Skip to main content

2018 | OriginalPaper | Buchkapitel

3. Funktionswerkstoffe

verfasst von : Johannes Michael Sinapius, Sebastian Geier

Erschienen in: Adaptronik

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Übersicht

Dieses Kapitel zeigt zunächst die Grundprinzipien der Funktionswerkstoffe, die energiewandelnde Eigenschaften haben, auf. Es leitet die grundlegenden Kenngrößen von Funktionswerkstoffen her. Die Vorstellung zweier inzwischen weit verbreiteter Klassen von Funktionswerkstoffen, elektromechanische Wandler und thermomechanische Wandler konkretisiert diese grundlegenden Eigenschaften. Das Kapitel stellt ausführlich die phänomenologischen Eigenschaften der Energiewandlung vor und präsentiert einfache Modelle für die komplexen Wandlungsvorgänge. Eine abschließende Übersicht gibt Auskunft über weitere, zum Teil in der Forschung befindliche Funktionswerkstoffe. Ein Beispiel aus der aktuellen Forschung zu Funktionswerkstoffen ergänzt diese Übersicht.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Jacques Curie (1855–1941) erhielt 1903 zusammen mit Marie Curie und Henri Becquerel den Nobelpreis für Physik für die „gemeinsamen Arbeiten über die von H. Becquerel entdeckten Strahlungsphänomene“. Für die Entdeckung der Piezoelektrizität wurden die Brüder Curie 1895 mit dem Prix Gaston Planté der Académie des sciences ausgezeichnet
 
2
Gabriel Lippmann (1845–1921), Französischer Physiker, erhielt 1908 den Nobelpreis für Physik „für seine auf dem Interferenzphänomen begründete Methode, Farben photographisch wiederzugeben“
 
3
eingeführt von Max Planck(1858–1947), Deutscher Physiker, benannt nach Ludwig Boltzmann (1844–1906), Österreichischer Physiker und Philosoph
 
4
benannt nach Pierre-Ernest Weiss (1865–1940), Französischer Physiker
 
5
benannt nach Felix Bloch (1905–1983), Schweizerisch-amerikanischer Physiker, erhielt 1952 den Nobelpreis für Physik.
 
6
benannt nach Robert Hooke (1635–1702), Englischer Universalgelehrter
 
7
benannt nach William Thomson Kelvin, Schottisch-irischer Physiker, 1824–1907 und Woldemar Voigt, Physiker, 1850–1919
 
8
benannt nach Jean Baptiste Joseph Fourier (1768–1830), Französischer Mathematiker und Physiker.
 
9
Wilhelm Conrad Röntgen, Deutscher Physiker,1845–1923, erster Nobelpreisträger für Physik 1901
 
10
benannt nach Sir William Chandler Roberts-Austen (1843–1902), englischer Metallurg
 
11
nach Adolf Martens (1850–1914) benannt, deutscher Werkstoffkundler und Gründer der Bundesanstalt für Materialforschung und -prüfung
 
