2014) S. Lau, Thermo-compression bonding for fine-pitch copper pillar flip chip interconnect, in SEMICON Advanced Packaging Symposium (ASMPT, Taiwan, 2014)
17.
Zurück zum Zitat Z. Li, et al. Sensitivity analysis of Pb free reflow profile parameters toward flip chip on silicon assembly yield, reliability and intermetallic compound characteristics. in 2010 Proceedings 60th Electronic Components and Technology Conference (ECTC) (IEEE, 2010) Z. Li, et al. Sensitivity analysis of Pb free reflow profile parameters toward flip chip on silicon assembly yield, reliability and intermetallic compound characteristics. in 2010 Proceedings 60th Electronic Components and Technology Conference (ECTC) (IEEE, 2010)
18.
Zurück zum Zitat C.G. Woychik, et al., New approaches to develop a scalable 3D IC assembly method. J. Microel. Electron. Packag. (2015) C.G. Woychik, et al., New approaches to develop a scalable 3D IC assembly method. J. Microel. Electron. Packag. (2015)
19.
Zurück zum Zitat D.S. Patterson, 2.5 D/3D Packaging enablement through copper pillar technology. Chip Scale Rev. 16(3), 20–26 (2012) D.S. Patterson, 2.5 D/3D Packaging enablement through copper pillar technology. Chip Scale Rev. 16(3), 20–26 (2012)
20.
Zurück zum Zitat C. Wong, S.H. Shi, G. Jefferson, High performance no-flow underfills for low-cost flip-chip applications: material characterization. Compon. Packag. Manuf. Technol. Part A IEEE Trans. 21(3), 450–458 (1998)CrossRef C. Wong, S.H. Shi, G. Jefferson, High performance no-flow underfills for low-cost flip-chip applications: material characterization. Compon. Packag. Manuf. Technol. Part A IEEE Trans. 21(3), 450–458 (1998)CrossRef
21.
Zurück zum Zitat C.P. Wong, et al., Characterization of a no-flow underfill encapsulant during the solder reflow process. in Electronic Components and Technology Conference, 1998. 48th IEEE (1998) C.P. Wong, et al., Characterization of a no-flow underfill encapsulant during the solder reflow process. in Electronic Components and Technology Conference, 1998. 48th IEEE (1998)
22.
Zurück zum Zitat C.P. Wong, S.H. Shi, G. Jefferson, High performance no-flow underfills for low-cost flip-chip applications: materials characterization. IEEE Trans. Componen. Hybrids Manuf. Technol. 21, 450–458 (1998)CrossRef C.P. Wong, S.H. Shi, G. Jefferson, High performance no-flow underfills for low-cost flip-chip applications: materials characterization. IEEE Trans. Componen. Hybrids Manuf. Technol. 21, 450–458 (1998)CrossRef
23.
Zurück zum Zitat S. Shi, D. Lu, C.P. Wong, Study on the relationship between the surface composition of copper pads and no-flow underfill fluxing capability. IEEE Trans. Electron. Packag. Manuf. 22(4), 268–273 (1999)CrossRef S. Shi, D. Lu, C.P. Wong, Study on the relationship between the surface composition of copper pads and no-flow underfill fluxing capability. IEEE Trans. Electron. Packag. Manuf. 22(4), 268–273 (1999)CrossRef
24.
Zurück zum Zitat C.P. Wong, S.H. Shi, No-flow underfill of epoxy resin, anhydride, fluxing agent and surfactant G.T.R. Corporation, Editor. U.S (2001) C.P. Wong, S.H. Shi, No-flow underfill of epoxy resin, anhydride, fluxing agent and surfactant G.T.R. Corporation, Editor. U.S (2001)
25.
Zurück zum Zitat H. Li, et al., Syntheses and characterizations of thermally degradable epoxy resins. III. J. Polym. Sci. Part A Polym. Chem. 40(11), 1796–1807 (2002) H. Li, et al., Syntheses and characterizations of thermally degradable epoxy resins. III. J. Polym. Sci. Part A Polym. Chem. 40(11), 1796–1807 (2002)
26.
