Skip to main content
Erschienen in: Journal of Applied Mathematics and Computing 1-2/2014

Open Access 01.10.2014 | Original Research

Further results on the group inverse of some anti-triangular block matrices

verfasst von: Chongguang Cao, Hanyu Zhang, Yanling Ge

Erschienen in: Journal of Applied Mathematics and Computing | Ausgabe 1-2/2014

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN
loading …

Abstract

Suppose ℜ is a right Ore domain with unity 1. In this paper, we investigate the existence of the group inverse of some anti-triangular block matrices over ℜ and obtain the sufficient and necessary conditions for such existence. Further, the representations of the group inverse for the following two classes are given. (i) https://static-content.springer.com/image/art%3A10.1007%2Fs12190-013-0744-3/MediaObjects/12190_2013_744_IEq1_HTML.gif , where CA=C; (ii) https://static-content.springer.com/image/art%3A10.1007%2Fs12190-013-0744-3/MediaObjects/12190_2013_744_IEq2_HTML.gif , where B exists and BA=BAB B.
The results extend the earlier works of Liu et al. (in Appl. Math. Comput. 218:8978–8986, 2012) and Zhao et al. (in E. J. Linear Algebra 21:63–75, 2010). Some results in special cases are also generalized to any ring.
Hinweise
Supported by National Natural Science Foundation of China (NO. 11371109).

1 Introduction

For a square matrix A, the matrix X is called the group inverse of A if X satisfies the matrix equations
$$AXA=A, XAX=X\quad \mbox{and}\quad AX=XA. $$
It is well known that if the group inverse X exists, it is unique, and is denoted by A . Let A π be IAA .
The group inverse of block matrix is a very useful tool in many fields, such as iterative methods, Markov chains, singular differential and difference equations, see [18].
In 1983, in the context of differential equations, Campbell et al. [9] proposed the problem of finding the representation for the Drazin inverse (group inverse) of the anti-triangular block matrix https://static-content.springer.com/image/art%3A10.1007%2Fs12190-013-0744-3/MediaObjects/12190_2013_744_IEq3_HTML.gif . This problem remains open. However, there are many results in some special cases, see [10, 1318, 2022]. It is important to study them in a larger ring, see for example [11, 12, 19, 26].
Liu et al. [10] studied this problem under the conditions A 2=A,CA=C over complex fields. In this paper, we not only delete the condition A 2=A but also solve it for the matrices over right Ore domains by using matrix equations. This also generalizes the results of Ge et al. [27].
On the other hand, in [20], Zhao et al. characterized the existence and the representation of group inverse for block matrix over skew fields https://static-content.springer.com/image/art%3A10.1007%2Fs12190-013-0744-3/MediaObjects/12190_2013_744_IEq4_HTML.gif under the condition that B exists and BAB π =0. In this paper, we extend these results to right Ore domains. Some results in special cases are studied over rings with unity 1.
In this paper, let R be a ring with unity 1. A ring is called a right Ore domain (denoted by ℜ) if it possesses no zero divisors and every two elements of the ring have a right common multiple. Integral rings, polynomial rings in an indeterminate over field, noncommutative principal ideal domains and so on are right Ore domains. A left Ore domain is defined similarly. Every right (left) Ore domain ℜ can be embedded in the skew field (denoted by K ) of quotients of itself. More details are found in [2325]. Let ℜ m×n (respectively, R m×n ) be the set of all m×n matrices over ℜ (respectively, R). The rank of a matrix A∈ℜ m×n (denoted by r(A)) is defined as the rank of A over K , i.e., the maximum order of all invertible subblocks of A over K . For convenience, we suppose the right Ore domain ℜ has identity 1.

2 Some lemmas

The following three lemmas will be used in the paper.
Lemma 1
[12]
Let A∈ℜ n×n . Then the following are equivalent:
(i)
A exists;
 
(ii)
A 2 X=A for some X∈ℜ n×n . In this case, A =AX 2;
 
(iii)
YA 2=A for some Y∈ℜ n×n . In this case, A =Y 2 A.
 
Lemma 2
[11, 26]
Let AR n×n . Then the following are equivalent:
(i)
A exists;
 
(ii)
A 2 X=A,YA 2=A for some X,Y over R. In this case, A =Y 2 A=AX 2=YAX.
 
Lemma 3
Let A,BR n×n . If BAB π =0, B and (AB π ) exist, then
(i)
B AB π =0, (AB π ) B=0, B(AB π )=0;
 
(ii)
A(AB π )=(AB π ) AB π ;
 
(iii)
A(AB π ) AB π =AB π .
 