12
nach James Prescott Joule (1818–1889), britischer Physiker
 
Literatur
1.
Zurück zum Zitat T. M. Arruda, M. Heon, V. Presser, P. C. Hillesheim, S. Dai, Y. Gogotsi, S. V. Kalinin, N. Blake, In situ tracking of the nanoscale expansion of porous carbon electrodes. Energy Environ. Sci. 6, 225–231 (2013)CrossRef T. M. Arruda, M. Heon, V. Presser, P. C. Hillesheim, S. Dai, Y. Gogotsi, S. V. Kalinin, N. Blake, In situ tracking of the nanoscale expansion of porous carbon electrodes. Energy Environ. Sci. 6, 225–231 (2013)CrossRef
2.
Zurück zum Zitat J. N. Barisci, G. M. Spinks, G. G.Wallace, J. D. Madden, R. H. Baughman, Increased actuation rate of electromechanical carbon nanotube actuators using potential pulses with resistance compensation. Smart Mater. Struct. 12, 549–555 (2003)CrossRef J. N. Barisci, G. M. Spinks, G. G.Wallace, J. D. Madden, R. H. Baughman, Increased actuation rate of electromechanical carbon nanotube actuators using potential pulses with resistance compensation. Smart Mater. Struct. 12, 549–555 (2003)CrossRef
3.
Zurück zum Zitat J. N. Barisci, G. G. Wallace, R. H. Baughman, Electrochemical characterization of single-walled carbon nanotube electrodes. J. Electrochem. Soc. 147(12), 4580–4583 (2000)CrossRef J. N. Barisci, G. G. Wallace, R. H. Baughman, Electrochemical characterization of single-walled carbon nanotube electrodes. J. Electrochem. Soc. 147(12), 4580–4583 (2000)CrossRef
4.
Zurück zum Zitat J. N. Barisci, G. G. Wallace, R. H. Baughman, Electrochemical quartz crystal microbalance studies of single-wall carbon nanotubes in aqueous and non-aqueous solutions. Electrochim. Acta. 46, 509–517 (2000)CrossRef J. N. Barisci, G. G. Wallace, R. H. Baughman, Electrochemical quartz crystal microbalance studies of single-wall carbon nanotubes in aqueous and non-aqueous solutions. Electrochim. Acta. 46, 509–517 (2000)CrossRef
5.
Zurück zum Zitat J. N. Barisci, G. G. Wallace, R. H. Baughman, Electrochemical studies of singlewall carbon nanotubes in aqueous solutions. J. Electroanal. Chem. 488, 92–98 (2000) J. N. Barisci, G. G. Wallace, R. H. Baughman, Electrochemical studies of singlewall carbon nanotubes in aqueous solutions. J. Electroanal. Chem. 488, 92–98 (2000)
6.
Zurück zum Zitat R. Baughman, C. X. Cui, A. Zakhidov, Z. Iqbal, J. Barisci, Carbon nanotube actuators. Science 284, 1340–1344 (1999)CrossRef R. Baughman, C. X. Cui, A. Zakhidov, Z. Iqbal, J. Barisci, Carbon nanotube actuators. Science 284, 1340–1344 (1999)CrossRef
7.
Zurück zum Zitat A. Cao, P. L. Dickrell, W. G. Sawyer, M. N. Ghasemi-Nejhad, P. M. Ajayan, Supercompressible foam-like carbon nanotube films. Science 310, 1307 (2005) A. Cao, P. L. Dickrell, W. G. Sawyer, M. N. Ghasemi-Nejhad, P. M. Ajayan, Supercompressible foam-like carbon nanotube films. Science 310, 1307 (2005)
8.
Zurück zum Zitat F. Carpu, P. Chiarelle, D. Mazzoldi, A. De Rossi, Electromechanical characterisation of dielectric elastomer planar actuators: comparative evaluation of different electrode materials and different counterloads. Sensor Actuat. A-Phys. 107, 85–95 (2003) F. Carpu, P. Chiarelle, D. Mazzoldi, A. De Rossi, Electromechanical characterisation of dielectric elastomer planar actuators: comparative evaluation of different electrode materials and different counterloads. Sensor Actuat. A-Phys. 107, 85–95 (2003)
9.
Zurück zum Zitat I. Chopra, J. Sirohi, Smart Structures Theory (Cambridge University Press, 2014) I. Chopra, J. Sirohi, Smart Structures Theory (Cambridge University Press, 2014)
10.
Zurück zum Zitat M. S. Dresselhaus, A. Jorio, O. Rabin, Carbon Nanotubes and Bismuth Nanowires. (CRC Press Taylor & Francis Group, Boca Raton, 2006) M. S. Dresselhaus, A. Jorio, O. Rabin, Carbon Nanotubes and Bismuth Nanowires. (CRC Press Taylor & Francis Group, Boca Raton, 2006)
11.
Zurück zum Zitat H. Ebron, Z. Yang, D. J. Seyer, M. E. Kozlov, J. Oh, H. Xie, J. Razal, L. J. Hall, J. P. Ferraris, A. G. MacDiarmid, R. H. Baughman, Fuel-powered artificial muscles. Science 311, 1580–1583 (2006)CrossRef H. Ebron, Z. Yang, D. J. Seyer, M. E. Kozlov, J. Oh, H. Xie, J. Razal, L. J. Hall, J. P. Ferraris, A. G. MacDiarmid, R. H. Baughman, Fuel-powered artificial muscles. Science 311, 1580–1583 (2006)CrossRef
