2017 | OriginalPaper | Buchkapitel
Tipp
Weitere Kapitel dieses Buchs durch Wischen aufrufen
Erschienen in:
Fungal Metabolites
Fungi constitute an enormous unexplored pool of protease inhibitors. Only a handful of fungal
protease inhibitors have been exhaustively characterized, but they reveal great versatility and many unique features and novel types of inhibitory mechanisms. Small molecule and protein inhibitors of all catalytic classes of proteases have been identified in fungi, those that target serine proteases predominating. As important regulators of proteases, the function and potential applications of protease inhibitors are intimately connected with those of proteases they inhibit. In this chapter, both small molecule and protein protease inhibitors from fungi are described, including their biochemical characteristics, inhibitory mechanisms, and biological functions together with their potential for application in the fields of biotechnology, crop protection, and medicine.
Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten
Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:
Anzeige
1.
Kudryavtseva OA, Dunaevsky YE, Kamzolkina OV, Belozersky MA (2008) Fungal proteolytic enzymes: Features of the extracellular proteases of xylotrophic basidiomycetes. Microbiology 77(6):643–653
CrossRef
2.
Rao MB, Tanksale AM, Ghatge MS, Deshpande VV (1998) Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Biol Rev 62(3):597–635
3.
Lopez-Otin C, Bond JS (2008) Proteases: multifunctional enzymes in life and disease. J Biol Chem 283(45):30433–30437
CrossRef
4.
Schaller A (2004) A cut above the rest: the regulatory function of plant proteases. Planta 220(2):183–197
CrossRef
5.
Yike I (2011) Fungal proteases and their pathophysiological effects. Mycopathologia 171(5):299–323
CrossRef
6.
Maeda H (1996) Role of microbial proteases in pathogenesis. Microbiol Immunol 40(10):685–699
CrossRef
7.
Monod M, Capoccia S, Lechenne B, Zaugg C, Holdom M, Jousson O (2002) Secreted proteases from pathogenic fungi. Int J Med Microbiol 292(5–6):405–419
CrossRef
8.
Rawlings ND, Barrett AJ (1993) Evolutionary families of peptidases. Biochem J 290(Pt 1):205–218
CrossRef
9.
Rawlings ND, Barrett AJ, Bateman A (2011) Asparagine peptide lyases: a seventh catalytic type of proteolytic enzymes. J Biol Chem 286(44):38321–38328
CrossRef
10.
Barrett AJ (2001) Proteolytic enzymes: nomenclature and classification. In: Beynon RJ, Bond JS (eds) Proteolytic enzymes: a practical approach, 2nd edn. Oxford University Press, Oxford
11.
Rawlings ND, Waller M, Barrett AJ, Bateman A (2014) MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res 42(Database issue):D503–509
CrossRef
12.
Sabotič J, Kos J (2012) Microbial and fungal protease inhibitors–current and potential applications. Appl Microbiol Biotechnol 93(4):1351–1375
CrossRef
13.
Sharma R (2012) Enzyme inhibition: mechanisms and scope. In: Sharma R (ed) Enzyme inhibition and bioapplications. InTech, Rijeka
CrossRef
14.
Rawlings ND, Tolle DP, Barrett AJ (2004) Evolutionary families of peptidase inhibitors. Biochem J 378(Pt 3):705–716
CrossRef
15.
Salvesen G, Nagase H (1989) Inhibition of proteolytic enzymes. In: Benyou RJ, Bond JS (eds) Proteolytic enzymes: a practical approach. IRL Press, Oxford
16.
Rawlings ND, Barrett AJ, Bateman A (2014) Using the MEROPS database for proteolytic enzymes and their inhibitors and substrates. Current Protoc Bioinformatics 48:1.25.1–1.25.33
CrossRef
17.
Farady CJ, Craik CS (2010) Mechanisms of macromolecular protease inhibitors. Chembiochem 11(17):2341–2346
CrossRef
18.
Engh RA, Huber R, Bode W, Schulze AJ (1995) Divining the serpin inhibition mechanism: a suicide substrate 'springe'? Trends Biotechnol 13(12):503–510
CrossRef
19.
Pike RN, Bottomley SP, Irving JA, Bird PI, Whisstock JC (2002) Serpins: finely balanced conformational traps. IUBMB Life 54(1):1–7
CrossRef
20.
Renko M, Sabotič J, Turk D (2012) Beta-trefoil inhibitors–from the work of Kunitz onward. Biol Chem 393(10):1043–1054
CrossRef
21.
Schechter I, Berger A (1967) On the size of the active site in proteases I. Papain. Biochem Biophys Res Commun 27(2):157–162
CrossRef
22.
Krowarsch D, Cierpicki T, Jelen F, Otlewski J (2003) Canonical protein inhibitors of serine proteases. Cell Mol Life Sci 60(11):2427–2444
CrossRef
23.
Hanada K, Tamai M, Yamagishi M, Ohmura S, Sawada J, Tanaka I (1978) Isolation and characterization of E-64, a new thiol protease inhibitor. Agric Biol Chem 42(3):523–528
24.
Powers JC, Asgian JL, Ekici OD, James KE (2002) Irreversible inhibitors of serine, cysteine, and threonine proteases. Chem Rev 102(12):4639–4750
CrossRef
25.
Sato N, Horiuchi T, Hamano M, Sekine H, Chiba S, Yamamoto H, Yoshioka T, Kimura I, Satake M, Ida Y (1996) Kojistatin A, a new cysteine protease inhibitor produced by
Aspergillus oryzae. Biosci Biotechnol Biochem 60(10):1747–1748
CrossRef
26.