Proof
(i) B AB π =(B )2 BAB π =0, (AB π ) B=((AB π ))2 AB π B=0, similarly, B(AB π )=0.
(ii) A(AB π )=AB π (AB π )=(AB π ) AB π .
(iii) From (ii), we can easily show that (iii) holds. □

3 Main results

The following is the main result in this note.
Theorem 1
Let https://static-content.springer.com/image/art%3A10.1007%2Fs12190-013-0744-3/MediaObjects/12190_2013_744_IEq5_HTML.gif , where A∈ℜ n×n ,B∈ℜ n×m ,C∈ℜ m×n . If CA=C, then
(i)
M exists if and only if (CB) and A exist, A π B(CB) π =0;
 
(ii)
If M exists, then https://static-content.springer.com/image/art%3A10.1007%2Fs12190-013-0744-3/MediaObjects/12190_2013_744_IEq6_HTML.gif , where
$$\begin{aligned} M_{1} =&A^{\sharp}\,{-}\,(A^{\sharp})^{2}B(CB)^{\pi}C\,{-}\,A^{\sharp}B(CB)^{\sharp }C-A^{\sharp}B(CB)^{\pi}C\,{-}\,A^{\pi}B[(CB)^{\sharp}]^{2}C, \\ M_{2} =&(A^{\sharp})^{2}B(CB)^{\pi}+A^{\pi}B[(CB)^{\sharp}]^{2}+A^{\sharp }B(CB)^{\sharp}+A^{\pi}B(CB)^{\sharp}, \\ M_{3} =&(CB)^{\pi}C+(CB)^{\sharp}C, \\ M_{4} =& -(CB)^{\sharp}. \end{aligned}$$
 