12.
Zurück zum Zitat T. Fett, D. Munz, G. Thun, Bending strength of a PZT ceramic under electric fields. J. Eur. Ceram. Soc. 23, 195–202 (2003)CrossRef T. Fett, D. Munz, G. Thun, Bending strength of a PZT ceramic under electric fields. J. Eur. Ceram. Soc. 23, 195–202 (2003)CrossRef
13.
Zurück zum Zitat T. Fett, G. Munz, G. Thun, Tensile and bending strength of piezoelectric ceramics. J. Mater. Sci. Lett. 18, 1899–1902 (1999) T. Fett, G. Munz, G. Thun, Tensile and bending strength of piezoelectric ceramics. J. Mater. Sci. Lett. 18, 1899–1902 (1999)
14.
Zurück zum Zitat H. Funakubo (Hrsg.), Shape Memory Alloys (Taylor & Francis, 1987) H. Funakubo (Hrsg.), Shape Memory Alloys (Taylor & Francis, 1987)
15.
Zurück zum Zitat Y. N. Gartstein, A. A. Zakhidov, R. H. Baughman, Charge-induced anisotropic distorsion of semiconducting and metallic carbon nanotubes. Phys. Rev. Lett. 89(4), 045503–1 – 045503–4 (2002) Y. N. Gartstein, A. A. Zakhidov, R. H. Baughman, Charge-induced anisotropic distorsion of semiconducting and metallic carbon nanotubes. Phys. Rev. Lett. 89(4), 045503–1 – 045503–4 (2002)
16.
Zurück zum Zitat S. Geier, T. Mahrholz, P. Wierach, M. Sinapius, Carbon nanotubes array actuators. Smart. Mater. Struct. 22(9), 094003 (2013)CrossRef S. Geier, T. Mahrholz, P. Wierach, M. Sinapius, Carbon nanotubes array actuators. Smart. Mater. Struct. 22(9), 094003 (2013)CrossRef
17.
Zurück zum Zitat S. Geier, T. Mahrholz, P. Wierach, M. Sinapius, Experimental Investigations of Actuators Based on Carbon Nanotube Architectures (Springer International Publishing AG, 2017), S. 67–95 S. Geier, T. Mahrholz, P. Wierach, M. Sinapius, Experimental Investigations of Actuators Based on Carbon Nanotube Architectures (Springer International Publishing AG, 2017), S. 67–95
18.
Zurück zum Zitat S. Geier, T. Mahrholz, P. Wierach, M. Sinapius, Morphology- and ion size-induced actuation of carbon nanotube architectures. Int’l. J. Smart Nano Mater. 9(2), 111–134 (2018)CrossRef S. Geier, T. Mahrholz, P. Wierach, M. Sinapius, Morphology- and ion size-induced actuation of carbon nanotube architectures. Int’l. J. Smart Nano Mater. 9(2), 111–134 (2018)CrossRef
19.
Zurück zum Zitat H. R. Gerischer, D. McIntyre, W. Storck, Density of the electronic states of graphite: derivation from differential capacitance measurements. J. Phys. Chem. 91, 1930–1935 (1987)CrossRef H. R. Gerischer, D. McIntyre, W. Storck, Density of the electronic states of graphite: derivation from differential capacitance measurements. J. Phys. Chem. 91, 1930–1935 (1987)CrossRef
20.
Zurück zum Zitat S. Ghosh, V. Gadagkar, A. K. Sood, Strains induced in carbon nanotubes due to the presents of ions: ab initio restricted Hatree-Fock calculations. Chem. Rev. Lett. 406, 10–14 (2005)CrossRef S. Ghosh, V. Gadagkar, A. K. Sood, Strains induced in carbon nanotubes due to the presents of ions: ab initio restricted Hatree-Fock calculations. Chem. Rev. Lett. 406, 10–14 (2005)CrossRef
21.
Zurück zum Zitat J. Guyonnet, Ferroelectric Domain Walls (Dissertation, University of Geneva, Geneva, Switzerland, 2014) J. Guyonnet, Ferroelectric Domain Walls (Dissertation, University of Geneva, Geneva, Switzerland, 2014)
22.
Zurück zum Zitat M. H. Haque, I. Kolaric, U. Vohrer, T. Wallmersperger, M. D’Ottavio, B. Kroplin, Multiwalled carbon-nanotubes-sheet actuators: theoretical and experimental investigations. Proc. SPIE 5759, Smart Structures and Materials 2005: Electroactive Polymer Actuators and Devices (EAPAD) (2005) M. H. Haque, I. Kolaric, U. Vohrer, T. Wallmersperger, M. D’Ottavio, B. Kroplin, Multiwalled carbon-nanotubes-sheet actuators: theoretical and experimental investigations. Proc. SPIE 5759, Smart Structures and Materials 2005: Electroactive Polymer Actuators and Devices (EAPAD) (2005)
23.
Zurück zum Zitat G. Heckmann, Gittertheorie der festen Körper. Ergebnisse der exakten Naturwissenschaften, 4, 100–153 (1925) G. Heckmann, Gittertheorie der festen Körper. Ergebnisse der exakten Naturwissenschaften, 4, 100–153 (1925)
24.
Zurück zum Zitat E. Hernández, C. Goze, P. Bernier, A. Rubio, Elastic properties of C and BxCyNz composite nanotubes. Phys. Rev. Lett. 80, 4502 (1998)CrossRef E. Hernández, C. Goze, P. Bernier, A. Rubio, Elastic properties of C and BxCyNz composite nanotubes. Phys. Rev. Lett. 80, 4502 (1998)CrossRef