Shindo K, Suzuki H, Okuda T (2002) Paecilopeptin, a new cathepsin S inhibitor produced by
Paecilomyces carneus. Biosci Biotechnol Biochem 66(11):2444–2448
CrossRef
27.
Kimura T, Tsuchiya K, Omura S (1984) Prohisin, new thiol protease inhibitor produced by
Cephalosporium sp. KM 388. Agric Biol Chem 48(6):1685–1686
28.
Singh SB, Cordingley MG, Ball RG, Smith JL, Dombrowski AW, Goetz MA (1991) Structure and stereochemistry of thysanone - a novel human rhinovirus 3c-protease inhibitor from
Thysanophora penicilloides. Tetrahedron Lett 32(39):5279–5282
CrossRef
29.
Koguchi Y, Kohno J, Nishio M, Takahashi K, Okuda T, Ohnuki T, Komatsubara S (2000) TMC-95A, B, C, and D, novel proteasome inhibitors produced by
Apiospora montagnei Sacc. TC 1093 - Taxonomy, production, isolation, and biological activities. J Antibiotics 53(2):105–109
CrossRef
30.
Basse N, Piguel S, Papapostolou D, Ferrier-Berthelot A, Richy N, Pagano M, Sarthou P, Sobczak-Thepot J, Reboud-Ravaux M, Vidal J (2007) Linear TMC-95-based proteasome inhibitors. J Med Chem 50(12):2842–2850
CrossRef
31.
Desvergne A, Genin E, Marechal X, Gallastegui N, Dufau L, Richy N, Groll M, Vidal J, Reboud-Ravaux M (2013) Dimerized linear mimics of a natural cyclopeptide (TMC-95A) are potent noncovalent inhibitors of the eukaryotic 20S proteasome. J Med Chem 56(8):3367–3378
CrossRef
32.
Groll M, Gallastegui N, Marechal X, Le Ravalec V, Basse N, Richy N, Genin E, Huber R, Moroder L, Vidal J, Reboud-Ravaux M (2010) 20S proteasome inhibition: designing noncovalent linear peptide mimics of the natural product TMC-95A. ChemMedChem 5(10):1701–1705
CrossRef
33.
Groll M, Gotz M, Kaiser M, Weyher E, Moroder L (2006) TMC-95-based inhibitor design provides evidence for the catalytic versatility of the proteasome. Chem Biol 13(6):607–614
CrossRef
34.
Groll M, Huber R (2004) Inhibitors of the eukaryotic 20S proteasome core particle: a structural approach. Biochim Et Biophys Acta-Mol Cell Res 1695(1–3):33–44
CrossRef
35.
Kaiser M, Groll M, Renner C, Huber R, Moroder L (2002) The core structure of TMC-95A is a promising lead for reversible proteasome inhibition. Angew Chem Int Ed Engl 41(5):780–3
CrossRef
36.
Dolan SK, O'Keeffe G, Jones GW, Doyle S (2015) Resistance is not futile: gliotoxin biosynthesis, functionality and utility. Trends Microbiol 23(7):419–428
CrossRef
37.
Scharf DH, Heinekamp T, Remme N, Hortschansky P, Brakhage AA, Hertweck C (2012) Biosynthesis and function of gliotoxin in
Aspergillus fumigatus. Appl Microbiol Biotechnol 93(2):467–472
CrossRef
38.
Hatabu T, Hagiwara M, Taguchi N, Kiyozawa M, Suzuki M, Kano S, Sato K (2006)
Plasmodium falciparum: The fungal metabolite gliotoxin inhibits proteasome proteolytic activity and exerts a plasmodicidal effect on
Plasmodium falciparum. Exp Parasitol 112(3):179–183
CrossRef
39.
Kroll M, Arenzana-Seisdedos F, Bachelerie F, Thomas D, Friguet B, Conconi M (1999) The secondary fungal metabolite gliotoxin targets proteolytic activities of the proteasome. Chem Biol 6(10):689–698
CrossRef
40.
Liu DZ, Wang F, Liao TG, Tang JG, Steglich W, Zhu HJ, Liu JK (2006) Vibralactone: A lipase inhibitor with an unusual fused beta-lactone produced by cultures of the basidiomycete
Boreostereum vibrans. Org Lett 8(25):5749–5752
CrossRef
41.
Chen HP, Zhao ZZ, Yin RH, Yin X, Feng T, Li ZH, Wei K, Liu JK (2014) Six new vibralactone derivatives from cultures of the fungus
Boreostereum vibrans. Nat Product Bioprospect 4(5):271–276
CrossRef
42.
Zeiler E, Braun N, Bottcher T, Kastenmuller A, Weinkauf S, Sieber SA (2011) Vibralactone as a tool to study the activity and structure of the ClpP1P2 complex from
Listeria monocytogenes. Angew Chem Int Ed Engl 50(46):11001–11004
CrossRef
43.
Hwang JS, Song KS, Kim WG, Lee TH, Koshino H, Yoo ID (1997) Polyozellin, a new inhibitor of prolyl endopeptidase from
Polyozellus multiplex. J Antibiot 50(9):773–777
CrossRef
44.
Kim SI, Park IH, Song KS (2002) kynapcin-13 and −28, new benzofuran prolyl endopeptidase inhibitors from
Polyozellus multiplex. J Antibiot 55(7):623–628
CrossRef
45.