Zurück zum Zitat Y. Shi, X. Wei, B. Tolla, Smart chemistry towards highly efficient soldering material formulation, in Proceedings of SMTA International, p. 436–443 Y. Shi, X. Wei, B. Tolla, Smart chemistry towards highly efficient soldering material formulation, in Proceedings of SMTA International, p. 436–443
27.
Zurück zum Zitat Z. Zhang, E. Beatty, C. Wong, Study on the curing process and the gelation of epoxy/anhydride system for no-flow underfill for flip-chip applications. Macromol. Mater. Eng. 288(4), 365–371 (2003)CrossRef Z. Zhang, E. Beatty, C. Wong, Study on the curing process and the gelation of epoxy/anhydride system for no-flow underfill for flip-chip applications. Macromol. Mater. Eng. 288(4), 365–371 (2003)CrossRef
28.
Zurück zum Zitat H. O’Neal et al., Comparison of Tg values for a graphite epoxy composite by differential scanning calorimetry (DSC), thermomechanical analysis (TMA), and dynamic mechanical analysis (DMA). J. Adv. Mater. 26(3), 49–54 (1995)ADS H. O’Neal et al., Comparison of Tg values for a graphite epoxy composite by differential scanning calorimetry (DSC), thermomechanical analysis (TMA), and dynamic mechanical analysis (DMA). J. Adv. Mater. 26(3), 49–54 (1995)ADS
29.
Zurück zum Zitat B. Schmaltz, Packaging materials for 2.5/3D technology. Int. Symp. Microelectron. 2013(1), 000276–000284 (2013) B. Schmaltz, Packaging materials for 2.5/3D technology. Int. Symp. Microelectron. 2013(1), 000276–000284 (2013)
30.
Zurück zum Zitat A. Lucero, G. Xu, D. Huitink, Low-к-package integration challenges and options for reliability qualification. in Reliability Physics Symposium (IRPS), 2012 IEEE International (IEEE, 2012) A. Lucero, G. Xu, D. Huitink, Low-к-package integration challenges and options for reliability qualification. in Reliability Physics Symposium (IRPS), 2012 IEEE International (IEEE, 2012)
31.
Zurück zum Zitat J.L. Aw, et al. Thermal compression bonding with non-conductive adhesive of 30 um pitch Cu pillar micro bumps on organic substrate with bare Cu bondpads, in 2014 IEEE 16th Electronics Packaging Technology Conference (EPTC) (2014) J.L. Aw, et al. Thermal compression bonding with non-conductive adhesive of 30 um pitch Cu pillar micro bumps on organic substrate with bare Cu bondpads, in 2014 IEEE 16th Electronics Packaging Technology Conference (EPTC) (2014)
32.
Zurück zum Zitat J. Jing-Ye, et al., The development of high through-put micro-bump-bonded process with non-conductive paste (NCP), in Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), 2012 7th International (2012) J. Jing-Ye, et al., The development of high through-put micro-bump-bonded process with non-conductive paste (NCP), in Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), 2012 7th International (2012)
33.
Zurück zum Zitat S.W. Yoon, et al., Fabrication and packaging of microbump interconnections for 3D TSV, in 2009 IEEE International Conference on 3D System Integration (2009) S.W. Yoon, et al., Fabrication and packaging of microbump interconnections for 3D TSV, in 2009 IEEE International Conference on 3D System Integration (2009)
34.
Zurück zum Zitat S. Lee, Fundamentals of thermal compression bonding technology and process materials for 2.5/3D packages. 57, 157–203 (2017) S. Lee, Fundamentals of thermal compression bonding technology and process materials for 2.5/3D packages. 57, 157–203 (2017)
35.
Zurück zum Zitat S.W. Lau, Thermo-compression bonding (TCB) for fine-pitch copper pillar flip chip interconnect, in Advanced Packaging Symposium (Taipei, Taiwan, 2014) S.W. Lau, Thermo-compression bonding (TCB) for fine-pitch copper pillar flip chip interconnect, in Advanced Packaging Symposium (Taipei, Taiwan, 2014)
36.
