Skip to main content
Erschienen in: Neuroinformatics 2/2019

04.10.2018 | Original Article

Fused Group Lasso Regularized Multi-Task Feature Learning and Its Application to the Cognitive Performance Prediction of Alzheimer’s Disease

verfasst von: Xiaoli Liu, Peng Cao, Jianzhong Wang, Jun Kong, Dazhe Zhao

Erschienen in: Neuroinformatics | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Alzheimer’s disease (AD) is characterized by gradual neurodegeneration and loss of brain function, especially for memory during early stages. Regression analysis has been widely applied to AD research to relate clinical and biomarker data such as predicting cognitive outcomes from MRI measures. Recently, multi-task based feature learning (MTFL) methods with sparsity-inducing \( \ell _{2,1} \)-norm have been widely studied to select a discriminative feature subset from MRI features by incorporating inherent correlations among multiple clinical cognitive measures. However, existing MTFL assumes the correlation among all tasks is uniform, and the task relatedness is modeled by encouraging a common subset of features via sparsity-inducing regularizations that neglect the inherent structure of tasks and MRI features. To address this issue, we proposed a fused group lasso regularization to model the underlying structures, involving 1) a graph structure within tasks and 2) a group structure among the image features. To this end, we present a multi-task feature learning framework with a mixed norm of fused group lasso and \( \ell _{2,1} \)-norm to model these more flexible structures. For optimization, we employed the alternating direction method of multipliers (ADMM) to efficiently solve the proposed non-smooth formulation. We evaluated the performance of the proposed method using the Alzheimer’s Disease Neuroimaging Initiative (ADNI) datasets. The experimental results demonstrate that incorporating the two prior structures with fused group lasso norm into the multi-task feature learning can improve prediction performance over several competing methods, with estimated correlations of cognitive functions and identification of cognition-relevant imaging markers that are clinically and biologically meaningful.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Alzheimer’s Association, & et al. (2016). Alzheimer’s disease facts and figures. Alzheimer’s & Dementia, 12(4), 459–509.CrossRef Alzheimer’s Association, & et al. (2016). Alzheimer’s disease facts and figures. Alzheimer’s & Dementia, 12(4), 459–509.CrossRef
Zurück zum Zitat Argyriou, A., Evgeniou, T., Pontil, M. (2008). Convex multi-task feature learning. Machine Learning, 73(3), 243–272.CrossRef Argyriou, A., Evgeniou, T., Pontil, M. (2008). Convex multi-task feature learning. Machine Learning, 73(3), 243–272.CrossRef
Zurück zum Zitat Batsch, N.L., & Mittelman, M.S. (2015). World Alzheimer Report 2012. Overcoming the stigma of dementia. Alzheimer’s Disease International (ADI), p. 5. Batsch, N.L., & Mittelman, M.S. (2015). World Alzheimer Report 2012. Overcoming the stigma of dementia. Alzheimer’s Disease International (ADI), p. 5.
Zurück zum Zitat Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J. (2011). Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundation and Trends in Machine Learning, 3(1), 1–122. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J. (2011). Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundation and Trends in Machine Learning, 3(1), 1–122.
Zurück zum Zitat Cai, J.-F., Osher, S., Shen, Z. (2009). Split bregman methods and frame based image restoration. Multiscale modeling & simulation, 8(2), 337–369.CrossRef Cai, J.-F., Osher, S., Shen, Z. (2009). Split bregman methods and frame based image restoration. Multiscale modeling & simulation, 8(2), 337–369.CrossRef
Zurück zum Zitat Cao, P., Liu, X., Yang, J., Zhao, D., Zaiane, O. (2017). Sparse multi-kernel based multi-task learning for joint prediction of clinical scores and biomarker identification in alzheimer’s disease. In International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, pp. 195–202. Cao, P., Liu, X., Yang, J., Zhao, D., Zaiane, O. (2017). Sparse multi-kernel based multi-task learning for joint prediction of clinical scores and biomarker identification in alzheimer’s disease. In International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, pp. 195–202.
Zurück zum Zitat Caruana, R. (1998). Multitask learning. In Learning to learn. Springer, pp. 95–133. Caruana, R. (1998). Multitask learning. In Learning to learn. Springer, pp. 95–133.