Proof
(i) The “only if” part.
Since CA 2=CA=C, we have
$$ \left ( \begin{array}{c@{\quad}c}I&B\\ 0&I \end{array} \right )\left ( \begin{array}{c@{\quad}c}I&0\\ C&I \end{array} \right ) \left ( \begin{array}{c@{\quad}c}A^{2}&AB-BCB\\ 0&CBCB \end{array} \right )= \left ( \begin{array}{c@{\quad}c}A^{2}+BC&AB\\ C&CB \end{array} \right )= M^{2} $$
(1)
By Lemma 1, M exists if and only if M=YM 2 for some Y∈ℜ(n+m)×(n+m).
Let
$$Y\left ( \begin{array}{c@{\quad}c}I&B\\ 0&I \end{array} \right )\left ( \begin{array}{c@{\quad}c}I&0\\ C&I \end{array} \right ) =\left ( \begin{array}{c@{\quad}c}Y_{1}&Y_{2}\\ Y_{3}&Y_{4} \end{array} \right ), $$
where Y 1∈ℜ n×n , so
$$\left ( \begin{array}{c@{\quad}c}Y_{1}&Y_{2}\\ Y_{3}&Y_{4} \end{array} \right ) \left ( \begin{array}{c@{\quad}c}A^{2}&AB-BCB\\ 0&CBCB \end{array} \right ) =\left ( \begin{array}{c@{\quad}c}A&B\\ C&0 \end{array} \right ), $$
it follows that Y 1 A 2=A, by Lemma 1, so A exists.
According to Lemma 1, M exists if and only if there exists a matrix https://static-content.springer.com/image/art%3A10.1007%2Fs12190-013-0744-3/MediaObjects/12190_2013_744_IEq7_HTML.gif such that M 2 X=M, where X 1∈ℜ n×n .
By (1), we have
$$\left ( \begin{array}{c@{\quad}c}I&B\\ 0&I \end{array} \right )\left ( \begin{array}{c@{\quad}c}I&0\\ C&I \end{array} \right ) \left ( \begin{array}{c@{\quad}c}A^{2}&AB-BCB\\ 0&CBCB \end{array} \right )X=M. $$
Hence,
$$\left ( \begin{array}{c@{\quad}c}A^{2}&AB-BCB\\ 0&CBCB \end{array} \right )\left ( \begin{array}{c@{\quad}c}X_{1}&X_{2}\\ X_{3}&X_{4} \end{array} \right )=\left ( \begin{array}{c@{\quad}c}I&0\\ -C&I \end{array} \right ) \left ( \begin{array}{c@{\quad}c}I&-B\\ 0&I \end{array} \right )M. $$
Namely,
$$ {A^{2}X_{1}+(AB-BCB)X_{3}=A-BC}, $$
(2)
$$ {A^{2}X_{2}+(AB-BCB)X_{4}=B}, $$
(3)
$$ {CBCBX_{3}=CBC}, $$
(4)
$$ {CBCBX_{4}=-CB}. $$
(5)
From (5) and Lemma 1, we know (CB) exists. By (3), we have −A π BCBX 4=A π B. i.e.,
$$-A^{\pi}B(CB)^{\sharp}CBCBX_{4}=A^{\pi}B. $$
Substitute (5) into the above equation, we have A π B(CB) CB=A π B. Therefore, A π B(CB) π =0.
The “if” part.
Let \(X_{1}=A^{\sharp}-A^{\sharp^{2}}B(CB)^{\pi}C-A^{\sharp}B(CB)^{\sharp}C\), \(X_{2}=A^{\sharp^{2}}B(CB)^{\pi}+A^{\sharp}B(CB)^{\sharp}\), X 3=(CB) C,X 4=−(CB).
Note that A π B(CB) π =0. It is easy to verify that (2)–(5) hold. This implies M=M 2 X has a solution, so M exists.
(ii) By Lemma 1, A π B(CB) π =0 and CA =CAA =CA 2 A =CA=C, the expression of M can be obtained from M =MX 2. Next we can compute that