Lee HJ, Rhee IK, Lee KB, Yoo ID, Song KS (2000) Kynapcin-12, a new p-terphenyl derivative from
Polyozellus multiplex, inhibits prolyl endopeptidase. J Antibiot 53(7):714–719
CrossRef
46.
Song KS, Raskin I (2002) A prolyl endopeptidase-inhibiting benzofuran dimer from
Polyozellus multiflex. J Nat Prod 65(1):76–78
CrossRef
47.
Eble TE, Hanson FR (1951) Fumagillin, an antibiotic from
Aspergillus fumigatus H-3. Antibiotics Chemother 1(1):54–58
48.
Furness MS, Robinson TP, Ehlers T, Hubbard RB, Arbiser JL, Goldsmith DJ, Bowen JP (2005) Antiangiogenic agents: studies on fumagillin and curcumin analogs. Curr Pharm Des 11(3):357–373
CrossRef
49.
Lefkove B, Govindarajan B, Arbiser JL (2007) Fumagillin: an anti-infective as a parent molecule for novel angiogenesis inhibitors. Expert Rev Anti Infect Ther 5(4):573–579
CrossRef
50.
van den Heever JP, Thompson TS, Curtis JM, Ibrahim A, Pernal SF (2014) Fumagillin: an overview of recent scientific advances and their significance for apiculture. J Agric Food Chem 62(13):2728–2737
CrossRef
51.
Dunaevsky YE, Popova VV, Semenova TA, Beliakova GA, Belozersky MA (2014) Fungal inhibitors of proteolytic enzymes: classification, properties, possible biological roles, and perspectives for practical use. Biochimie 101C:10–20
CrossRef
52.
Steenbakkers PJ, Irving JA, Harhangi HR, Swinkels WJ, Akhmanova A, Dijkerman R, Jetten MS, van der Drift C, Whisstock JC, Op den Camp HJ (2008) A serpin in the cellulosome of the anaerobic fungus
Piromyces sp. strain E2. Mycol Res 112(Pt 8):999–1006
CrossRef
53.
Kojima S, Deguchi M, Miura K (1999) Involvement of the C-terminal region of yeast proteinase B inhibitor 2 in its inhibitory action. J Mol Biol 286(3):775–785
CrossRef
54.
Kojima S, Minagawa T, Miura K (1997) The propeptide of subtilisin BPN' as a temporary inhibitor and effect of an amino acid replacement on its inhibitory activity. FEBS Lett 411(1):128–132
CrossRef
55.
Lenney JF (1975) Three yeast proteins that specifically inhibit yeast proteases A, B, and C. J Bacteriol 122(3):1265–1273
56.
Magni G, Drewniak M, Santarelli I, Huang CY (1986) Reexamination of the activation of yeast proteinase B at pH 5: loss of inhibition effect of proteinase B inhibitors. Biochem Int 12(4):557–565
57.
Maier K, Muller H, Holzer H (1979) Purification and molecular characterization of two inhibitors of yeast proteinase B. J Biol Chem 254(17):8491–8497
58.
Maier K, Muller H, Tesch R, Witt I, Holzer H (1979) Amino acid sequence of yeast proteinase B inhibitor 1 comparison with inhibitor 2. Biochem Biophys Res Commun 91(4):1390–1398
CrossRef
59.
Schu P, Suarez Rendueles P, Wolf DH (1991) The proteinase yscB inhibitor (
PB12) gene of yeast and studies on the function of its protein product. Eur J Biochem 197(1):1–7
CrossRef
60.
Slusarewicz P, Xu ZY, Seefeld K, Haas A, Wickner WT (1997) I-2(B) is a small cytosolic protein that participates in vacuole fusion. Proc Natl Acad Sci U S A 94(11):5582–5587
CrossRef
61.
Xu ZY, Mayer A, Muller E, Wickner W (1997) A heterodimer of thioredoxin and I-2(B) cooperates with Sec18p (NSF) to promote yeast vacuole inheritance. J Cell Biol 136(2):299–306
CrossRef
62.
Dohmae N, Takio K, Tsumuraya Y, Hashimoto Y (1995) The complete amino acid sequences of two serine proteinase inhibitors from the fruiting bodies of a basidiomycete,
Pleurotus ostreatus. Arch Biochem Biophys 316(1):498–506
CrossRef
63.
Kojima S, Hisano Y (2002) Requirement for hydrophobic Phe residues in
Pleurotus ostreatus proteinase A inhibitor 1 for stable inhibition. Protein Eng 15(4):325–329
CrossRef
64.
Kojima S, Hisano Y, Miura K (2001) Alteration of inhibitory properties of
Pleurotus ostreatus proteinase A inhibitor 1 by mutation of its C-terminal region. Biochem Biophys Res Commun 281(5):1271–1276
CrossRef
65.
Kojima S, Iwahara A, Hisano Y, Yanai H (2007) Effects of hydrophobic amino acid substitution in
Pleurotus ostreatus proteinase A inhibitor 1 on its structure and functions as protease inhibitor and intramolecular chaperone. Protein Eng Des Sel 20(5):211–217
CrossRef
66.
Kojima S, Iwahara A, Yanai H (2005) Inhibitor-assisted refolding of protease: a protease inhibitor as an intramolecular chaperone. FEBS Lett 579(20):4430–4436
CrossRef
67.
Sasakawa H, Yoshinaga S, Kojima S, Tamura A (2002) Structure of POIA1, a homologous protein to the propeptide of subtilisin: implication for protein foldability and the function as an intramolecular chaperone. J Mol Biol 317(1):159–167
CrossRef
68.