Zurück zum Zitat Castellani, R.J., Rolston, R.K., Smith, M.A. (2010). Alzheimer disease. Disease-a-month: DM, 56(9), 484.PubMedCrossRef Castellani, R.J., Rolston, R.K., Smith, M.A. (2010). Alzheimer disease. Disease-a-month: DM, 56(9), 484.PubMedCrossRef
Zurück zum Zitat Chen, J., Zhou, J., Ye, J. (2011). Integrating low-rank and group-sparse structures for robust multi-task learning. Chen, J., Zhou, J., Ye, J. (2011). Integrating low-rank and group-sparse structures for robust multi-task learning.
Zurück zum Zitat Dale, A.M., Fischl, B., Sereno, M.I. (1999). Cortical surface-based analysis. I. Segmentation and surface reconstruction. NeuroImage, 9, 179–194.PubMedCrossRef Dale, A.M., Fischl, B., Sereno, M.I. (1999). Cortical surface-based analysis. I. Segmentation and surface reconstruction. NeuroImage, 9, 179–194.PubMedCrossRef
Zurück zum Zitat Dale, A.M., & Sereno, M.I. (1993). Improved localization of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: a linear approach. Journal of Cognitive Neuroscience, 5(2), 162–176.PubMedCrossRef Dale, A.M., & Sereno, M.I. (1993). Improved localization of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: a linear approach. Journal of Cognitive Neuroscience, 5(2), 162–176.PubMedCrossRef
Zurück zum Zitat Desikan, R.S., Ségonne, F., Fischl, B., Quinn, B.T., Dickerson, B.C., Blacker, D., Buckner, R.L., Dale, A.M., Maguire, R.P., Hyman, B.T. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage, 31(3), 968–980.PubMedCrossRef Desikan, R.S., Ségonne, F., Fischl, B., Quinn, B.T., Dickerson, B.C., Blacker, D., Buckner, R.L., Dale, A.M., Maguire, R.P., Hyman, B.T. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage, 31(3), 968–980.PubMedCrossRef
Zurück zum Zitat Evgeniou, T., & learning, M.P. (2004). Regularized multi–task. In Proceedings of the 10th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, pp. 109–117. Evgeniou, T., & learning, M.P. (2004). Regularized multi–task. In Proceedings of the 10th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, pp. 109–117.
Zurück zum Zitat Fischl, B., Liu, A., Dale, A.M. (2001). Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE Transactions on Medical Imaging, 20, 70–80.PubMedCrossRef Fischl, B., Liu, A., Dale, A.M. (2001). Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE Transactions on Medical Imaging, 20, 70–80.PubMedCrossRef
Zurück zum Zitat Fischl, B., Salat, D.H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., van der Kouwe, A., Killiany, R., Kennedy, D., Klaveness, S., Montillo, A., Makris, N., Rosen, B., Dale, A.M. (2002). Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron, 33, 341–355.PubMedCrossRef Fischl, B., Salat, D.H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., van der Kouwe, A., Killiany, R., Kennedy, D., Klaveness, S., Montillo, A., Makris, N., Rosen, B., Dale, A.M. (2002). Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron, 33, 341–355.PubMedCrossRef
Zurück zum Zitat Fischl, B., Salat, D.H., van der Kouwe, A.J., Makris, N., Segonne, F., Quinn, B.T., Dale, A.M. (2004). Sequence-independent segmentation of magnetic resonance images. NeuroImage, 23, S69–S84.PubMedCrossRef Fischl, B., Salat, D.H., van der Kouwe, A.J., Makris, N., Segonne, F., Quinn, B.T., Dale, A.M. (2004). Sequence-independent segmentation of magnetic resonance images. NeuroImage, 23, S69–S84.PubMedCrossRef
Zurück zum Zitat Frisoni, G.B., Fox, N.C., Jack, C.R., Scheltens, P., Thompson, P.M. (2010). The clinical use of structural MRI in Alzheimer disease. Nature Reviews Neurology, 6(2), 67–77.PubMedPubMedCentralCrossRef Frisoni, G.B., Fox, N.C., Jack, C.R., Scheltens, P., Thompson, P.M. (2010). The clinical use of structural MRI in Alzheimer disease. Nature Reviews Neurology, 6(2), 67–77.PubMedPubMedCentralCrossRef
Zurück zum Zitat Goncalves, A., Das, P., Chatterjee, S., Sivakumar, V., Zuben, F.J.V., Banerjee, A. (2014). Multi-task sparse structure learning. In In CIKM, pp. 451–460. Goncalves, A., Das, P., Chatterjee, S., Sivakumar, V., Zuben, F.J.V., Banerjee, A. (2014). Multi-task sparse structure learning. In In CIKM, pp. 451–460.