$$\begin{aligned} M^{\sharp} =& \left ( \begin{array}{c@{\quad}c}A&B\\ C&0 \end{array} \right ) \left ( \begin{array}{c@{\quad}c}X_{1}&X_{2}\\ X_{3}&X_{4} \end{array} \right ) \left ( \begin{array}{c@{\quad}c}X_{1}&X_{2}\\ X_{3}&X_{4} \end{array} \right ) \\ =& \left ( \begin{array}{c@{\quad}c}A&B\\ C&0 \end{array} \right ) \\ &{} \times \left ( \begin{array}{c@{\quad}c}A^{\sharp}-A^{\sharp^{2}}B(CB)^{\pi}C-A^{\sharp }B(CB)^{\sharp}C& A^{\sharp^{2}}B(CB)^{\pi}+A^{\sharp}B(CB)^{\sharp}\\ (CB)^{\sharp }C&-(CB)^{\sharp} \end{array} \right ) \\ &{} \times \left ( \begin{array}{c@{\quad}c}X_{1}&X_{2}\\ X_{3}&X_{4} \end{array} \right ) \\ =& \left ( \begin{array}{c@{\quad}c}AA^{\sharp}-A^{\sharp}B(CB)^{\pi}C+A^{\pi}B(CB)^{\sharp}C& A^{\sharp}B(CB)^{\pi}-A^{\pi}B(CB)^{\sharp}\\ (CB)^{\pi}C&CB(CB)^{\sharp} \end{array} \right ) \\ &{} \times \left ( \begin{array}{c@{\quad}c}X_{1}&X_{2}\\ X_{3}&X_{4} \end{array} \right ) \\ =& \left ( \begin{array}{c@{\quad}c}A^{\sharp}-A^{\sharp^{2}}B(CB)^{\pi}C-A^{\sharp }B(CB)^{\sharp}C& A^{\sharp^{2}}B(CB)^{\pi}+A^{\pi}B((CB)^{\sharp})^{2}\\ -A^{\sharp}B(CB)^{\pi}C-A^{\pi}B((CB)^{\sharp})^{2}C&+A^{\sharp }B(CB)^{\sharp}+A^{\pi}B(CB)^{\sharp}\\ (CB)^{\pi}C+(CB)^{\sharp}C&-(CB)^{\sharp} \end{array} \right ) \\ =& \left ( \begin{array}{c@{\quad}c}M_{1}&M_{2}\\ M_{3}&M_{4} \end{array} \right ). \end{aligned}$$
 □
Example for Theorem 1: Let ℜ be the integer ring, and let https://static-content.springer.com/image/art%3A10.1007%2Fs12190-013-0744-3/MediaObjects/12190_2013_744_IEq10_HTML.gif , where
$$A=\left ( \begin{array}{c@{\quad}c@{\quad}c}1&0&0\\ 0&-1&0\\ 0&0&0 \end{array} \right ),\qquad B=\left ( \begin{array}{c@{\quad}c} 1&0\\ 1&3\\ 2&0 \end{array} \right ),\qquad C=\left ( \begin{array}{c@{\quad}c@{\quad}c}1&0&0\\ 2&0&0 \end{array} \right ). $$
It is easy to verify A 2A,CA=C. Furthermore, A and (CB) exist.
By computation,
$$\begin{aligned} & A^{\sharp}=\left ( \begin{array}{c@{\quad}c@{\quad}c} 1&0&0\\ 0&-1&0\\ 0&0&0 \end{array} \right ),\qquad A^{\pi}=\left ( \begin{array}{c@{\quad}c@{\quad}c}0&0&0\\ 0&0&0\\ 0&0&1 \end{array} \right ),\qquad (CB)^{\sharp}=CB=\left ( \begin{array}{c@{\quad}c}1&0\\ 2&0 \end{array} \right ),\\ & (CB)^{\pi}=\left ( \begin{array}{c@{\quad}c}0&0\\ -2&1 \end{array} \right ), \end{aligned}$$
so A π B(CB) π =0. By Theorem 1, M exists and
$$M^{\sharp}=\left ( \begin{array}{c@{\quad}c@{\quad}c@{\quad}c@{\quad}c} 0&0&0&1&0\\ 7&-1&0&-13&3\\ -2&0&0&4&0\\ 1&0&0&-1&0\\ 2&0&0&-2&0 \end{array} \right ). $$
Similarly, we can prove the counterpart of Theorem 1.
Theorem 2
Let https://static-content.springer.com/image/art%3A10.1007%2Fs12190-013-0744-3/MediaObjects/12190_2013_744_IEq11_HTML.gif , where A∈ℜ n×n ,B∈ℜ n×m ,C∈ℜ m×n . If AB=B, then
(i)
M exists if and only if (CB) and A exist and (CB) π CA π =0;
 