Zurück zum Zitat A. Eitan, K. Hung, Thermo-compression bonding for fine-pitch copper-pillar flip-chip interconnect—tool features as enablers of unique technology. in 2015 IEEE 65th Electronic Components and Technology Conference (ECTC) (2015) A. Eitan, K. Hung, Thermo-compression bonding for fine-pitch copper-pillar flip-chip interconnect—tool features as enablers of unique technology. in 2015 IEEE 65th Electronic Components and Technology Conference (ECTC) (2015)
37.
Zurück zum Zitat Y. Tomita, et al., Advanced packaging technologies on 3D stacked LSI utilizing the micro interconnections and the layered microthin encapsulation. in 2001 Proceedings. 51st Electronic Components and Technology Conference (Cat. No.01CH37220) (2001) Y. Tomita, et al., Advanced packaging technologies on 3D stacked LSI utilizing the micro interconnections and the layered microthin encapsulation. in 2001 Proceedings. 51st Electronic Components and Technology Conference (Cat. No.01CH37220) (2001)
38.
Zurück zum Zitat J. Jing-Ye, et al., The development of high through-put micro-bump-bonded process with non-conductive paste (NCP). in 2012 7th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT) (2012) J. Jing-Ye, et al., The development of high through-put micro-bump-bonded process with non-conductive paste (NCP). in 2012 7th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT) (2012)
39.
Zurück zum Zitat D. Duffy, et al., 3D and 2.5D packaging assembly with highly silica filled One Step Chip Attach Materials for both thermal compression bonding and mass reflow processes, in 2014 IEEE 64th Electronic Components and Technology Conference (ECTC) (2014) D. Duffy, et al., 3D and 2.5D packaging assembly with highly silica filled One Step Chip Attach Materials for both thermal compression bonding and mass reflow processes, in 2014 IEEE 64th Electronic Components and Technology Conference (ECTC) (2014)
40.
Zurück zum Zitat C.-L. Liang, K.-L. Lin, J.-W. Peng, Microstructural evolution of intermetallic compounds in TCNCP Cu pillar solder joints. 45 (2015) C.-L. Liang, K.-L. Lin, J.-W. Peng, Microstructural evolution of intermetallic compounds in TCNCP Cu pillar solder joints. 45 (2015)
41.
Zurück zum Zitat K. Murayama, M. Aizawa, T. Kurihara. Low stress bonding for large size die application, in 2015 IEEE 65th Electronic Components and Technology Conference (ECTC) (2015) K. Murayama, M. Aizawa, T. Kurihara. Low stress bonding for large size die application, in 2015 IEEE 65th Electronic Components and Technology Conference (ECTC) (2015)
42.
Zurück zum Zitat K. Murayama, M. Aizawa, T. Kurihara, Study of crystal orientation and microstructure in Sn-Bi and Sn-Ag-Cu solder with thermal compression bonding and mass reflow. in 2016 IEEE 66th Electronic Components and Technology Conference (ECTC) (2016) K. Murayama, M. Aizawa, T. Kurihara, Study of crystal orientation and microstructure in Sn-Bi and Sn-Ag-Cu solder with thermal compression bonding and mass reflow. in 2016 IEEE 66th Electronic Components and Technology Conference (ECTC) (2016)
43.
Zurück zum Zitat C. Chen, H.M. Tong, K.N. Tu, Electromigration and thermomigration in Pb-free flip-chip solder joints. Annu. Rev. Mater. Res. 40(1), 531–555 (2010)CrossRefADS C. Chen, H.M. Tong, K.N. Tu, Electromigration and thermomigration in Pb-free flip-chip solder joints. Annu. Rev. Mater. Res. 40(1), 531–555 (2010)CrossRefADS
44.