Zurück zum Zitat Jebara, T. (2011). Multitask sparsity via maximum entropy discrimination. Journal of Machine Learning Research, 12(Jan), 75–110. Jebara, T. (2011). Multitask sparsity via maximum entropy discrimination. Journal of Machine Learning Research, 12(Jan), 75–110.
Zurück zum Zitat Ji, S., & Ye, J. (2009). An accelerated gradient method for trace norm minimization. In Proceedings of the 26th annual international conference on machine learning. ACM, pp. 457–464. Ji, S., & Ye, J. (2009). An accelerated gradient method for trace norm minimization. In Proceedings of the 26th annual international conference on machine learning. ACM, pp. 457–464.
Zurück zum Zitat Liu, J., Ji, S., Ye, J. (2009). Multi-task feature learning via \(\ell _{2,1}\)-norm minimization. In Proceedings of the 25th conference on uncertainty in artificial intelligence. AUAI Press, pp. 339–348. Liu, J., Ji, S., Ye, J. (2009). Multi-task feature learning via \(\ell _{2,1}\)-norm minimization. In Proceedings of the 25th conference on uncertainty in artificial intelligence. AUAI Press, pp. 339–348.
Zurück zum Zitat Liu, X., Cao, P., Zhao, D., Zaiane, O., et al. (2017). Group guided sparse group lasso multi-task learning for cognitive performance prediction of alzheimer’s disease. In International Conference on Brain Informatics. Springer, pp. 202–212. Liu, X., Cao, P., Zhao, D., Zaiane, O., et al. (2017). Group guided sparse group lasso multi-task learning for cognitive performance prediction of alzheimer’s disease. In International Conference on Brain Informatics. Springer, pp. 202–212.
Zurück zum Zitat Liu, X., Goncalves, A.R., Cao, P., Zhao, D., Banerjee, A., et al. (2017). Modeling Alzheimer’s disease cognitive scores using multi-task sparse group lasso. Computerized Medical Imaging and Graphics, 66, 100–114.PubMedCrossRef Liu, X., Goncalves, A.R., Cao, P., Zhao, D., Banerjee, A., et al. (2017). Modeling Alzheimer’s disease cognitive scores using multi-task sparse group lasso. Computerized Medical Imaging and Graphics, 66, 100–114.PubMedCrossRef
Zurück zum Zitat Reuter, M., Rosas, H.D., Fischl, B. (2010). Highly accurate inverse consistent registration: A robust approach. NeuroImage, 53(4), 1181–1196.PubMedCrossRef Reuter, M., Rosas, H.D., Fischl, B. (2010). Highly accurate inverse consistent registration: A robust approach. NeuroImage, 53(4), 1181–1196.PubMedCrossRef
Zurück zum Zitat Segonne, F., Dale, A.M., Busa, E., Glessner, M., Salat, D., Hahn, H.K., Fischl, B. (2004). A hybrid approach to the skull stripping problem in MRI. NeuroImage, 22, 1060–1075.PubMedCrossRef Segonne, F., Dale, A.M., Busa, E., Glessner, M., Salat, D., Hahn, H.K., Fischl, B. (2004). A hybrid approach to the skull stripping problem in MRI. NeuroImage, 22, 1060–1075.PubMedCrossRef
Zurück zum Zitat Ségonne, F., Pacheco, J., Fischl, B. (2007). Geometrically accurate topology-correction of cortical surfaces using nonseparating loops. IEEE Transactions on Medical Imaging, 26(4), 518–529.PubMedCrossRef Ségonne, F., Pacheco, J., Fischl, B. (2007). Geometrically accurate topology-correction of cortical surfaces using nonseparating loops. IEEE Transactions on Medical Imaging, 26(4), 518–529.PubMedCrossRef
Zurück zum Zitat Li, S., Saykin, A.J., Risacher, S.L., Kim, S., Fang, S., Rao, B.D., Li, T., Yan, J., Zhang, Z., Wan, J. (2012). Sparse bayesian multi-task learning for predicting cognitive outcomes from neuroimaging measures in alzheimer. Li, S., Saykin, A.J., Risacher, S.L., Kim, S., Fang, S., Rao, B.D., Li, T., Yan, J., Zhang, Z., Wan, J. (2012). Sparse bayesian multi-task learning for predicting cognitive outcomes from neuroimaging measures in alzheimer.