(ii)
If M exists, then https://static-content.springer.com/image/art%3A10.1007%2Fs12190-013-0744-3/MediaObjects/12190_2013_744_IEq12_HTML.gif , where
$$\begin{aligned} M_{1} =&A^{\sharp}\,{-}\,B(CB)^{\pi}CA^{\sharp}\,{-}\,B(CB)^{\pi}C(A^{\sharp })^{2}\,{-}\,B(CB)^{\sharp}CA^{\sharp}\,{-}\,B[(CB)^{\sharp}]^{2}CA^{\pi}, \\ M_{2} =&B(CB)^{\sharp}+B(CB)^{\pi}, \\ M_{3} =&(CB)^{\sharp}CA^{\sharp}+(CB)^{\sharp}CA^{\pi}+[(CB)^{\sharp }]^{2}CA^{\pi}+(CB)^{\pi}C(A^{\sharp})^{2}, \\ M_{4} =&-(CB)^{\sharp}. \end{aligned}$$
 
Next we consider a special case of Theorems 1 and 2, and investigate it over any ring.
Theorem 3
Let https://static-content.springer.com/image/art%3A10.1007%2Fs12190-013-0744-3/MediaObjects/12190_2013_744_IEq13_HTML.gif , where AR n×n ,BR n×m ,CR m×n . If AB=B,CA=C, then
(i)
M exists if and only if (CB) and A exist;
 
(ii)
If M exists, then
$$M^{\sharp}=\left ( \begin{array}{c@{\quad}c} A^{\sharp}-2B(CB)^{\pi}C-B(CB)^{\sharp}C&B(CB)^{\sharp }+B(CB)^{\pi}\\ (CB)^{\sharp}C+(CB)^{\pi}C&-(CB)^{\sharp} \end{array} \right ). $$
 
Proof
(i) The “only if” part.
If M exists, then by Lemma 2 there exist matrices X and Y over R such that M=M 2 X and M=YM 2.
By AB=B and CA=C, we have
$$\begin{aligned} \left ( \begin{array}{c@{\quad}c}I&0\\ C&I \end{array} \right ) \left ( \begin{array}{c@{\quad}c}A^{2}&0\\ -CBC&CBCB \end{array} \right ) \left ( \begin{array}{c@{\quad}c}I&B\\ 0&I \end{array} \right )\left ( \begin{array}{c@{\quad}c}I&0\\ C&I \end{array} \right ) =\left ( \begin{array}{c@{\quad}c}A^{2}+BC&B\\ C&CB \end{array} \right ) =M^{2}. \end{aligned}$$
Let
$$X=\left ( \begin{array}{c@{\quad}c}I&0\\ -C&I \end{array} \right )\left ( \begin{array}{c@{\quad}c}I&-B\\ 0&I \end{array} \right ) \left ( \begin{array}{c@{\quad}c}X_{1}&X_{2}\\ X_{3}&X_{4} \end{array} \right )\left ( \begin{array}{c@{\quad}c}I&B\\ 0&I \end{array} \right ). $$
Then
$$\left ( \begin{array}{c@{\quad}c}A^{2}&0\\ -CBC&CBCB \end{array} \right )\left ( \begin{array}{c@{\quad}c}X_{1}&X_{2}\\ X_{3}&X_{4} \end{array} \right ) =\left ( \begin{array}{c@{\quad}c}A&0\\ 0&-CB \end{array} \right ). $$
From above, we get
$$ {A^{2}X_{1}=A}, $$
(6)
$$ {A^{2}X_{2}=0}, $$
(7)
$$ {-CBCX_{1}+CBCBX_{3}=0}, $$
(8)
$$ {-CBCX_{2}+CBCBX_{4}=-CB}. $$
(9)
It is easy to get
$$\left ( \begin{array}{c@{\quad}c}I&B\\ 0&I \end{array} \right )\left ( \begin{array}{c@{\quad}c}I&0\\ C&I \end{array} \right ) \left ( \begin{array}{c@{\quad}c}A^{2}&B-BCB\\ 0&CBCB \end{array} \right )=M^{2}. $$
From above equations and M=YM 2, let https://static-content.springer.com/image/art%3A10.1007%2Fs12190-013-0744-3/MediaObjects/12190_2013_744_IEq14_HTML.gif , we have
$$ {Y_{1}A^{2}=A} , $$
(10)
$$ {Y_{1}(B-BCB)+Y_{2}CBCB=B}, $$
(11)
$$ {Y_{3}A^{2}=C}, $$
(12)
$$ {Y_{3}(B-BCB)+Y_{4}CBCB=0}. $$
(13)
By Lemma 2, (6) and (10) imply A exists.
By (7) and (12), we have CX 2=0 and Y 3 B=CB. Substitute these identities into (9) and (13) respectively, we get CBCBX 4=−CB and CB=(IY 4)CBCB.
By Lemma 1, (CB) exists.
The ‘if’ part. Let
$$\begin{aligned} &X_{1}=A^{\sharp}, X_{2}=0, X_{3}=(CB)^{\sharp}C, X_{4}=-(CB)^{\sharp}. \\ &Y_{1}=A^{\sharp}, Y_{2}=B(CB)^{\sharp}, Y_{3}=C, Y_{4}=CB(CB)^{\sharp}-(CB)^{\sharp}. \end{aligned}$$
It is easy to verify (6)–(13) hold. That implies M=M 2 X and M=YM 2 have solutions.
From Lemma 2, we know M exists.
(ii) By Lemma 2, the expression of M can get from M =YMX. □
Example for Theorem 3: Let Z be the integer ring, and let https://static-content.springer.com/image/art%3A10.1007%2Fs12190-013-0744-3/MediaObjects/12190_2013_744_IEq15_HTML.gif be a matrix over Z/(6Z), where
$$A=\left ( \begin{array}{c@{\quad}c@{\quad}c}1&-2&0\\ 0&1&0\\ 0&0&0 \end{array} \right ),\qquad B=\left ( \begin{array}{c@{\quad}c}3&1\\ 3&3\\ 0&0 \end{array} \right ),\qquad C=\left ( \begin{array}{c@{\quad}c@{\quad}c} 3&1&0\\ 3&2&0 \end{array} \right ). $$
It is easy to verify that A 2A, AB=B, CA=C. Furthermore, A and (CB) exist.
By computation,
$$A^{\sharp}=\left ( \begin{array}{c@{\quad}c@{\quad}c}1&2&0\\ 0&1&0\\ 0&0&0 \end{array} \right ),\qquad (CB)^{\sharp}=CB=\left ( \begin{array}{c@{\quad}c}0&0\\ 3&3 \end{array} \right ). $$
By Theorem 3, M exists and
$$M^{\sharp}=\left ( \begin{array}{c@{\quad}c@{\quad}c@{\quad}c@{\quad}c} 1&1&0&3&1\\ 0&-2&0&3&3\\ 0&0&0&0&0\\ 3&1&0&0&0\\ 3&2&0&3&3 \end{array} \right ). $$
Remark 1
From Theorem 1 and 2, we can obtain Theorem 3.1 and 3.2 of [27] and Theorem 2.1 and 2.2 of [10]. From Theorem 3, we can also obtain the Corollary 2.2 of [10]. In above two examples, we especially point that A 2A. This shows that the generalizations are true.
The following results extend the corresponding works of Zhao et al. [20].
Theorem 4
Let https://static-content.springer.com/image/art%3A10.1007%2Fs12190-013-0744-3/MediaObjects/12190_2013_744_IEq16_HTML.gif , where A,B∈ℜ n×n . If B exists and BAB π =0. Then
(i)
M exists if and only if (AB π ) exists.
 