Zurück zum Zitat B. Ebersberger, R. Bauer, L. Alexa, Reliability of lead-free SnAg solder bumps: influence of electromigration and temperature, in Proceedings Electronic Components and Technology, 2005. ECTC ‘05 (2005) B. Ebersberger, R. Bauer, L. Alexa, Reliability of lead-free SnAg solder bumps: influence of electromigration and temperature, in Proceedings Electronic Components and Technology, 2005. ECTC ‘05 (2005)
45.
Zurück zum Zitat S. Härter, et al., Reliability study of lead-free flip-chips with solder bumps down to 30 µm diameter (2012) S. Härter, et al., Reliability study of lead-free flip-chips with solder bumps down to 30 µm diameter (2012)
46.
Zurück zum Zitat M. Lu, et al., Effect of Sn grain orientation on electromigration degradation mechanism in high Sn-based Pb-free solders. 92, 211909–211909 (2008) M. Lu, et al., Effect of Sn grain orientation on electromigration degradation mechanism in high Sn-based Pb-free solders. 92, 211909–211909 (2008)
47.
Zurück zum Zitat K.N. Tu, A. Gusak, M. Li, Physics and materials challenges for lead-free solders. 93, 1335–1353 (2003) K.N. Tu, A. Gusak, M. Li, Physics and materials challenges for lead-free solders. 93, 1335–1353 (2003)
48.
Zurück zum Zitat J. Cannis, Green IC packaging. Adv. Packag. 8, 33 (2001) J. Cannis, Green IC packaging. Adv. Packag. 8, 33 (2001)
49.
Zurück zum Zitat A.U. Telang, et al., Grain-boundary character and grain growth in bulk tin and bulk lead-free solder alloys. 33, 1412–1423 (2004) A.U. Telang, et al., Grain-boundary character and grain growth in bulk tin and bulk lead-free solder alloys. 33, 1412–1423 (2004)
50.
Zurück zum Zitat S. Terashima, et al., Recrystallization of Sn grains due to thermal strain in Sn1.2Ag0.5Cu0.05Ni solder. 45, 1383–1390 (2004) S. Terashima, et al., Recrystallization of Sn grains due to thermal strain in Sn1.2Ag0.5Cu0.05Ni solder. 45, 1383–1390 (2004)
51.
Zurück zum Zitat Y. Wang, et al., Effects of Sn grain structure on the electromigration of Sn-Ag solder joints. 27, 1131 (2012) Y. Wang, et al., Effects of Sn grain structure on the electromigration of Sn-Ag solder joints. 27, 1131 (2012)
52.
Zurück zum Zitat B. Zhou, et al., Characterization of recrystallization and microstructure evolution in lead-free solder joints using EBSD and 3D-XRD. 42 (2012) B. Zhou, et al., Characterization of recrystallization and microstructure evolution in lead-free solder joints using EBSD and 3D-XRD. 42 (2012)
53.
Zurück zum Zitat B. Chao et al., Electromigration enhanced intermetallic growth and void formation in Pb-free solder joints. J. Appl. Phys. 100(8), 084909 (2006)CrossRefADS B. Chao et al., Electromigration enhanced intermetallic growth and void formation in Pb-free solder joints. J. Appl. Phys. 100(8), 084909 (2006)CrossRefADS
54.
Zurück zum Zitat M.N. Bashir, A.S. Haseeb, Improving mechanical and electrical properties of Cu/SAC305/Cu solder joints under electromigration by using Ni nanoparticles doped flux (2017) M.N. Bashir, A.S. Haseeb, Improving mechanical and electrical properties of Cu/SAC305/Cu solder joints under electromigration by using Ni nanoparticles doped flux (2017)
55.
Zurück zum Zitat T.R. Bieler, et al., Influence of Sn grain size and orientation on the thermomechanical response and reliability of Pb-free solder joints. in 56th Electronic Components and Technology Conference 2006 (2006) T.R. Bieler, et al., Influence of Sn grain size and orientation on the thermomechanical response and reliability of Pb-free solder joints. in 56th Electronic Components and Technology Conference 2006 (2006)
56.