Zurück zum Zitat Sled, J.G., Zijdenbos, A.P., Evans, A.C. (1998). A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Transactions on Medical Imaging, 17, 87–97.PubMedCrossRef Sled, J.G., Zijdenbos, A.P., Evans, A.C. (1998). A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Transactions on Medical Imaging, 17, 87–97.PubMedCrossRef
Zurück zum Zitat Stonnington, C.M., Chu, C., Klöppel, S., Jack, C.R., Ashburner, J., Frackowiak, R.S.J. (2010). Alzheimer disease neuroimaging initiative predicting clinical scores from magnetic resonance scans in Alzheimer’s disease. NeuroImage, 51(4), 1405–1413.PubMedCrossRef Stonnington, C.M., Chu, C., Klöppel, S., Jack, C.R., Ashburner, J., Frackowiak, R.S.J. (2010). Alzheimer disease neuroimaging initiative predicting clinical scores from magnetic resonance scans in Alzheimer’s disease. NeuroImage, 51(4), 1405–1413.PubMedCrossRef
Zurück zum Zitat Hoesen, G.W.v., Hyman, B.T., Damasio, A.R. (1991). Entorhinal cortex pathology in Alzheimer’s disease. Hippocampus, 1(1), 1–8.PubMedCrossRef Hoesen, G.W.v., Hyman, B.T., Damasio, A.R. (1991). Entorhinal cortex pathology in Alzheimer’s disease. Hippocampus, 1(1), 1–8.PubMedCrossRef
Zurück zum Zitat Visser, P.J., Verhey, F.R.J., Hofman, P.A.M., Scheltens, P., Jolles, J. (2002). Medial temporal lobe atrophy predicts Alzheimer’s disease in patients with minor cognitive impairment. Journal of Neurology Neurosurgery & Psychiatry, 72(4), 491–497. Visser, P.J., Verhey, F.R.J., Hofman, P.A.M., Scheltens, P., Jolles, J. (2002). Medial temporal lobe atrophy predicts Alzheimer’s disease in patients with minor cognitive impairment. Journal of Neurology Neurosurgery & Psychiatry, 72(4), 491–497.
Zurück zum Zitat Wan, J., Zhang, Z., Rao, B.D., Fang, S., Yan, J., Saykin, A.J., Li, S. (2014). Identifying the neuroanatomical basis of cognitive impairment in Alzheimer’s disease by correlation-and nonlinearity-aware sparse Bayesian learning. IEEE transactions on medical imaging, 33(7), 1475–1487.PubMedPubMedCentralCrossRef Wan, J., Zhang, Z., Rao, B.D., Fang, S., Yan, J., Saykin, A.J., Li, S. (2014). Identifying the neuroanatomical basis of cognitive impairment in Alzheimer’s disease by correlation-and nonlinearity-aware sparse Bayesian learning. IEEE transactions on medical imaging, 33(7), 1475–1487.PubMedPubMedCentralCrossRef
Zurück zum Zitat Wan, J., Zhang, Z., Yan, J., Li, T., Rao, B.D., Fang, S., Kim, S., Risacher, S.L., Saykin, A.J., Li, S. (2012). Sparse Bayesian multi-task learning for predicting cognitive outcomes from neuroimaging measures in Alzheimer’s disease. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 940–947. Wan, J., Zhang, Z., Yan, J., Li, T., Rao, B.D., Fang, S., Kim, S., Risacher, S.L., Saykin, A.J., Li, S. (2012). Sparse Bayesian multi-task learning for predicting cognitive outcomes from neuroimaging measures in Alzheimer’s disease. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 940–947.
Zurück zum Zitat Wang, H., Nie, F., Huang, H., Risacher, S., Ding, C., Saykin, A.J., Li, S. (2011). ADNI Sparse Multi-task regression and feature selection to identify brain imaging predictors for memory performance. In International Conference on Computer Vision, pp. 6–13. Wang, H., Nie, F., Huang, H., Risacher, S., Ding, C., Saykin, A.J., Li, S. (2011). ADNI Sparse Multi-task regression and feature selection to identify brain imaging predictors for memory performance. In International Conference on Computer Vision, pp. 6–13.