Beaufour M, Godin F, Vallee B, Cadene M, Benedetti H (2012) Interaction proteomics suggests a new role for the Tfs1 protein in yeast. J Proteome Res 11(6):3211–3218
CrossRef
69.
Boy-Marcotte E, Lagniel G, Perrot M, Bussereau F, Boudsocq A, Jacquet M, Labarre J (1999) The heat shock response in yeast: differential regulations and contributions of the Msn2p/Msn4p and Hsf1p regulons. Mol Microbiol 33(2):274–283
CrossRef
70.
Bruun AW, Svendsen I, Sorensen SO, Kielland-Brandt MC, Winther JR (1998) A high-affinity inhibitor of yeast carboxypeptidase Y is encoded by TFS1 and shows homology to a family of lipid binding proteins. Biochemistry 37(10):3351–3357
CrossRef
71.
Fukada H, Mima J, Nagayama M, Kato M, Ueda M (2007) Biochemical analysis of the yeast proteinase inhibitor (IC) homolog ICh and its comparison with IC. Biosci Biotechnol Biochem 71(2):472–480
CrossRef
72.
Godon C, Lagniel G, Lee J, Buhler JM, Kieffer S, Perrot M, Boucherie H, Toledano MB, Labarre J (1998) The H
2O
2 stimulon in
Saccharomyces cerevisiae. J Biol Chem 273(35):22480–22489
CrossRef
73.
Mima J, Fukada H, Nagayama M, Ueda M (2006) Specific membrane binding of the carboxypeptidase Y inhibitor I(C), a phosphatidylethanolamine-binding protein family member. FEBS J 273(23):5374–5383
CrossRef
74.
Mima J, Hayashida M, Fujii T, Narita Y, Hayashi R, Ueda M, Hata Y (2005) Structure of the carboxypeptidase Y inhibitor I
C in complex with the cognate proteinase reveals a novel mode of the proteinase-protein inhibitor interaction. J Mol Biol 346(5):1323–1334
CrossRef
75.
Mima J, Kondo T, Hayashi R (2002) N-terminal acetyl group is essential for the inhibitory function of carboxypeptidase Y inhibitor (I(C)). FEBS Lett 532(1–2):207–210
CrossRef
76.
Mima J, Narita Y, Chiba H, Hayashi R (2003) The multiple site binding of carboxypeptidase Y inhibitor (IC) to the cognate proteinase. Implications for the biological roles of the phosphatidylethanolamine-binding protein. J Biol Chem 278(32):29792–29798
CrossRef
77.
Avanzo Caglič P, Renko M, Turk D, Kos J, Sabotič J (2014) Fungal beta-trefoil trypsin inhibitors cnispin and cospin demonstrate the plasticity of the beta-trefoil fold. Biochim Biophys Acta 1844(10):1749–1756
CrossRef
78.
Sabotič J, Bleuler-Martinez S, Renko M, Avanzo Caglič P, Kallert S, Štrukelj B, Turk D, Aebi M, Kos J, Künzler M (2012) Structural basis of trypsin inhibition and entomotoxicity of cospin, serine protease inhibitor involved in defense of
Coprinopsis cinerea fruiting bodies. J Biol Chem 287(6):3898–3907
CrossRef
79.
Avanzo P, Sabotič J, Anžlovar S, Popovič T, Leonardi A, Pain RH, Kos J, Brzin J (2009) Trypsin-specific inhibitors from the basidiomycete
Clitocybe nebularis with regulatory and defensive functions. Microbiology 155(Pt 12):3971–3981
CrossRef
80.
Sabotič J, Trček T, Popovič T, Brzin J (2007) Basidiomycetes harbour a hidden treasure of proteolytic diversity. J Biotechnol 128(2):297–307
CrossRef
81.
Odani S, Tominaga K, Kondou S, Hori H, Koide T, Hara S, Isemura M, Tsunasawa S (1999) The inhibitory properties and primary structure of a novel serine proteinase inhibitor from the fruiting body of the basidiomycete,
Lentinus edodes. Eur J Biochem 262(3):915–923
CrossRef
82.
Okumura Y, Ogawa K, Uchiya K (2007) Characterization and primary structure of elastase inhibitor, AFLEI, from
Aspergillus flavus. Nihon Ishinkin Gakkai Zasshi (Jpn J Med Mycol) 48(1):13–18
CrossRef
83.
Okumura Y, Ogawa K, Uchiya K, Komori Y, Nonogaki T, Nikai T (2008) Biological properties of elastase inhibitor, AFLEI from
Aspergillus flavus. Nihon Ishinkin Gakkai Zasshi (Jpn J Med Mycol) 49(2):87–93
CrossRef
84.
Okumura Y, Ogawa K, Uchiya K, Nikai T (2006) Isolation and characterization of a novel elastase inhibitor, AFLEI from
Aspergillus flavus. Nippon Ishinkin Gakkai Zasshi 47(3):219–224
CrossRef
85.
Okumura Y, Ogawa K, Nikai T (2004) Elastase and elastase inhibitor from
Aspergillus fumigatus,
Aspergillus flavus and
Aspergillus niger. J Med Microbiol 53(Pt 5):351–354
CrossRef
86.
Okumura Y, Matsui T, Ogawa K, Uchiya K, Nikai T (2008) Biochemical properties and primary structure of elastase inhibitor AFUEI from
Aspergillus fumigatus. J Med Microbiol 57(Pt 7):803–808
CrossRef
87.