25.
Zurück zum Zitat A. Hérold, Crystallo-Chemistry of Carbon Intercalation Compounds, Bd. 6 (D. Reidel Publishing Company, 1979) A. Hérold, Crystallo-Chemistry of Carbon Intercalation Compounds, Bd. 6 (D. Reidel Publishing Company, 1979)
26.
Zurück zum Zitat J. Hesselbach, Adaptronics and Smart Structures, Kapitel 6.4 Shape Memory Alloys (Springer, 1999), S. 143–160 J. Hesselbach, Adaptronics and Smart Structures, Kapitel 6.4 Shape Memory Alloys (Springer, 1999), S. 143–160
27.
Zurück zum Zitat M. Hughes, G. M. Spinks, Multiwalled carbon-nanotube actuators. Adv. Mater. 17(4), 443–446 (2005)CrossRef M. Hughes, G. M. Spinks, Multiwalled carbon-nanotube actuators. Adv. Mater. 17(4), 443–446 (2005)CrossRef
28.
Zurück zum Zitat S. Iijima, Helical microtubules of graphitic Carbon. Nature 354, 56–58 (1991)CrossRef S. Iijima, Helical microtubules of graphitic Carbon. Nature 354, 56–58 (1991)CrossRef
29.
Zurück zum Zitat T. Ikeda, Fundamentals of Piezoelectricity (Oxford University Press, 1990) T. Ikeda, Fundamentals of Piezoelectricity (Oxford University Press, 1990)
30.
Zurück zum Zitat H. Janocha, Unkonventionelle Aktoren (Oldenbourg Verlag, 2013) H. Janocha, Unkonventionelle Aktoren (Oldenbourg Verlag, 2013)
31.
Zurück zum Zitat M. Kaack, Elastische Eigenschaften von NiTi-Formgedächtnis-Legierungen (Dissertation, Ruhr-Universität Bochum, 2002) M. Kaack, Elastische Eigenschaften von NiTi-Formgedächtnis-Legierungen (Dissertation, Ruhr-Universität Bochum, 2002)
32.
Zurück zum Zitat L. Kavan, L. Dunsch, Electrochemistry of Carbon Nanotubes (Springer-Verlag GmbH, Heidelberg, 2008) L. Kavan, L. Dunsch, Electrochemistry of Carbon Nanotubes (Springer-Verlag GmbH, Heidelberg, 2008)
33.
Zurück zum Zitat H. Kawai, The piezoelectricity of poly (vinylidene fluoride). Jpn. J. Appl. Phys. 8(7), 975 (1969)CrossRef H. Kawai, The piezoelectricity of poly (vinylidene fluoride). Jpn. J. Appl. Phys. 8(7), 975 (1969)CrossRef
34.
Zurück zum Zitat C. Ke, H. D. Espinosa, Numerical analysis of nanotube-based NEMS devices. Part I: Electrostatic charge distribution on multiwalled nanotubes. J. Appl. Mech. 89, 721–725 (2005)CrossRef C. Ke, H. D. Espinosa, Numerical analysis of nanotube-based NEMS devices. Part I: Electrostatic charge distribution on multiwalled nanotubes. J. Appl. Mech. 89, 721–725 (2005)CrossRef
35.
Zurück zum Zitat H.-E. Kiil, M. Benslimane, Scalable industrial manufacturing of DEAP. Proc. of SPIE Vol. 7287: Electroactive Polymer Actuators and Devices (EAPAD) (2009) H.-E. Kiil, M. Benslimane, Scalable industrial manufacturing of DEAP. Proc. of SPIE Vol. 7287: Electroactive Polymer Actuators and Devices (EAPAD) (2009)
36.
Zurück zum Zitat U. Koslido, M. Omastová, M. Micusík, G. Ćirić-Marjanović, H. Randriamahazaka, T. Wallmersperger, A. Aabloo, I. Kolaric, T. Bauernhansl, Nanocarbon based ionic actuators - a review. Smart Mater. Struct. 22, 104022 (2013)CrossRef U. Koslido, M. Omastová, M. Micusík, G. Ćirić-Marjanović, H. Randriamahazaka, T. Wallmersperger, A. Aabloo, I. Kolaric, T. Bauernhansl, Nanocarbon based ionic actuators - a review. Smart Mater. Struct. 22, 104022 (2013)CrossRef
37.
Zurück zum Zitat U. Koslido, D. G. Weis, K. Hying, M. H. Haque, I. Kolaric, Development of Measurement Set-up for Electromechanical Analysis of Bucky Paper Actuators. J Nanotechno. Online 3, 1–11 (2007) U. Koslido, D. G. Weis, K. Hying, M. H. Haque, I. Kolaric, Development of Measurement Set-up for Electromechanical Analysis of Bucky Paper Actuators. J Nanotechno. Online 3, 1–11 (2007)
38.
Zurück zum Zitat A. Krishnan, E. Dujardin, T. Ebbesen, P. N. Yianilos, M. M. J. Treacy, Young’s modulus of single wall carbon nanotubes. Phys. Rev. B 58, 14013 (1998)CrossRef A. Krishnan, E. Dujardin, T. Ebbesen, P. N. Yianilos, M. M. J. Treacy, Young’s modulus of single wall carbon nanotubes. Phys. Rev. B 58, 14013 (1998)CrossRef
39.
Zurück zum Zitat M. Kristen. Untersuchung zur elektrischen Ansteuerung von Formgedächtnisantrieben in der Handhabungstechnik (Dissertation, Technische Universität Carolo-Wilhelmina zu Braunschweig, 1994) M. Kristen. Untersuchung zur elektrischen Ansteuerung von Formgedächtnisantrieben in der Handhabungstechnik (Dissertation, Technische Universität Carolo-Wilhelmina zu Braunschweig, 1994)