(ii)
If M exists, then https://static-content.springer.com/image/art%3A10.1007%2Fs12190-013-0744-3/MediaObjects/12190_2013_744_IEq17_HTML.gif , where
$$\begin{aligned} M_{1} =&B^{\pi}A(B^{\sharp})^{2}-(AB^{\pi})^{\sharp}AB^{\pi}A(B^{\sharp })^{2}+(AB^{\pi})^{\sharp}; \\ M_{2} =&-B^{\pi}A(B^{\sharp})^{2}AB^{\sharp}+(AB^{\pi})^{\sharp}AB^{\pi }A(B^{\sharp})^{2}AB^{\sharp} -(AB^{\pi})^{\sharp}AB^{\sharp}+B^{\sharp}; \\ M_{3} =&B^{\sharp}; \\ M_{4} =&-B^{\sharp}AB^{\sharp}. \end{aligned}$$
 
Proof
The “only if” part of (i).
It is easy to get
$$M=\left ( \begin{array}{c@{\quad}c}A&B\\ B&0 \end{array} \right ) =\left ( \begin{array}{c@{\quad}c}B^{\pi}A&B\\ B&0 \end{array} \right ) \left ( \begin{array}{c@{\quad}c}I&O\\ B^{\sharp}A&I \end{array} \right ), $$
$$M^{2}=\left ( \begin{array}{c@{\quad}c}A^{2}+B^{2}&AB\\ BA&B^{2} \end{array} \right ) =\left ( \begin{array}{c@{\quad}c}AB^{\pi}A+B^{2}&AB\\ 0&B^{2} \end{array} \right ) \left ( \begin{array}{c@{\quad}c}I&O\\ B^{\sharp}A&I \end{array} \right ). $$
Since M exists, from Lemma 1 we know YM 2=M has a solution.
Let https://static-content.springer.com/image/art%3A10.1007%2Fs12190-013-0744-3/MediaObjects/12190_2013_744_IEq18_HTML.gif .
We have
$$ {Y_{1}AB^{\pi}A+Y_{1}B^{2}=B^{\pi}A}, $$
(14)
$$ {Y_{1}AB+Y_{2}B^{2}=B}, $$
(15)
$$ {Y_{3}AB^{\pi}A+Y_{3}B^{2}=B}, $$
(16)
$$ {Y_{3}AB+Y_{4}B^{2}=0}. $$
(17)
By (14), we have Y 1(AB π )2=B π AB π =AB π . From Lemma 1, we know (AB π ) exists. Next, we prove the sufficiency of (i) and the expression of (ii):
Let https://static-content.springer.com/image/art%3A10.1007%2Fs12190-013-0744-3/MediaObjects/12190_2013_744_IEq19_HTML.gif . By Lemma 3, the sufficiency of (i) and the expression of M are similar to the proof in [20].
$$MX=\left ( \begin{array}{c@{\quad}c}A(AB^{\pi})^{\sharp}+BB^{\sharp}&-A(AB^{\pi})^{\sharp }AB^{\sharp}+B^{\pi}AB^{\sharp} \\ 0&BB^{\sharp} \end{array} \right )=XM. $$
It is easy to verify that XMX=M,MXM=M.
So X=M . □
Similarly, we state the symmetrical result of Theorem 4.
Theorem 5
Let https://static-content.springer.com/image/art%3A10.1007%2Fs12190-013-0744-3/MediaObjects/12190_2013_744_IEq20_HTML.gif , where A,B∈ℜ n×n . If B exists and B π AB=0, then
(i)
M exists if only if (B π A) exists.
 
(ii)
If M exists, then https://static-content.springer.com/image/art%3A10.1007%2Fs12190-013-0744-3/MediaObjects/12190_2013_744_IEq21_HTML.gif , where
$$\begin{aligned} M_{1} =&(B^{\sharp})^{2}AB^{\pi}-(B^{\sharp})^{2}AB^{\pi}A(B^{\pi }A)^{\sharp}+(B^{\pi}A)^{\sharp}; \\ M_{2} =&B^{\sharp}; \\ M_{3} =&-B^{\sharp}A(B^{\sharp})^{2}AB^{\pi}+B^{\sharp}A(B^{\sharp })^{2}AB^{\pi}A(B^{\pi}A)^{\sharp} -B^{\sharp}A(B^{\pi}A)^{\sharp}+B^{\sharp}; \\ M_{4} =&-B^{\sharp}AB^{\sharp}. \end{aligned}$$
 
Proof
The proof is similar to Theorem 4, so we omit it. □
Next we consider a special case of Theorem 4 and 5, and investigate it over any ring.
Theorem 6
Let https://static-content.springer.com/image/art%3A10.1007%2Fs12190-013-0744-3/MediaObjects/12190_2013_744_IEq22_HTML.gif , where A,BR n×n . If B exists and BAB π =0,B π AB=0, then
(i)
M exists if and only if (AB π ) exists.
 
(ii)
If M exists, then
$$M^{\sharp}=\left ( \begin{array}{c@{\quad}c}(AB^{\pi})^{\sharp}&B^{\sharp}\\ B^{\sharp}&-B^{\sharp }AB^{\sharp} \end{array} \right ). $$
 
Proof
The “only if” part of (i).
Let
$$M^{2}=\left ( \begin{array}{c@{\quad}c}I&AB^{\sharp}\\ 0&I \end{array} \right ) \left ( \begin{array}{c@{\quad}c}AB^{\pi}A+B^{2}&0\\ 0&B^{2} \end{array} \right ) \left ( \begin{array}{c@{\quad}c}I&O\\ B^{\sharp}A&I \end{array} \right ). $$
The decomposition of M is the same as in Theorem 4. By Lemma 2, M exists if and only if there exist X,Y over R such that MX 2=M and YM 2=M.
Let
$$X=\left ( \begin{array}{c@{\quad}c}I&0\\ -B^{\sharp}A&I \end{array} \right ) \left ( \begin{array}{c@{\quad}c}X_{1}&X_{2}\\ X_{3}&X_{4} \end{array} \right ),\qquad Y=\left ( \begin{array}{c@{\quad}c}Y_{1}&Y_{2}\\ Y_{3}&Y_{4} \end{array} \right )\left ( \begin{array}{c@{\quad}c}I&-AB^{\sharp}\\ 0&I \end{array} \right ), $$
then we have
$$ AB^{\pi}=\bigl(AB^{\pi}A+B^2 \bigr)X_1, $$
(18)
$$ B=\bigl(AB^{\pi}A+B^{2}\bigr)X_2, $$
(19)
$$ B=B^{2}X_{3}, $$
(20)
$$ 0=B^{2}X_{4}, $$
(21)
$$ Y_{1}AB^{\pi}A+Y_{1}B^{2}=B^{\pi}A, $$
(22)
$$ Y_{2}B^{2}=B, $$
(23)
$$ Y_{3}AB^{\pi}A+Y_{3}B^{2}=B, $$
(24)
$$ Y_{4}B^{2}=0. $$
(25)
By (18) and (22), we have AB π AB π X 1=B π AB π AB π X 1=B π AB π AX 1=B π AB π =AB π and Y 1 AB π AB π =AB π , respectively. From Lemma 2, we know (AB π ) exists. Next, we prove the sufficiency of (i) and the expression of (ii).
Let
$$X=\left ( \begin{array}{c@{\quad}c}(AB^{\pi})^{\sharp}&B^{\sharp}\\ B^{\sharp}&-B^{\sharp }AB^{\sharp} \end{array} \right ). $$
By Lemma 3,
$$MX=\left ( \begin{array}{c@{\quad}c}A(AB^{\pi})^{\sharp}+BB^{\sharp}&0\\ 0&BB^{\sharp} \end{array} \right )=XM. $$
It is easy to verify that XMX=M, MXM=M.
So X=M . □
Remark 2
We have expressed Theorems 1–2 and 4–5 over right Ore domains, but how to solve them in rings? This is still an open question.

