Skip to main content

2018 | OriginalPaper | Buchkapitel

16. Future Directions of High Repetition Rate X-Ray Free Electron Lasers

verfasst von : Mike Dunne, Robert W. Schoenlein

Erschienen in: X-ray Free Electron Lasers

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A new scientific frontier opened in 2009 when the world’s first X-ray free electron laser (FEL), the Linac Coherent Light Source (LCLS) facility, began operations at SLAC National Accelerator Laboratory. The scientific start of LCLS has arguably been one of the most vigorous and successful of any new research facility, with a dramatic effect on a broad cross section of scientific fields, ranging from atomic and molecular science, ultrafast chemistry and catalysis, fluid dynamics, clean energy systems, structural biology, high energy-density science, photon science, and advanced materials [1].

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bostedt, C., Boutet, S., Fritz, D. M., Huang, Z., Lee, H. J., Lemke, H. T., et al. (2016). Linac Coherent Light Source: The first five years. Reviews of Modern Physics, 88(1), 015007.CrossRef Bostedt, C., Boutet, S., Fritz, D. M., Huang, Z., Lee, H. J., Lemke, H. T., et al. (2016). Linac Coherent Light Source: The first five years. Reviews of Modern Physics, 88(1), 015007.CrossRef
2.
Zurück zum Zitat Kjær, K. S., & Gaffney, K. J. (2017). Finding intersections between electronic excited states with ultrafast X-ray scattering and spectroscopy. In Frontiers in optics 2017. Washington, D.C.: Optical Society of America. Kjær, K. S., & Gaffney, K. J. (2017). Finding intersections between electronic excited states with ultrafast X-ray scattering and spectroscopy. In Frontiers in optics 2017. Washington, D.C.: Optical Society of America.
3.
Zurück zum Zitat Wernet, P., Kunnus, K., Josefsson, I., Rajkovic, I., Quevedo, W., Beye, M., et al. (2015). Orbital-specific mapping of the ligand exchange dynamics of Fe(CO)(5) in solution. Nature, 520(7545), 78–81.CrossRef Wernet, P., Kunnus, K., Josefsson, I., Rajkovic, I., Quevedo, W., Beye, M., et al. (2015). Orbital-specific mapping of the ligand exchange dynamics of Fe(CO)(5) in solution. Nature, 520(7545), 78–81.CrossRef
4.
Zurück zum Zitat Zhang, W., Alonso-Mori, R., Bergmann, U., Bressler, C., Chollet, M., Galler, A., et al. (2014). Tracking excited-state charge and spin dynamics in iron coordination complexes. Nature, 509(7500), 345–348.CrossRef Zhang, W., Alonso-Mori, R., Bergmann, U., Bressler, C., Chollet, M., Galler, A., et al. (2014). Tracking excited-state charge and spin dynamics in iron coordination complexes. Nature, 509(7500), 345–348.CrossRef
5.
Zurück zum Zitat Shvyd’ko, Y. (2015). Theory of angular-dispersive, imaging hard-x-ray spectrographs. Physical Review A, 91(5), 053817.CrossRef Shvyd’ko, Y. (2015). Theory of angular-dispersive, imaging hard-x-ray spectrographs. Physical Review A, 91(5), 053817.CrossRef
6.
Zurück zum Zitat Shvyd’ko, Y., et al. (2014). High-contrast sub-millivolt inelastic X-ray scattering for nano- and mesoscale science. Nature Communications, 5, 4219.CrossRef Shvyd’ko, Y., et al. (2014). High-contrast sub-millivolt inelastic X-ray scattering for nano- and mesoscale science. Nature Communications, 5, 4219.CrossRef
7.
Zurück zum Zitat Sutter, J. P., Baron, A. Q. R., Ishikawa, T., & Yamazaki, H. (2005). Examination of Bragg backscattering from crystalline quartz. Journal of Physics and Chemistry of Solids, 66(12), 2306–2309.CrossRef Sutter, J. P., Baron, A. Q. R., Ishikawa, T., & Yamazaki, H. (2005). Examination of Bragg backscattering from crystalline quartz. Journal of Physics and Chemistry of Solids, 66(12), 2306–2309.CrossRef
8.
Zurück zum Zitat Kukura, P., McCamant, D. W., & Mathies, R. A. (2007). Femtosecond stimulated Raman spectroscopy. Annual Review of Physical Chemistry, 58, 461–488.CrossRef Kukura, P., McCamant, D. W., & Mathies, R. A. (2007). Femtosecond stimulated Raman spectroscopy. Annual Review of Physical Chemistry, 58, 461–488.CrossRef
9.
Zurück zum Zitat Harada, Y., Tokushima, T., Horikawa, Y., Takahashi, O., Niwa, H., Kobayashi, M., et al. (2013). Selective probing of the OH or OD stretch vibration in liquid water using resonant inelastic soft-X-ray scattering. Physical Review Letters, 111(19), 193001.CrossRef Harada, Y., Tokushima, T., Horikawa, Y., Takahashi, O., Niwa, H., Kobayashi, M., et al. (2013). Selective probing of the OH or OD stretch vibration in liquid water using resonant inelastic soft-X-ray scattering. Physical Review Letters, 111(19), 193001.CrossRef