40.
Zurück zum Zitat A. Krüger. Neue Kohlenstoffmaterialien, Eine Einführung (Springer Fachmedien GmbH, Wiesbaden, 2007) A. Krüger. Neue Kohlenstoffmaterialien, Eine Einführung (Springer Fachmedien GmbH, Wiesbaden, 2007)
41.
Zurück zum Zitat S. Langbein, A. Czechowicz. Konstruktionspraxis Formgedächtnistechnik: Potentiale Auslegung Beispiele (Springer-Vieweg, 2013) S. Langbein, A. Czechowicz. Konstruktionspraxis Formgedächtnistechnik: Potentiale Auslegung Beispiele (Springer-Vieweg, 2013)
42.
Zurück zum Zitat A. Lendlein (Hrsg.), Shape-Memory Polymers. Nr. 226 in Advances in Polymer Science (Springer, 2010) A. Lendlein (Hrsg.), Shape-Memory Polymers. Nr. 226 in Advances in Polymer Science (Springer, 2010)
43.
Zurück zum Zitat A. Lendlein, S. Kelch, Shape memory polymers. Angewandte Chemie, Int’l Edition 41(12), 2034–2057 (2002)CrossRef A. Lendlein, S. Kelch, Shape memory polymers. Angewandte Chemie, Int’l Edition 41(12), 2034–2057 (2002)CrossRef
44.
Zurück zum Zitat C. Li, E. Thostenson, T. W. Chou, Sensors and actuators based on carbon nanotubes and their composites: A review. Compos. Sci. Technol. 68, 1227–1249 (2008)CrossRef C. Li, E. Thostenson, T. W. Chou, Sensors and actuators based on carbon nanotubes and their composites: A review. Compos. Sci. Technol. 68, 1227–1249 (2008)CrossRef
45.
Zurück zum Zitat C. Y. Li, T. W. Chou, Electrostatic charge distribution on single-walled carbon nanotubes. Appl. Phys. Lett. 89, 063103 (2006)CrossRef C. Y. Li, T. W. Chou, Electrostatic charge distribution on single-walled carbon nanotubes. Appl. Phys. Lett. 89, 063103 (2006)CrossRef
46.
Zurück zum Zitat B. Lukić, J. Seo, E. Couteau, K. Lee, S. Gradečak, R. Berkecz, K. Hernadi, S. Delpeux, T. Cacciaguerra, F. Béguin, A. Fonseca, B. Nagy, G. Csányi, A. Kis, A. Kulik, L. Foró. Elastic modulus of multi-walled carbon nanotubes produced by catalytic chemical vapor deposition. Appl. Phys. A 80, 695 (2005)CrossRef B. Lukić, J. Seo, E. Couteau, K. Lee, S. Gradečak, R. Berkecz, K. Hernadi, S. Delpeux, T. Cacciaguerra, F. Béguin, A. Fonseca, B. Nagy, G. Csányi, A. Kis, A. Kulik, L. Foró. Elastic modulus of multi-walled carbon nanotubes produced by catalytic chemical vapor deposition. Appl. Phys. A 80, 695 (2005)CrossRef
47.
Zurück zum Zitat P. Martinsa, A. Lopesa, S. Lanceros-Mendeza, Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications. Prog. Polym. Sci. 39, 683706 (2014)CrossRef P. Martinsa, A. Lopesa, S. Lanceros-Mendeza, Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications. Prog. Polym. Sci. 39, 683706 (2014)CrossRef
48.
Zurück zum Zitat T. Massalski, H. Okamoto, P. Subramanian, L. Kacprzac, Binary Alloy Phase, Bd. 3, 2. Aufl. (ASM International, 1990) T. Massalski, H. Okamoto, P. Subramanian, L. Kacprzac, Binary Alloy Phase, Bd. 3, 2. Aufl. (ASM International, 1990)
49.
Zurück zum Zitat G. Mechrez, R. Y. Suckeveriene, R. Tchoudakov, A. Kigly, E. Segal, M. Narkis, Structure and properties of multi-walled carbon nanotube porous sheets with enhanced elongation. J. Mater. Sci. 47, 6131–6140 (2012)CrossRef G. Mechrez, R. Y. Suckeveriene, R. Tchoudakov, A. Kigly, E. Segal, M. Narkis, Structure and properties of multi-walled carbon nanotube porous sheets with enhanced elongation. J. Mater. Sci. 47, 6131–6140 (2012)CrossRef
50.
Zurück zum Zitat J. Melcher, Adaptive Impedanzregelung an strukturmechanischen Systemen (Dissertation, Otto-von-Guericke-Universität Magdeburg, 2001) J. Melcher, Adaptive Impedanzregelung an strukturmechanischen Systemen (Dissertation, Otto-von-Guericke-Universität Magdeburg, 2001)
51.
Zurück zum Zitat A. Minett, J. Fraysse, G. Gang, G.-T. Kim, S. Roth, Nanotube actuators for nanomechanics. Curr. Appl. Phys. 2, 61–64 (2002)CrossRef A. Minett, J. Fraysse, G. Gang, G.-T. Kim, S. Roth, Nanotube actuators for nanomechanics. Curr. Appl. Phys. 2, 61–64 (2002)CrossRef
52.
Zurück zum Zitat T. Mirfakhrai. Carbon Nanotube Yarn Actuators (Dissertation an der Universität von British Columbia, 2009) T. Mirfakhrai. Carbon Nanotube Yarn Actuators (Dissertation an der Universität von British Columbia, 2009)