Acknowledgements

The authors would like to thank the editors and the referees for their very detailed comments and valuable suggestions which greatly improved our paper.
Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.
Literatur
1.
Zurück zum Zitat Campbell, S.L., Meyer, C.D., Rose, N.J.: Application of the Drazin inverse to linear system of differential equations with singular constant coefficients. SIAM J. Appl. Math. 24, 45–49 (1976) MathSciNet Campbell, S.L., Meyer, C.D., Rose, N.J.: Application of the Drazin inverse to linear system of differential equations with singular constant coefficients. SIAM J. Appl. Math. 24, 45–49 (1976) MathSciNet
2.
4.
Zurück zum Zitat Ben-Israel, A., Greville, T.N.E.: Generalized Inverse: Theory and Applications, 2nd edn. Wiley, New York (1974) MATH Ben-Israel, A., Greville, T.N.E.: Generalized Inverse: Theory and Applications, 2nd edn. Wiley, New York (1974) MATH
5.
Zurück zum Zitat Climent, J.J., Neumann, M., Sidi, A.: A semi-iterative method for real spectrum singular liner systems with an arbitrary index. J. Comput. Appl. Math. 87, 21–38 (1997) CrossRefMATHMathSciNet Climent, J.J., Neumann, M., Sidi, A.: A semi-iterative method for real spectrum singular liner systems with an arbitrary index. J. Comput. Appl. Math. 87, 21–38 (1997) CrossRefMATHMathSciNet
6.
Zurück zum Zitat Wang, G.: A Cramer rule for finding the solution of a class of singular equations. Linear Algebra Appl. 116, 27–34 (1980) CrossRef Wang, G.: A Cramer rule for finding the solution of a class of singular equations. Linear Algebra Appl. 116, 27–34 (1980) CrossRef
7.
8.
9.
Zurück zum Zitat Campbell, S.L.: The Drazin inverse and systems of second order linear differential equations. Linear Multilinear Algebra 14, 195–198 (1983) CrossRefMATH Campbell, S.L.: The Drazin inverse and systems of second order linear differential equations. Linear Multilinear Algebra 14, 195–198 (1983) CrossRefMATH
10.
Zurück zum Zitat Liu, X., Yang, H.: Further results on the group inverses and Drazin inverses of anti-triangular block matrices. Appl. Math. Comput. 218, 8978–8986 (2012) CrossRefMATHMathSciNet Liu, X., Yang, H.: Further results on the group inverses and Drazin inverses of anti-triangular block matrices. Appl. Math. Comput. 218, 8978–8986 (2012) CrossRefMATHMathSciNet
11.
Zurück zum Zitat Bhaskara Rao, K.P.S.: The Theory of Generalized Inverses over Commutative Rings. Taylor and Francis, London and New York (2002) MATH Bhaskara Rao, K.P.S.: The Theory of Generalized Inverses over Commutative Rings. Taylor and Francis, London and New York (2002) MATH
12.
13.
Zurück zum Zitat Cao, C., Zhao, C.: Group inverse for a class of 2×2 anti-triangular block matrices over skew fields. J. Appl. Math. Comput. 40, 87–93 (2012) CrossRefMATHMathSciNet Cao, C., Zhao, C.: Group inverse for a class of 2×2 anti-triangular block matrices over skew fields. J. Appl. Math. Comput. 40, 87–93 (2012) CrossRefMATHMathSciNet
14.
Zurück zum Zitat Bu, C., Zhao, J., Zhang, K.: Some results on group inverses of block matrices over skew fields. Electron. J. Linear Algebra 18, 117–125 (2009) MATHMathSciNet Bu, C., Zhao, J., Zhang, K.: Some results on group inverses of block matrices over skew fields. Electron. J. Linear Algebra 18, 117–125 (2009) MATHMathSciNet
15.
Zurück zum Zitat Bu, C., Zhao, J., Zheng, J.: Group inverse for a class 2×2 block matrices over skew fields. Appl. Math. Comput. 204, 45–49 (2008) CrossRefMATHMathSciNet Bu, C., Zhao, J., Zheng, J.: Group inverse for a class 2×2 block matrices over skew fields. Appl. Math. Comput. 204, 45–49 (2008) CrossRefMATHMathSciNet
16.
Zurück zum Zitat Cao, C., Li, J.: Group inverses for matrices over a Bézout domain. Electron. J. Linear Algebra 18, 600–612 (2009) MATHMathSciNet Cao, C., Li, J.: Group inverses for matrices over a Bézout domain. Electron. J. Linear Algebra 18, 600–612 (2009) MATHMathSciNet