Zurück zum Zitat K. Murayama, et al., Electro-migration behavior in low temperature flip chip bonding, in 2012 IEEE 62nd Electronic Components and Technology Conference (2012) K. Murayama, et al., Electro-migration behavior in low temperature flip chip bonding, in 2012 IEEE 62nd Electronic Components and Technology Conference (2012)
57.
Zurück zum Zitat N. Zhao, Y. Zhong, W. Dong, M.L. Huang, H.T. Ma, C.P. Wong, Formation of highly preferred orientation of β-Sn grains in solidified Cu/SnAgCu/Cu micro interconnects under temperature gradient effect. Appl. Phy. Lett. 110(9), 093504 (2017)CrossRefADS N. Zhao, Y. Zhong, W. Dong, M.L. Huang, H.T. Ma, C.P. Wong, Formation of highly preferred orientation of β-Sn grains in solidified Cu/SnAgCu/Cu micro interconnects under temperature gradient effect. Appl. Phy. Lett. 110(9), 093504 (2017)CrossRefADS
58.
Zurück zum Zitat F. Ochoa, X. Deng, N. Chawla, Effects of cooling rate on creep behavior. J. Electron. Mater. 33(12), 1596–1607 (2004)CrossRefADS F. Ochoa, X. Deng, N. Chawla, Effects of cooling rate on creep behavior. J. Electron. Mater. 33(12), 1596–1607 (2004)CrossRefADS
59.
Zurück zum Zitat M. Mueller, et al., Effect of composition and cooling rate on the microstructure of SnAgCu-solder joints, in 2007 Proceedings 57th Electronic Components and Technology Conference (2007) M. Mueller, et al., Effect of composition and cooling rate on the microstructure of SnAgCu-solder joints, in 2007 Proceedings 57th Electronic Components and Technology Conference (2007)
60.
Zurück zum Zitat H.T. Lee, K.C. Huang, Effects of cooling rate on the microstructure and morphology of Sn-3.0Ag-0.5Cu solder. J. Electron. Mater. 45(1), 182–190 (2015)CrossRefADS H.T. Lee, K.C. Huang, Effects of cooling rate on the microstructure and morphology of Sn-3.0Ag-0.5Cu solder. J. Electron. Mater. 45(1), 182–190 (2015)CrossRefADS
61.
Zurück zum Zitat B.F. Dyson, T.R. Anthony, D. Turnbull, Interstitial diffusion of copper in tin. J. Appl. Phys. 38(8), 3408 (1967)CrossRefADS B.F. Dyson, T.R. Anthony, D. Turnbull, Interstitial diffusion of copper in tin. J. Appl. Phys. 38(8), 3408 (1967)CrossRefADS
62.
Zurück zum Zitat D.C. Yeh, H.B. Huntington, Extreme fast-diffusion system: nickel in single-crystal tin. Phys. Rev. Lett. 53(15), 1469–1472 (1984)CrossRefADS D.C. Yeh, H.B. Huntington, Extreme fast-diffusion system: nickel in single-crystal tin. Phys. Rev. Lett. 53(15), 1469–1472 (1984)CrossRefADS
63.
Zurück zum Zitat F. Bachmann, R. Hielscher, H. Schaeben, in Texture Analysis with MTEX–Free and Open Source Software Toolbox, vol. 160 (2010) F. Bachmann, R. Hielscher, H. Schaeben, in Texture Analysis with MTEX–Free and Open Source Software Toolbox, vol. 160 (2010)
64.
Zurück zum Zitat H.J. Bunge, Texture Analysis in Materials Science: Mathematical Methods (Elsevier, Amsterdam, 2013) H.J. Bunge, Texture Analysis in Materials Science: Mathematical Methods (Elsevier, Amsterdam, 2013)
65.