Zurück zum Zitat Wang, H., Nie, F., Huang, H., Yan, J., Kim, S., Risacher, S., Saykin, A., Li, S. (2012). High-order multi-task feature learning to identify longitudinal phenotypic markers for Alzheimer’s disease progression prediction. In Advances in Neural Information Processing Systems, pp. 1277–1285. Wang, H., Nie, F., Huang, H., Yan, J., Kim, S., Risacher, S., Saykin, A., Li, S. (2012). High-order multi-task feature learning to identify longitudinal phenotypic markers for Alzheimer’s disease progression prediction. In Advances in Neural Information Processing Systems, pp. 1277–1285.
Zurück zum Zitat Weiner, M.W., Aisen, P.S., Jack, C.R. Jr, Jagust, W.J., Trojanowski, J.Q., Shaw, L., Saykin, A.J., Morris, J.C., Cairns, N., Beckett, L.A., Toga, A., Green, R., Walter, S., Soares, H., Snyder, P., Siemers, E., Potter, W., Cole, P.E., Schmidt, M. (2010). The Alzheimer’s disease neuroimaging initiative: progress report and future plans. Alzheimer’s & Dementia, 6, 202–211.CrossRef Weiner, M.W., Aisen, P.S., Jack, C.R. Jr, Jagust, W.J., Trojanowski, J.Q., Shaw, L., Saykin, A.J., Morris, J.C., Cairns, N., Beckett, L.A., Toga, A., Green, R., Walter, S., Soares, H., Snyder, P., Siemers, E., Potter, W., Cole, P.E., Schmidt, M. (2010). The Alzheimer’s disease neuroimaging initiative: progress report and future plans. Alzheimer’s & Dementia, 6, 202–211.CrossRef
Zurück zum Zitat Xu, L., Wu, X., Li, R., Chen, K., Long, Z., Zhang, J., Guo, X., Yao, L. (2016). Prediction of progressive mild cognitive impairment by multi-modal neuroimaging biomarkers. Journal of Alzheimer’s Disease, 51 (4), 1045–1056.PubMedCrossRef Xu, L., Wu, X., Li, R., Chen, K., Long, Z., Zhang, J., Guo, X., Yao, L. (2016). Prediction of progressive mild cognitive impairment by multi-modal neuroimaging biomarkers. Journal of Alzheimer’s Disease, 51 (4), 1045–1056.PubMedCrossRef
Zurück zum Zitat Xue, Y., Liao, X., Carin, L., Krishnapuram, B. (2007). Multi-task learning for classification with dirichlet process priors. Journal of Machine Learning Research, 8(Jan), 35–63. Xue, Y., Liao, X., Carin, L., Krishnapuram, B. (2007). Multi-task learning for classification with dirichlet process priors. Journal of Machine Learning Research, 8(Jan), 35–63.
Zurück zum Zitat Yan, J., Huang, H., Risacher, S.L., Kim, S., Inlow, M., Moore, J.H., Saykin, A.J., Shen, L. (2013). Network-guided sparse learning for predicting cognitive outcomes from MRI measures. In International Workshop on Multimodal Brain Image Analysis. Springer, pp. 202–210. Yan, J., Huang, H., Risacher, S.L., Kim, S., Inlow, M., Moore, J.H., Saykin, A.J., Shen, L. (2013). Network-guided sparse learning for predicting cognitive outcomes from MRI measures. In International Workshop on Multimodal Brain Image Analysis. Springer, pp. 202–210.
Zurück zum Zitat Yan, J., Li, T., Wang, H., Huang, H., Wan, J., Nho, K., Kim, S., Risacher, S.L., Saykin, A.J., Shen, L., et al. (2015). Cortical surface biomarkers for predicting cognitive outcomes using group \(\ell _{2,1}\) norm. Neurobiology of aging, 36, S185–S193.PubMedCrossRef Yan, J., Li, T., Wang, H., Huang, H., Wan, J., Nho, K., Kim, S., Risacher, S.L., Saykin, A.J., Shen, L., et al. (2015). Cortical surface biomarkers for predicting cognitive outcomes using group \(\ell _{2,1}\) norm. Neurobiology of aging, 36, S185–S193.PubMedCrossRef
Zurück zum Zitat Ye, G.-B., & Xie, X. (2011). Split bregman method for large scale fused lasso. Computational Statistics & Data Analysis, 55(4), 1552–1569.CrossRef Ye, G.-B., & Xie, X. (2011). Split bregman method for large scale fused lasso. Computational Statistics & Data Analysis, 55(4), 1552–1569.CrossRef
Zurück zum Zitat Yu, K., Tresp, V., Schwaighofer, A. (2005). Learning gaussian processes from multiple tasks. In Proceedings of the 22nd international conference on Machine learning. ACM, pp. 1012–1019. Yu, K., Tresp, V., Schwaighofer, A. (2005). Learning gaussian processes from multiple tasks. In Proceedings of the 22nd international conference on Machine learning. ACM, pp. 1012–1019.