Sakuma M, Imada K, Okumura Y, Uchiya K, Yamashita N, Ogawa K, Hijikata A, Shirai T, Homma M, Nikai T (2013) X-ray structure analysis and characterization of AFUEI, an elastase inhibitor from
Aspergillus fumigatus. J Biol Chem 288(24):17451–17459
CrossRef
88.
Brzin J, Rogelj B, Popovič T, Štrukelj B, Ritonja A (2000) Clitocypin, a new type of cysteine proteinase inhibitor from fruit bodies of mushroom
Clitocybe nebularis. J Biol Chem 275(26):20104–20109
CrossRef
89.
Sabotič J, Galeša K, Popovič T, Leonardi A, Brzin J (2007) Comparison of natural and recombinant clitocypins, the fungal cysteine protease inhibitors. Protein Expr Purif 53(1):104–111
CrossRef
90.
Sabotič J, Gaser D, Rogelj B, Gruden K, Štrukelj B, Brzin J (2006) Heterogeneity in the cysteine protease inhibitor clitocypin gene family. Biol Chem 387(12):1559–1566
CrossRef
91.
Sabotič J, Kilaru S, Budič M, Gašparič MB, Gruden K, Bailey AM, Foster GD, Kos J (2011) Protease inhibitors clitocypin and macrocypin are differentially expressed within basidiomycete fruiting bodies. Biochimie 93:1685–1693
CrossRef
92.
Renko M, Sabotič J, Mihelič M, Brzin J, Kos J, Turk D (2010) Versatile loops in mycocypins inhibit three protease families. J Biol Chem 285(1):308–316
CrossRef
93.
Sabotič J, Popovič T, Puizdar V, Brzin J (2009) Macrocypins, a family of cysteine protease inhibitors from the basidiomycete
Macrolepiota procera. FEBS J 276(16):4334–4345
CrossRef
94.
Rooney HC, Van't Klooster JW, van der Hoorn RA, Joosten MH, Jones JD, de Wit PJ (2005)
Cladosporium Avr2 inhibits tomato Rcr3 protease required for
Cf-2-dependent disease resistance. Science 308(5729):1783–1786
CrossRef
95.
Shabab M, Shindo T, Gu C, Kaschani F, Pansuriya T, Chintha R, Harzen A, Colby T, Kamoun S, van der Hoorn RA (2008) Fungal effector protein AVR2 targets diversifying defense-related cys proteases of tomato. Plant Cell 20(4):1169–1183
CrossRef
96.
van Esse HP, Van't Klooster JW, Bolton MD, Yadeta KA, van Baarlen P, Boeren S, Vervoort J, de Wit PJ, Thomma BP (2008) The Cladosporium fulvum virulence protein Avr2 inhibits host proteases required for basal defense. Plant Cell 20(7):1948–1963
CrossRef
97.
Van't Klooster JW, Van der Kamp MW, Vervoort J, Beekwilder J, Boeren S, Joosten MH, Thomma BP, De Wit PJ (2011) Affinity of Avr2 for tomato cysteine protease Rcr3 correlates with the Avr2-triggered Cf-2-mediated hypersensitive response. Mol Plant Pathol 12(1):21–30
CrossRef
98.
Dreyer T, Valler MJ, Kay J, Charlton P, Dunn BM (1985) The selectivity of action of the aspartic-proteinase inhibitor IA3 from yeast (
Saccharomyces cerevisiae). Biochem J 231(3):777–779
CrossRef
99.
Green TB, Ganesh O, Perry K, Smith L, Phylip LH, Logan TM, Hagen SJ, Dunn BM, Edison AS (2004) IA3, an aspartic proteinase inhibitor from
Saccharomyces cerevisiae, is intrinsically unstructured in solution. Biochemistry 43(14):4071–4081
CrossRef
100.
Phylip LH, Lees WE, Brownsey BG, Bur D, Dunn BM, Winther JR, Gustchina A, Li M, Copeland T, Wlodawer A, Kay J (2001) The potency and specificity of the interaction between the IA3 inhibitor and its target aspartic proteinase from
Saccharomyces cerevisiae. J Biol Chem 276(3):2023–2030
CrossRef
101.
Schu P, Wolf DH (1991) The proteinase yscA-inhibitor, IA3, gene. Studies of cytoplasmic proteinase inhibitor deficiency on yeast physiology. FEBS Lett 283(1):78–84
CrossRef
102.
Winterburn TJ, Wyatt DM, Phylip LH, Bur D, Harrison RJ, Berry C, Kay J (2007) Key features determining the specificity of aspartic proteinase inhibition by the helix-forming IA3 polypeptide. J Biol Chem 282(9):6508–6516
CrossRef
103.
Li M, Phylip LH, Lees WE, Winther JR, Dunn BM, Wlodawer A, Kay J, Gustchina A (2000) The aspartic proteinase from
Saccharomyces cerevisiae folds its own inhibitor into a helix. Nat Struct Biol 7(2):113–117
CrossRef
104.
Narayanan R, Ganesh OK, Edison AS, Hagen SJ (2008) Kinetics of folding and binding of an intrinsically disordered protein: the inhibitor of yeast aspartic proteinase YPrA. J Am Chem Soc 130(34):11477–11485
CrossRef
105.
Nunez de Castro I, Holzer H (1976) Studies on the proteinase-A inhibitor I3A from yeast. Hoppe Seylers Z Physiol Chem 357(5):727–734
CrossRef
106.