Zurück zum Zitat Y.C. Yabansu, D.K. Patel, S.R. Kalidindi, Calibrated localization relationships for elastic response of polycrystalline aggregates. Acta Mater. 1(81), 151–160 (2014)CrossRef Y.C. Yabansu, D.K. Patel, S.R. Kalidindi, Calibrated localization relationships for elastic response of polycrystalline aggregates. Acta Mater. 1(81), 151–160 (2014)CrossRef
66.
Zurück zum Zitat Y.C. Yabansu, S.R. Kalidindi, Representation and calibration of elastic localization kernels for a broad class of cubic polycrystals. Acta Mater. 1(94), 26–35 (2015)CrossRef Y.C. Yabansu, S.R. Kalidindi, Representation and calibration of elastic localization kernels for a broad class of cubic polycrystals. Acta Mater. 1(94), 26–35 (2015)CrossRef
67.
Zurück zum Zitat N.H. Paulson et al., Reduced-order structure-property linkages for polycrystalline microstructures based on 2-point statistics. Acta Mater. 1(129), 428–438 (2017)CrossRef N.H. Paulson et al., Reduced-order structure-property linkages for polycrystalline microstructures based on 2-point statistics. Acta Mater. 1(129), 428–438 (2017)CrossRef
68.
Zurück zum Zitat M.W. Priddy et al., Strategies for rapid parametric assessment of microstructure-sensitive fatigue for HCP polycrystals. Int. J. Fatigue 104, 231–242 (2017)CrossRef M.W. Priddy et al., Strategies for rapid parametric assessment of microstructure-sensitive fatigue for HCP polycrystals. Int. J. Fatigue 104, 231–242 (2017)CrossRef
69.
Zurück zum Zitat R. Liu et al., Machine learning approaches for elastic localization linkages in high-contrast composite materials. Integrating Mater. Manuf. Innovation 4(1), 13 (2015) R. Liu et al., Machine learning approaches for elastic localization linkages in high-contrast composite materials. Integrating Mater. Manuf. Innovation 4(1), 13 (2015)
71.
Zurück zum Zitat M.E. Johnson, L.M. Moore, D. Ylvisaker, Minimax and maximin distance designs. J. Stat. Plann. Infer. 26(2), 131–148 (1990)MathSciNetCrossRef M.E. Johnson, L.M. Moore, D. Ylvisaker, Minimax and maximin distance designs. J. Stat. Plann. Infer. 26(2), 131–148 (1990)MathSciNetCrossRef
72.
Zurück zum Zitat P. Darbandi et al., The effect of cooling rate on grain orientation and misorientation microstructure of SAC105 solder joints before and after impact drop tests. J. Electron. Mater. 43(7), 2521–2529 (2014)CrossRefADS P. Darbandi et al., The effect of cooling rate on grain orientation and misorientation microstructure of SAC105 solder joints before and after impact drop tests. J. Electron. Mater. 43(7), 2521–2529 (2014)CrossRefADS
73.
Zurück zum Zitat D.W. Henderson et al., Ag3Sn plate formation in the solidification of near ternary eutectic Sn–Ag–Cu alloys. J. Mater. Res. 17(11), 2775–2778 (2002)CrossRefADS D.W. Henderson et al., Ag3Sn plate formation in the solidification of near ternary eutectic Sn–Ag–Cu alloys. J. Mater. Res. 17(11), 2775–2778 (2002)CrossRefADS
74.
Zurück zum Zitat S.K. Kang, et al., Formation of AgSn plates in Sn-Ag-Cu alloys and optimization of their alloy composition, in Proceedings of 53rd Electronic Components and Technology Conference, 2003. (2003) S.K. Kang, et al., Formation of AgSn plates in Sn-Ag-Cu alloys and optimization of their alloy composition, in Proceedings of 53rd Electronic Components and Technology Conference, 2003. (2003)
75.
Zurück zum Zitat S.K. Kang et al., Interfacial reactions of Sn-Ag-Cu solders modified by minor Zn alloying addition. J. Electron. Mater. 35(3), 479–485 (2006)CrossRefADS S.K. Kang et al., Interfacial reactions of Sn-Ag-Cu solders modified by minor Zn alloying addition. J. Electron. Mater. 35(3), 479–485 (2006)CrossRefADS
76.