Zurück zum Zitat Yuan, L., Liu, J., Ye, J. (2013). Efficient methods for overlapping group lasso. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(9), 2104–2116.PubMedCrossRef Yuan, L., Liu, J., Ye, J. (2013). Efficient methods for overlapping group lasso. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(9), 2104–2116.PubMedCrossRef
Zurück zum Zitat Zhang, D., Shen, D., Alzheimer’s Disease Neuroimaging Initiative. (2012). Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer’s disease. NeuroImage, 59(2), 895–907.PubMedCrossRef Zhang, D., Shen, D., Alzheimer’s Disease Neuroimaging Initiative. (2012). Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer’s disease. NeuroImage, 59(2), 895–907.PubMedCrossRef
Zurück zum Zitat Zhang, Y., & Yeung, D.-Y. (2012a). A convex formulation for learning task relationships in multi-task learning. In Conference on Uncertainty in Artificial Intelligence (UAI2010) 2010, pp. 733–742. Zhang, Y., & Yeung, D.-Y. (2012a). A convex formulation for learning task relationships in multi-task learning. In Conference on Uncertainty in Artificial Intelligence (UAI2010) 2010, pp. 733–742.
Zurück zum Zitat Zhang, Y., & Yeung, D.-Y. (2012b). A convex formulation for learning task relationships in multi-task learning. arXiv:1203.3536. Zhang, Y., & Yeung, D.-Y. (2012b). A convex formulation for learning task relationships in multi-task learning. arXiv:1203.​3536.
Zurück zum Zitat Zhou, J., Chen, J., Ye, J. (2011). Clustered multi-task learning via alternating structure optimization. In Advances in neural information processing systems, pp. 702–710. Zhou, J., Chen, J., Ye, J. (2011). Clustered multi-task learning via alternating structure optimization. In Advances in neural information processing systems, pp. 702–710.
Zurück zum Zitat Zhou, J., Liu, J., Narayan, V.A., Ye, J., Alzheimer’s Disease Neuroimaging Initiative. (2013). Modeling disease progression via multi-task learning. NeuroImage, 78, 233–248.PubMedCrossRef Zhou, J., Liu, J., Narayan, V.A., Ye, J., Alzheimer’s Disease Neuroimaging Initiative. (2013). Modeling disease progression via multi-task learning. NeuroImage, 78, 233–248.PubMedCrossRef
Zurück zum Zitat Zhu, X., Suk, H.-I., Lee, S.-W., Shen, D. (2016). Subspace regularized sparse multitask learning for multiclass neurodegenerative disease identification. IEEE Transactions on Biomedical Engineering, 63(3), 607–618.PubMedCrossRef Zhu, X., Suk, H.-I., Lee, S.-W., Shen, D. (2016). Subspace regularized sparse multitask learning for multiclass neurodegenerative disease identification. IEEE Transactions on Biomedical Engineering, 63(3), 607–618.PubMedCrossRef
Metadaten
Titel
Fused Group Lasso Regularized Multi-Task Feature Learning and Its Application to the Cognitive Performance Prediction of Alzheimer’s Disease
verfasst von
Xiaoli Liu
Peng Cao
Jianzhong Wang
Jun Kong
Dazhe Zhao
Publikationsdatum
04.10.2018
Verlag
Springer US
Erschienen in
Neuroinformatics / Ausgabe 2/2019
Print ISSN: 1539-2791
Elektronische ISSN: 1559-0089
DOI
https://doi.org/10.1007/s12021-018-9398-5

Weitere Artikel der Ausgabe 2/2019

Neuroinformatics 2/2019 Zur Ausgabe