53.
Zurück zum Zitat M. B. Nardelli, B. I. Yakobson, J. Bernhole, Mechanism of strain release in carbon nanotubes. Phys. Rev. B 57, R4277 (1998)CrossRef M. B. Nardelli, B. I. Yakobson, J. Bernhole, Mechanism of strain release in carbon nanotubes. Phys. Rev. B 57, R4277 (1998)CrossRef
54.
Zurück zum Zitat K. H. Näser, D. Lempe, O. Regen, Physikalische Chemie für Techniker und Ingenieure, Bd. 19 (Deutscher Verlag für Grundstoffindustrie GmbH, 1990) K. H. Näser, D. Lempe, O. Regen, Physikalische Chemie für Techniker und Ingenieure, Bd. 19 (Deutscher Verlag für Grundstoffindustrie GmbH, 1990)
55.
Zurück zum Zitat R. E. Newnham, Properties of Materials (Oxford University Press, 2005) R. E. Newnham, Properties of Materials (Oxford University Press, 2005)
56.
Zurück zum Zitat E. R. Nightingale, Phenomenological theory of ion solvation. Effective Radii of Hydrated Ions. J. Phys. Chem. 63(9), 1381–1387 (1959)CrossRef E. R. Nightingale, Phenomenological theory of ion solvation. Effective Radii of Hydrated Ions. J. Phys. Chem. 63(9), 1381–1387 (1959)CrossRef
57.
Zurück zum Zitat D. E. Nixon, G. S. Parry, The expansion of the carbon-carbon bond length in potassium graphites. J. Solid State Phys. 2(2), 1732–1741 (1969)CrossRef D. E. Nixon, G. S. Parry, The expansion of the carbon-carbon bond length in potassium graphites. J. Solid State Phys. 2(2), 1732–1741 (1969)CrossRef
58.
Zurück zum Zitat A. Oberlin, M. Endo, Filamentous growth of carbon through benzene decomposition. J. Cryst. Growth 32, 335–349 (1976)CrossRef A. Oberlin, M. Endo, Filamentous growth of carbon through benzene decomposition. J. Cryst. Growth 32, 335–349 (1976)CrossRef
59.
Zurück zum Zitat A. Ölander, The Crystal Structure of AuCd. Zeitschrift für Kristallographie 83, 145–148 (1932) A. Ölander, The Crystal Structure of AuCd. Zeitschrift für Kristallographie 83, 145–148 (1932)
60.
Zurück zum Zitat P. Pertsch, Das Gro.signalverhalten elektromechanischer Festkörperaktoren (Dissertation, Ilmenau, 2003) P. Pertsch, Das Gro.signalverhalten elektromechanischer Festkörperaktoren (Dissertation, Ilmenau, 2003)
61.
Zurück zum Zitat L. Pietronero, S. Strässler, Bond-length change as a tool to determine charge transfer and electron-phonon coupling in graphite intercalation compounds. Phys. Rev. Lett. 47(8), 593–596 (1981)CrossRef L. Pietronero, S. Strässler, Bond-length change as a tool to determine charge transfer and electron-phonon coupling in graphite intercalation compounds. Phys. Rev. Lett. 47(8), 593–596 (1981)CrossRef
62.
Zurück zum Zitat P. Poncharal, Z. Wang, D. Ugarte, W. A. de Heer, Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283, 1513 (1999)CrossRef P. Poncharal, Z. Wang, D. Ugarte, W. A. de Heer, Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283, 1513 (1999)CrossRef
63.
Zurück zum Zitat L. V. Radushkevich, V. M. Lukyanovich, Clear images of 50 nanometer diameter tubes made of carbon. Sov. J. Phys. Chem. 62, 88–95 (1952) L. V. Radushkevich, V. M. Lukyanovich, Clear images of 50 nanometer diameter tubes made of carbon. Sov. J. Phys. Chem. 62, 88–95 (1952)
64.
Zurück zum Zitat S. Reich, C. Thomsen, J. Maultzsch, Carbon Nanotubes (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006) S. Reich, C. Thomsen, J. Maultzsch, Carbon Nanotubes (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006)
65.
Zurück zum Zitat J. Riemenschneider, H. Temmen, H. P. Monner, CNT based actuators: Experimental and theoretical investigation of the in-plain strain generation. J. Nanosci. Nanotech. 7(10), 3359–3364 (2007)CrossRef J. Riemenschneider, H. Temmen, H. P. Monner, CNT based actuators: Experimental and theoretical investigation of the in-plain strain generation. J. Nanosci. Nanotech. 7(10), 3359–3364 (2007)CrossRef
66.
Zurück zum Zitat J. Riemenschneider, Charakterisierung und Modellierung von Kohlenstoff-Nanoröhren basierten Aktuatoren (Dissertation an der Otto-von-Guericke-Universitt Magdeburg, 2008) J. Riemenschneider, Charakterisierung und Modellierung von Kohlenstoff-Nanoröhren basierten Aktuatoren (Dissertation an der Otto-von-Guericke-Universitt Magdeburg, 2008)
67.