Zurück zum Zitat J. Lienig, M. Thiele, Fundamentals of Electromigration-Aware Integrated Circuit Design, 1st edn. (Springer, Berlin, 2018)CrossRef J. Lienig, M. Thiele, Fundamentals of Electromigration-Aware Integrated Circuit Design, 1st edn. (Springer, Berlin, 2018)CrossRef
77.
Zurück zum Zitat R. Kinyanjui et al., Effect of sample size on the solidification temperature and microstructure of SnAgCu near eutectic alloys. J. Mater. Res. 20(11), 2914–2918 (2005)CrossRefADS R. Kinyanjui et al., Effect of sample size on the solidification temperature and microstructure of SnAgCu near eutectic alloys. J. Mater. Res. 20(11), 2914–2918 (2005)CrossRefADS
78.
Zurück zum Zitat L.P. Lehman, et al., Microstructure and damage evolution in Sn-Ag-Cu solder joints, in Proceedings Electronic Components and Technology, 2005. ECTC ‘05 (2005) L.P. Lehman, et al., Microstructure and damage evolution in Sn-Ag-Cu solder joints, in Proceedings Electronic Components and Technology, 2005. ECTC ‘05 (2005)
79.
Zurück zum Zitat C.C. Wei et al., Electromigration in Sn–Cu intermetallic compounds. J. Appl. Phy. 105(2), 023715 (2009)CrossRefADS C.C. Wei et al., Electromigration in Sn–Cu intermetallic compounds. J. Appl. Phy. 105(2), 023715 (2009)CrossRefADS
80.
Zurück zum Zitat S.O. Kasap, Electrical and thermal conduction in solids, Principles of Electronic Materials and Devices (McGraw-Hill Education, London, 2006), p. 126 S.O. Kasap, Electrical and thermal conduction in solids, Principles of Electronic Materials and Devices (McGraw-Hill Education, London, 2006), p. 126
81.
Zurück zum Zitat J. Haimovich, A. Incorporated, Cu-Sn Intermetallic Compound Growth in Hot-Air-Leveled Tin at and below 100 °C. vol. 3 (1993) J. Haimovich, A. Incorporated, Cu-Sn Intermetallic Compound Growth in Hot-Air-Leveled Tin at and below 100 °C. vol. 3 (1993)
82.
Zurück zum Zitat R. Labie, W. Ruythooren, J. Van Humbeeck, Solid state diffusion in Cu–Sn and Ni–Sn diffusion couples with flip-chip scale dimensions. Intermetallics 15(3), 396–403 (2007)CrossRef R. Labie, W. Ruythooren, J. Van Humbeeck, Solid state diffusion in Cu–Sn and Ni–Sn diffusion couples with flip-chip scale dimensions. Intermetallics 15(3), 396–403 (2007)CrossRef
83.
Zurück zum Zitat J. Hah et al., Comprehensive comparative analysis of microstructure of Sn–Ag–Cu (SAC) solder joints by traditional reflow and thermo-compression bonding (TCB) processes. Materialia 6, 100327 (2019)CrossRef J. Hah et al., Comprehensive comparative analysis of microstructure of Sn–Ag–Cu (SAC) solder joints by traditional reflow and thermo-compression bonding (TCB) processes. Materialia 6, 100327 (2019)CrossRef
84.
Zurück zum Zitat D. Hiner, et al., Multi-die chip on wafer thermo-compression bonding using non-conductive film. in 2015 IEEE 65th Electronic Components and Technology Conference (ECTC) (2015) D. Hiner, et al., Multi-die chip on wafer thermo-compression bonding using non-conductive film. in 2015 IEEE 65th Electronic Components and Technology Conference (ECTC) (2015)
Metadaten
Titel
Fundamentals of Bonding Technology and Process Materials for 2.5/3D Packages
verfasst von
Sangil Lee
Copyright-Jahr
2021
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-7090-2_10

Neuer Inhalt