Padron-Garcia JA, Alonso-Tarajano M, Alonso-Becerra E, Winterburn TJ, Ruiz Y, Kay J, Berry C (2009) Quantitative structure activity relationship of IA(3)-like peptides as aspartic proteinase inhibitors. Proteins 75(4):859–869
CrossRef
107.
Saheki T, Matsuda Y, Holzer H (1974) Purification and characterization of macromolecular inhibitors of proteinase A from yeast. Eur J Biochem 47(2):325–332
CrossRef
108.
Lukanc T, Brzin J, Kos J, Sabotič J (2016) Trypsin-specific inhibitors from the wild mushrooms
Macrolepiota procera,
Armillaria mellea and
Amanita phalloides. Acta Biochim Pol 63(3):425–428
109.
Zuchowski J, Jaszek M, Grzywnowicz K (2009) Novel trypsin inhibitors from the white rot fungus
Abortiporus biennis. Partial purification and characterization. Biochemistry-(Mosc) 74(2):226–230
CrossRef
110.
Ali PP, Sapna K, Mol KR, Bhat SG, Chandrasekaran M, Elyas KK (2014) Trypsin inhibitor from edible mushroom
Pleurotus floridanus active against proteases of microbial origin. Appl Biochem Biotechnol 173(1):167–178
CrossRef
111.
Mandal K, Pentelute BL, Tereshko V, Thammavongsa V, Schneewind O, Kossiakoff AA, Kent SB (2009) Racemic crystallography of synthetic protein enantiomers used to determine the X-ray structure of plectasin by direct methods. Protein Sci 18(6):1146–1154
CrossRef
112.
Mygind PH, Fischer RL, Schnorr KM, Hansen MT, Sonksen CP, Ludvigsen S, Raventos D, Buskov S, Christensen B, De Maria L, Taboureau O, Yaver D, Elvig-Jorgensen SG, Sorensen MV, Christensen BE, Kjaerulff S, Frimodt-Moller N, Lehrer RI, Zasloff M, Kristensen HH (2005) Plectasin is a peptide antibiotic with therapeutic potential from a saprophytic fungus. Nature 437(7061):975–980
CrossRef
113.
Rothan HA, Mohamed Z, Suhaeb AM, Abd Rahman N, Yusof R (2013) Antiviral cationic peptides as a strategy for innovation in global health therapeutics for dengue virus: high yield production of the biologically active recombinant plectasin peptide. OMICS 17(11):560–567
CrossRef
114.
Choi HS, Cho HY, Yang HC, Ra KS, Suh HJ (2001) Angiotensin I-converting enzyme inhibitor from
Grifola frondosa. Food Res Int 34(2–3):177–182
CrossRef
115.
Geng XR, Tian GT, Zhang WW, Zhao YC, Zhao LY, Ryu M, Wang HX, Ng TB (2015) Isolation of an angiotensin i-converting enzyme inhibitory protein with antihypertensive effect in spontaneously hypertensive rats from the edible wild mushroom
Leucopaxillus tricolor. Molecules 20(6):10141–10153
CrossRef
116.
Jang JH, Jeong SC, Kim JH, Lee YH, Ju YC, Lee JS (2011) Characterisation of a new antihypertensive angiotensin I-converting enzyme inhibitory peptide from
Pleurotus cornucopiae. Food Chem 127(2):412–418
CrossRef
117.
Kang MG, Kim YH, Bolormaa Z, Kim MK, Seo GS, Lee JS (2013) Characterization of an antihypertensive angiotensin I-converting enzyme inhibitory peptide from the edible mushroom
Hypsizygus marmoreus. Biomed Res Int
118.
Lau CC, Abdullah N, Shuib AS (2013) Novel angiotensin I-converting enzyme inhibitory peptides derived from an edible mushroom,
Pleurotus cystidiosus OK Miller identified by LC-MS/MS. BMC Complement Alternat Med 13:313
CrossRef
119.
Lee DH, Kim JH, Park JS, Choi YJ, Lee JS (2004) Isolation and characterization of a novel angiotensin I-converting enzyme inhibitory peptide derived from the edible mushroom
Tricholoma giganteum. Peptides 25(4):621–627
CrossRef
120.
Ohtsuru M, Horio H, Masui H (2000) Angiotensin I-converting enzyme inhibitory peptides from pepsin digest of maitake (
Grifola frondosa). Food Sci Technol Res 6(1):9–11
CrossRef
121.
Tran HB, Yamamoto A, Matsumoto S, Ito H, Igami K, Miyazaki T, Kondo R, Shimizu K (2014) Hypotensive effects and angiotensin-converting enzyme inhibitory peptides of reishi (
Ganoderma lingzhi) auto-digested extract. Molecules 19(9):13473–13485
CrossRef
122.
Tian Y, Zhang K (2005) Purification and characteristic of proteinase inhibitor GLPIA2 from Ganoderma lucidum by submerged fermentation. Se Pu 23(3):267–269
123.
Zhang GQ, Zhang QP, Sun Y, Tian YP, Zhou ND (2012) Purification of a novel pepsin inhibitor from
Coriolus versicolor and its biochemical properties. J Food Sci 77(3):C293–297
CrossRef
124.
Menon V, Rao M (2012) A low-molecular-mass aspartic protease inhibitor from a novel
Penicillium sp.: implications in combating fungal infections. Microbiology 158(Pt 7):1897–1907
CrossRef
125.