Zurück zum Zitat R. Saito, M. Fujita, G. Dresselhaus, M. S. Dresselhaus, Electronic structure of chiral graphene tubules. Appl. Phys. Lett. 60(18), 2204–2206 (1992)CrossRef R. Saito, M. Fujita, G. Dresselhaus, M. S. Dresselhaus, Electronic structure of chiral graphene tubules. Appl. Phys. Lett. 60(18), 2204–2206 (1992)CrossRef
68.
Zurück zum Zitat F. Schiedeck, Entwicklung eines Modells für Formgedächtnisaktoren im geregelten dynamischen Betrieb (Dissertation, Leibniz Universität Hannover, 2009) F. Schiedeck, Entwicklung eines Modells für Formgedächtnisaktoren im geregelten dynamischen Betrieb (Dissertation, Leibniz Universität Hannover, 2009)
69.
Zurück zum Zitat K. Seifert, Lead-Free Piezoelectric Ceramics (Dissertation, TU Darmstadt, 2010) K. Seifert, Lead-Free Piezoelectric Ceramics (Dissertation, TU Darmstadt, 2010)
70.
Zurück zum Zitat T. Shrout, S. Zhang, Lead-free pieroelectric ceramics. J. Electroceram. 19, 111–124 (2007) T. Shrout, S. Zhang, Lead-free pieroelectric ceramics. J. Electroceram. 19, 111–124 (2007)
71.
Zurück zum Zitat G. Spinks, G. G. Wallace, L. S. Fifield, L. R. Dalton, A. Mazzoldi, D. De Rossi, I. I. Khayrullin, R. H. Baughman, Pneumatic carbon nanotube actuators. Adv. Mater. 14(23), 1728–1732 (2002)CrossRef G. Spinks, G. G. Wallace, L. S. Fifield, L. R. Dalton, A. Mazzoldi, D. De Rossi, I. I. Khayrullin, R. H. Baughman, Pneumatic carbon nanotube actuators. Adv. Mater. 14(23), 1728–1732 (2002)CrossRef
72.
Zurück zum Zitat G. M. Spinks, G. G. Wallace, R. H. Baughman, L. Dai, Carbon Nanotube Actuators: Synthesis, Properties and Performance (SPIE Press, 2008) G. M. Spinks, G. G. Wallace, R. H. Baughman, L. Dai, Carbon Nanotube Actuators: Synthesis, Properties and Performance (SPIE Press, 2008)
73.
Zurück zum Zitat G. Sun, J. Kürti, M. Kertesz, R. H. Baughman, Dimensional changes as a function of charge injection in single-walled carbon nanotubes. J. Am. Chem. Soc. 124, 15076–15080 (2002)CrossRef G. Sun, J. Kürti, M. Kertesz, R. H. Baughman, Dimensional changes as a function of charge injection in single-walled carbon nanotubes. J. Am. Chem. Soc. 124, 15076–15080 (2002)CrossRef
74.
Zurück zum Zitat D. Suppiger, S. Busato, S. P. Ermanni, M. Motta, A. Windle, Electromechanical actuation of marcoscopic carbon nanotube structures: mats and sligned ribbons. Phys. Chem. Chem. Phys. 11, 5180–5185 (2009)CrossRef D. Suppiger, S. Busato, S. P. Ermanni, M. Motta, A. Windle, Electromechanical actuation of marcoscopic carbon nanotube structures: mats and sligned ribbons. Phys. Chem. Chem. Phys. 11, 5180–5185 (2009)CrossRef
75.
Zurück zum Zitat K. Tanaka, Thermomechanical sketch of shape memory effect: one-dimensional tensile behavior. Res Mechanica: Int. J. Struct. Mech. Mater. Sci. 18(3), 251–263 (1986) K. Tanaka, Thermomechanical sketch of shape memory effect: one-dimensional tensile behavior. Res Mechanica: Int. J. Struct. Mech. Mater. Sci. 18(3), 251–263 (1986)
76.
Zurück zum Zitat D. Tománek, A. Jorio, M. S. Dresselhaus, G. Dresselhaus, Introduction to the Important and Exciting Aspects of Carbon-Nanotube Science and Technology, Bd. 111 (Springer-Verlag GmbH, 2008) D. Tománek, A. Jorio, M. S. Dresselhaus, G. Dresselhaus, Introduction to the Important and Exciting Aspects of Carbon-Nanotube Science and Technology, Bd. 111 (Springer-Verlag GmbH, 2008)
77.
Zurück zum Zitat S.-Y. Tsai. Experimental Study and Modelling of Nanotube Buckypaper Composite Actuator for Morphing Structure Applications (Dissertation an der Florida State University, 2010) S.-Y. Tsai. Experimental Study and Modelling of Nanotube Buckypaper Composite Actuator for Morphing Structure Applications (Dissertation an der Florida State University, 2010)
78.
Zurück zum Zitat V. Vainio, T. I. W. Schnoor, S. K. Vayalil, K. Schulte, M. Müller, E. T. Lilleodden, Orientation distribution of vertically aligned multiwalled carbon nanotubes. J. Phys. Chem. C. 118, 9507–9513 (2014)CrossRef V. Vainio, T. I. W. Schnoor, S. K. Vayalil, K. Schulte, M. Müller, E. T. Lilleodden, Orientation distribution of vertically aligned multiwalled carbon nanotubes. J. Phys. Chem. C. 118, 9507–9513 (2014)CrossRef
79.