17.
Zurück zum Zitat Zhao, J., Hu, Z., Zhang, K., Bu, C.: Group inverse for block matrix with t-potent subblock. J. Appl. Math. Comput. 39, 109–119 (2012) CrossRefMATHMathSciNet Zhao, J., Hu, Z., Zhang, K., Bu, C.: Group inverse for block matrix with t-potent subblock. J. Appl. Math. Comput. 39, 109–119 (2012) CrossRefMATHMathSciNet
18.
Zurück zum Zitat Cao, C., Li, J.: A note on the group inverse of some 2×2 block matrices over skew fields. Appl. Math. Comput. 217, 10271–10277 (2011) CrossRefMATHMathSciNet Cao, C., Li, J.: A note on the group inverse of some 2×2 block matrices over skew fields. Appl. Math. Comput. 217, 10271–10277 (2011) CrossRefMATHMathSciNet
20.
Zurück zum Zitat Zhao, J., Bu, C.: Group inverse for the block matrix with two identical subblocks over skew fields. Electron. J. Linear Algebra 21, 63–75 (2010) MATHMathSciNet Zhao, J., Bu, C.: Group inverse for the block matrix with two identical subblocks over skew fields. Electron. J. Linear Algebra 21, 63–75 (2010) MATHMathSciNet
21.
Zurück zum Zitat Bu, C., Zhang, K., Zhao, J.: Some results on the group inverse of the block matrix with a sub-block of linear combination or product combination of matrix over skew fields. Linear Multilinear Algebra 58, 959–966 (2010) MathSciNet Bu, C., Zhang, K., Zhao, J.: Some results on the group inverse of the block matrix with a sub-block of linear combination or product combination of matrix over skew fields. Linear Multilinear Algebra 58, 959–966 (2010) MathSciNet
22.
Zurück zum Zitat Cao, C., Tang, X.: Representation of the group inverse of some 2×2 block matrices. Int. Math. Forum 31, 1511–1517 (2006) MathSciNet Cao, C., Tang, X.: Representation of the group inverse of some 2×2 block matrices. Int. Math. Forum 31, 1511–1517 (2006) MathSciNet
23.
Zurück zum Zitat Cohn, P.M.: Free Rings and Their Relations, 2nd edn. London Mathematical Society Monographs, vol. 9. Academic Press, London (1985) MATH Cohn, P.M.: Free Rings and Their Relations, 2nd edn. London Mathematical Society Monographs, vol. 9. Academic Press, London (1985) MATH
24.
Zurück zum Zitat Zhuang, W.: The Guidance of Matrix Theory over Skew Fields. Science Press, Beijing (2006) (in Chinese) Zhuang, W.: The Guidance of Matrix Theory over Skew Fields. Science Press, Beijing (2006) (in Chinese)
25.
Zurück zum Zitat Huang, L.: Geometry of Matrices over Ring. Science Press, Beijing (2006) Huang, L.: Geometry of Matrices over Ring. Science Press, Beijing (2006)
26.
Zurück zum Zitat Sheng, Y., Ge, Y., Zhang, H., Cao, C.: Group inverse for a class of 2×2 block matrices over rings. Appl. Math. Comput. 219, 9340–9346 (2013) CrossRefMATHMathSciNet Sheng, Y., Ge, Y., Zhang, H., Cao, C.: Group inverse for a class of 2×2 block matrices over rings. Appl. Math. Comput. 219, 9340–9346 (2013) CrossRefMATHMathSciNet
27.
Zurück zum Zitat Ge, Y., Zhang, H., Sheng, Y., Cao, C.: Group inverse for two classes of 2×2 anti-triangular block matrices over right Ore domains. J. Appl. Math. Comput. 42, 183–191 (2013) CrossRefMATHMathSciNet Ge, Y., Zhang, H., Sheng, Y., Cao, C.: Group inverse for two classes of 2×2 anti-triangular block matrices over right Ore domains. J. Appl. Math. Comput. 42, 183–191 (2013) CrossRefMATHMathSciNet
Metadaten
Titel
Further results on the group inverse of some anti-triangular block matrices
verfasst von
Chongguang Cao
Hanyu Zhang
Yanling Ge
Publikationsdatum
01.10.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
Journal of Applied Mathematics and Computing / Ausgabe 1-2/2014
Print ISSN: 1598-5865
Elektronische ISSN: 1865-2085
DOI
https://doi.org/10.1007/s12190-013-0744-3

Weitere Artikel der Ausgabe 1-2/2014

Journal of Applied Mathematics and Computing 1-2/2014 Zur Ausgabe