Ali R, Zaidi ZH (1985) Isolation of the first trypsin inhibitor from the genus
Aspergillus. Biosci Rep 5(8):697–700
CrossRef
126.
Gzogyan LA, Proskuryakov MT, Ievleva EV, Valueva TA (2005) Trypsin-like proteinases and trypsin inhibitors in fruiting bodies of higher fungi. Appl Biochem Microbiol 41(6):538–541
CrossRef
127.
Vetter J (2000) Trypsin inhibitory activity of basidiomycetous mushrooms. Eur Food Res Technol 211:346–348
CrossRef
128.
Doljak B, Stegnar M, Urleb U, Kreft S, Umek A, Ciglaric M, Strukelj B, Popovic T (2001) Screening for selective thrombin inhibitors in mushrooms. Blood Coagul Fibrinolysis 12(2):123–128
CrossRef
129.
Ali PPM, Sapna K, Mol KRR, Bhat SG, Chandrasekaran M, Elyas KK (2014) Trypsin inhibitor from edible mushroom
Pleurotus floridanus active against proteases of microbial origin. Appl Biochem Biotechnol 173(1):167–178
CrossRef
130.
Zuchowski J, Grzywnowicz K (2006) Partial purification of proteinase K inhibitors from liquid-cultured mycelia of the white rot basidiomycete
Trametes versicolor. Curr Microbiol 53(4):259–264
CrossRef
131.
Gettins PG (2002) Serpin structure, mechanism, and function. Chem Rev 102(12):4751–4804
CrossRef
132.
Huntington JA (2011) Serpin structure, function and dysfunction. J Thromb Haemost 9(Suppl 1):26–34
CrossRef
133.
Law RH, Zhang Q, McGowan S, Buckle AM, Silverman GA, Wong W, Rosado CJ, Langendorf CG, Pike RN, Bird PI, Whisstock JC (2006) An overview of the serpin superfamily. Genome Biol 7(5):216
CrossRef
134.
OCuiv P, Gupta R, Goswami HP, Morrison M (2013) Extending the cellulosome paradigm: the modular
Clostridium thermocellum cellulosomal serpin PinA is a broad-spectrum inhibitor of subtilisin-like proteases. Appl Environ Microbiol 79(19):6173–6175
CrossRef
135.
Matern H, Hoffmann M, Holzer H (1974) Isolation and characterization of the carboxypeptidase Y inhibitor from yeast. Proc Natl Acad Sci U S A 71(12):4874–4878
CrossRef
136.
Matern H, Barth R, Holzer H (1979) Chemical and physical properties of the carboxypeptidase Y-inhibitor from Baker's yeast. Biochim Biophys Acta 567(2):503–510
CrossRef
137.
Sabotič J, Ohm RA, Künzler M (2016) Entomotoxic and nematotoxic lectins and protease inhibitors from fungal fruiting bodies. Appl Microbiol Biotechnol 100(1):91–111
138.
Okumura Y, Suzukawa M, Uchiya K, Ogawa K, Komori Y, Yamashita N, Nikai T (2013) Characterization and identification of partial amino acid sequence of a novel elastase inhibitor, Asnidin from
Aspergillus nidulans. Med Mycol J 54(3):279–284
CrossRef
139.
Mueller AN, Ziemann S, Treitschke S, Assmann D, Doehlemann G (2013) Compatibility in the
Ustilago maydis-maize interaction requires inhibition of host cysteine proteases by the fungal effector Pit2. PLoS Pathog 9(2)
140.
Reed JC, Bischoff JR (2000) BIRinging chromosomes through cell division - And survivin' the experience. Cell 102(5):545–548
CrossRef
141.
Walter D, Wissing S, Madeo F, Fahrenkrog B (2006) The inhibitor-of-apoptosis protein Bir1p protects against apoptosis in
S. cerevisiae and is a substrate for the yeast homologue of Omi/HtrA2. J Cell Sci 119(9):1843–1851
CrossRef
142.
Owsianowski E, Walter D, Fahrenkrog B (2008) Negative regulation of apoptosis in yeast. Biochim Biophys Acta 1783(7):1303–1310
CrossRef
143.
Misas-Villamil JC, van der Hoorn RA (2008) Enzyme-inhibitor interactions at the plant-pathogen interface. Curr Opin Plant Biol 11(4):380–388
CrossRef
144.
Kaschani F, Shabab M, Bozkurt T, Shindo T, Schornack S, Gu C, Ilyas M, Win J, Kamoun S, van der Hoorn RA (2010) An effector-targeted protease contributes to defense against
Phytophthora infestans and is under diversifying selection in natural hosts. Plant Physiol 154(4):1794–1804
CrossRef
145.
Song J, Win J, Tian M, Schornack S, Kaschani F, Ilyas M, van der Hoorn RA, Kamoun S (2009) Apoplastic effectors secreted by two unrelated eukaryotic plant pathogens target the tomato defense protease Rcr3. Proc Natl Acad Sci U S A 106(5):1654–1659
CrossRef
146.
Grzywnowicz K, Zaluski D, Walczynski T, Prendecka M, SmOLarz H (2010) Natural inhibitors of metalloproteinases from fungi and herbs - new bioactive extracts of pharmacological potential. AnnaLes UMCS - POLOnia sec DDD 23(2, 6):41–45
147.
Grzywnowicz K, Walczynski T, Jaszek M (2011) Natural inhibitors of metalloproteinases from various families of MA clan from wood degrading fungi. AnnaLes UMCS - POLOnia sec DDD 24(3, 24):209–215
148.