Zurück zum Zitat U. Vohrer, N. Zschoerper, Kohlenstoff-Nanoröhren - Phönix aus der Asche, Carbon Nanotubes - A Material rising like a Phoenix. Vakuum in Forschung und Praxis, 19(2), 22–30 (2007)CrossRef U. Vohrer, N. Zschoerper, Kohlenstoff-Nanoröhren - Phönix aus der Asche, Carbon Nanotubes - A Material rising like a Phoenix. Vakuum in Forschung und Praxis, 19(2), 22–30 (2007)CrossRef
80.
Zurück zum Zitat D. A.Walters, L. M. Ericson, M. J. Casavant, J. Liu, D. T. Colbert, K. A. Smith, R. E. Smalley, Elastic strain of freely suspended single-wall carbon nanotube ropes. Appl. Phys. Lett. 74 (1999)CrossRef D. A.Walters, L. M. Ericson, M. J. Casavant, J. Liu, D. T. Colbert, K. A. Smith, R. E. Smalley, Elastic strain of freely suspended single-wall carbon nanotube ropes. Appl. Phys. Lett. 74 (1999)CrossRef
81.
Zurück zum Zitat X. Wang, Q. Li, J. Xie, Z. Jin, J.Wang, Y. Li, K. Jiang, S. Fan, Fabrication of ultralong and electrically uniform single-walled carbon nanotubes on clean substrates. Smart. Mater. Struct. 22(9), 094003 (2013)CrossRef X. Wang, Q. Li, J. Xie, Z. Jin, J.Wang, Y. Li, K. Jiang, S. Fan, Fabrication of ultralong and electrically uniform single-walled carbon nanotubes on clean substrates. Smart. Mater. Struct. 22(9), 094003 (2013)CrossRef
82.
Zurück zum Zitat B. Q. Wei, R. Vajtai, P. M. Ajayan, Reliability and current carrying capacity of carbon nanotubes. Appl. Phys. Lett. 79, 1172–1174 (2001)CrossRef B. Q. Wei, R. Vajtai, P. M. Ajayan, Reliability and current carrying capacity of carbon nanotubes. Appl. Phys. Lett. 79, 1172–1174 (2001)CrossRef
83.
Zurück zum Zitat P. G. Whitten, G. M. Spinks, G. G. Wallace, Mechanical properties of carbon nanotube paper in ionic liquid and aqueous electrolytes. Carbon 43, 1891–1896 (2005)CrossRef P. G. Whitten, G. M. Spinks, G. G. Wallace, Mechanical properties of carbon nanotube paper in ionic liquid and aqueous electrolytes. Carbon 43, 1891–1896 (2005)CrossRef
84.
Zurück zum Zitat T. Yamamoto, K. Watanabe, E. R. Hernández, Mechanical Properties, Thermal Stability and Heat Transport in Carbon Nanotubes, Bd. 111 (Springer-Verlag GmbH, 2008) T. Yamamoto, K. Watanabe, E. R. Hernández, Mechanical Properties, Thermal Stability and Heat Transport in Carbon Nanotubes, Bd. 111 (Springer-Verlag GmbH, 2008)
85.
Zurück zum Zitat M.-F. Yu, B. S. Files, S. Arepalli, R. S. Ruoff, Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 84, 5552–5555 (2000)CrossRef M.-F. Yu, B. S. Files, S. Arepalli, R. S. Ruoff, Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 84, 5552–5555 (2000)CrossRef
86.
Zurück zum Zitat M.-F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kellyand, R. F. Ruoff, Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287, 637–640 (2000)CrossRef M.-F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kellyand, R. F. Ruoff, Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287, 637–640 (2000)CrossRef
87.
Zurück zum Zitat Y.-H. Yun, A. Miskin, P. Kang, S. Jain, S. Narasimhadevara, D. Hurd, V. Shinde, M. J. Schulz, V. Shanov, P. He, F. J. Boerio, D. Shi, S. Subramanian, Carbon nanofiber hybrid actuators: Part II–Solid Electrolyte-based. J. Intel. Mat. Syst. Str. 17, 191–198 (2006) Y.-H. Yun, A. Miskin, P. Kang, S. Jain, S. Narasimhadevara, D. Hurd, V. Shinde, M. J. Schulz, V. Shanov, P. He, F. J. Boerio, D. Shi, S. Subramanian, Carbon nanofiber hybrid actuators: Part II–Solid Electrolyte-based. J. Intel. Mat. Syst. Str. 17, 191–198 (2006)
88.
Zurück zum Zitat Y. H. Yun, V. Shanov, Y. Tu, M. J. Schulz, S. Yarmolenko, S. Neralla, J. Sankar, S. Subramaniam, A multi-wall carbon nanotube tower electrochemical actuator. Nano Lett. 6(4), 689–693 (2006)CrossRef Y. H. Yun, V. Shanov, Y. Tu, M. J. Schulz, S. Yarmolenko, S. Neralla, J. Sankar, S. Subramaniam, A multi-wall carbon nanotube tower electrochemical actuator. Nano Lett. 6(4), 689–693 (2006)CrossRef
89.
Zurück zum Zitat Q. Z. Zhao, M. B. Nardelli, J. Bernhole, Ultimate strengh of carbon nanotubes: a theoretical study. Phys. Rev. B 65, 144105 (2002) Q. Z. Zhao, M. B. Nardelli, J. Bernhole, Ultimate strengh of carbon nanotubes: a theoretical study. Phys. Rev. B 65, 144105 (2002)
Metadaten
Titel
Funktionswerkstoffe
verfasst von
Johannes Michael Sinapius
Sebastian Geier
Copyright-Jahr
2018
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-55884-3_3

Neuer Inhalt