Markaryan A, Lee JD, Sirakova TD, Kolattukudy PE (1996) Specific inhibition of mature fungal serine proteinases and metalloproteinases by their propeptides. J Bacteriol 178(8):2211–2215
CrossRef
149.
Koo KC, Lee DH, Kim JH, Yu HE, Park JS, Lee JS (2006) Production and characterization of antihypertensive angiotensin I-converting enzyme inhibitor from
Pholiota adiposa. J Microbiol Biotechnol 16(5):757–763
150.
Lau CC, Abdullah N, Shuib AS, Aminudin N (2014) Novel angiotensin I-converting enzyme inhibitory peptides derived from edible mushroom
Agaricus bisporus (JE Lange) Imbach identified by LC-MS/MS. Food Chem 148:396–401
CrossRef
151.
Ansor NM, Abdullah N, Aminudin N (2013) Anti-angiotensin converting enzyme (ACE) proteins from mycelia of
Ganoderma lucidum (Curtis) P. Karst. BMC Complement Altern Med 13:236
CrossRef
152.
Wang J, Wang Y, Chu XK, Hagen SJ, Han W, Wang EK (2011) Multi-scaled explorations of binding-induced folding of intrinsically disordered protein inhibitor IA3 to its target enzyme. PloS Comput Biol 7(4)
153.
Sabotič J, Koruza K, Gabor B, Peterka M, Barut M, Kos J, Brzin J (2012) The value of fungal protease inhibitors in affinity chromatography. In: Magdeldin S (ed) Affinity chromatography. InTech, Rijeka
154.
Terra WR, Ferreira C (1994) Insect digestive enzymes - properties, compartmentalization and function. Comparative Biochem Physiol B 109(1):1–62
CrossRef
155.
Haq SK, Atif SM, Khan RH (2004) Protein proteinase inhibitor genes in combat against insects, pests, and pathogens: natural and engineered phytoprotection. Arch Biochem Biophys 431(1):145–159
CrossRef
156.
Ryan CA (1990) Protease inhibitors in plants - genes for improving defenses against insects and pathogens. Annu Rev Phytopathol 28:425–449
CrossRef
157.
Jongsma MA, Beekwilder J (2008) Plant protease inhibitors: functional evolution for defense. In: Schaller A (ed) Induced plant resistance to herbivory. Springer, Netherlands
158.
Jongsma MA, Beekwilder J (2011) Co-evolution of insect proteases and plant protease inhibitors. Curr Protein Pept Sci 12(5):437–447
CrossRef
159.
Šmid I, Gruden K, Buh Gašparič M, Koruza K, Petek M, Pohleven J, Brzin J, Kos J, Žel J, Sabotič J (2013) Inhibition of the growth of Colorado potato beetle larvae by macrocypins, protease inhibitors from the parasol mushroom. J Agric Food Chem 61(51):12499–12509
CrossRef
160.
Šmid I, Rotter A, Gruden K, Brzin J, Buh Gašparič M, Kos J, Žel J, Sabotič J (2015) Clitocypin, a fungal cysteine protease inhibitor, exerts its insecticidal effect on Colorado potato beetle larvae by inhibiting their digestive cysteine proteases. Pestic Biochem Physiol 122:59–66
CrossRef
161.
Kidrič M, Kos J, Sabotič J (2014) Proteases and their endogenous inhibitors in the plant response to abiotic stress. Botanica Serbica 38(1):139–158
162.
Vaseva I, Sabotič J, Šuštar-Vozlič J, Meglič V, Kidrič M, Demirevska K, Simova-Stoilova L (2011) The response of plants to drought stress – the role of dehydrins, chaperones, proteases and protease inhibitors in maintaining cellular protein function. In: Neves DF, Sanz JD (eds) Droughts: new research. Nova Science Publishers Inc., New York
163.
Drag M, Salvesen GS (2010) Emerging principles in protease-based drug discovery. Nat Rev Drug Discov 9(9):690–701
CrossRef
164.
Haq SK, Rabbani G, Ahmad E, Atif SM, Khan RH (2010) Protease inhibitors: a panacea? J Biochem Mol Toxicol 24(4):270–277
CrossRef
165.
Turk B (2006) Targeting proteases: successes, failures and future prospects. Nat Rev Drug Discov 5(9):785–799
CrossRef
166.
Coussens LM, Fingleton B, Matrisian LM (2002) Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295(5564):2387–2392
CrossRef
167.
Abbenante G, Fairlie DP (2005) Protease inhibitors in the clinic. Med Chem 1(1):71–104
CrossRef
168.
Bialas A, Kafarski P (2009) Proteases as anti-cancer targets–molecular and biological basis for development of inhibitor-like drugs against cancer. Anticancer Agents Med Chem 9(7):728–762
CrossRef
169.
Cecarini V, Cuccioloni M, Mozzicafreddo M, Bonfili L, Angeletti M, Eleuteri AM (2011) Targeting proteasomes with natural occurring compounds in cancer treatment. Curr Cancer Drug Targets 11(3):307–324
CrossRef
170.
Kisselev AF, Goldberg AL (2001) Proteasome inhibitors: from research tools to drug candidates. Chem Biol 8(8):739–758
CrossRef
- Titel
- Fungal Protease Inhibitors
- DOI
- https://doi.org/10.1007/978-3-319-25001-4_10
- Autoren:
-
Jerica Sabotič
Janko Kos
- Sequenznummer
- 27
- Kapitelnummer
- 27