10.
Zurück zum Zitat Hennies, F., Pietzsch, A., Berglund, M., Föhlisch, A., Schmitt, T., Strocov, V., et al. (2010). Resonant inelastic scattering spectra of free molecules with vibrational resolution. Physical Review Letters, 104(19), 193002.CrossRef Hennies, F., Pietzsch, A., Berglund, M., Föhlisch, A., Schmitt, T., Strocov, V., et al. (2010). Resonant inelastic scattering spectra of free molecules with vibrational resolution. Physical Review Letters, 104(19), 193002.CrossRef
11.
Zurück zum Zitat Sinn, H. (2001). Spectroscopy with meV energy resolution. Journal of Physics-Condensed Matter, 13(34), 7525–7537.CrossRef Sinn, H. (2001). Spectroscopy with meV energy resolution. Journal of Physics-Condensed Matter, 13(34), 7525–7537.CrossRef
12.
Zurück zum Zitat Yavas, H., et al. (2007). Sapphire analyzers for high-resolution X-ray spectroscopy. Nuclear Instruments & Methods in Physics Research Section A-Accelerators Spectrometers Detectors and Associated Equipment, 582(1), 149–151.CrossRef Yavas, H., et al. (2007). Sapphire analyzers for high-resolution X-ray spectroscopy. Nuclear Instruments & Methods in Physics Research Section A-Accelerators Spectrometers Detectors and Associated Equipment, 582(1), 149–151.CrossRef
13.
Zurück zum Zitat Rumaiz, A. K., et al. (2016). First experimental feasibility study of VIPIC: A custom-made detector for X-ray speckle measurements. Journal of Synchrotron Radiation, 23, 404–409.CrossRef Rumaiz, A. K., et al. (2016). First experimental feasibility study of VIPIC: A custom-made detector for X-ray speckle measurements. Journal of Synchrotron Radiation, 23, 404–409.CrossRef
14.
Zurück zum Zitat Grubel, G., et al. (2007). XPCS at the European X-ray free electron laser facility. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, 262(2), 357–367.CrossRef Grubel, G., et al. (2007). XPCS at the European X-ray free electron laser facility. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, 262(2), 357–367.CrossRef
15.
Zurück zum Zitat Gutt, C., et al. (2009). Measuring temporal speckle correlations at ultrafast x-ray sources. Optics Express, 17(1), 55–61.CrossRef Gutt, C., et al. (2009). Measuring temporal speckle correlations at ultrafast x-ray sources. Optics Express, 17(1), 55–61.CrossRef
16.
Zurück zum Zitat Trigo, M., et al. (2013). Fourier-transform inelastic X-ray scattering from time- and momentum-dependent phonon-phonon correlations. Nature Physics, 9(12), 790–794.CrossRef Trigo, M., et al. (2013). Fourier-transform inelastic X-ray scattering from time- and momentum-dependent phonon-phonon correlations. Nature Physics, 9(12), 790–794.CrossRef
17.
Zurück zum Zitat Tamasaku, K., Ishikawa, T., & Yabashi, M. (2003). High-resolution Fourier transform x-ray spectroscopy. Applied Physics Letters, 83(15), 2994–2996.CrossRef Tamasaku, K., Ishikawa, T., & Yabashi, M. (2003). High-resolution Fourier transform x-ray spectroscopy. Applied Physics Letters, 83(15), 2994–2996.CrossRef
18.
Zurück zum Zitat Neutze, R., et al. (2000). Potential for biomolecular imaging with femtosecond X-ray pulses. Nature, 406(6797), 752–757.CrossRef Neutze, R., et al. (2000). Potential for biomolecular imaging with femtosecond X-ray pulses. Nature, 406(6797), 752–757.CrossRef
19.
Zurück zum Zitat Barends, T. R. M., et al. (2015). Direct observation of ultrafast collective motions in CO myoglobin upon ligand dissociation. Science, 350(6259), 445–450.CrossRef Barends, T. R. M., et al. (2015). Direct observation of ultrafast collective motions in CO myoglobin upon ligand dissociation. Science, 350(6259), 445–450.CrossRef
20.
Zurück zum Zitat Coquelle, N., et al. (2017). Chromophore twisting in the excited state of a photoswitchable fluorescent protein captured by time-resolved serial femtosecond crystallography. Nature Chemistry, 10, 31.CrossRef Coquelle, N., et al. (2017). Chromophore twisting in the excited state of a photoswitchable fluorescent protein captured by time-resolved serial femtosecond crystallography. Nature Chemistry, 10, 31.CrossRef
21.
Zurück zum Zitat Tenboer, J., et al. (2014). Time-resolved serial crystallography captures high-resolution intermediates of photoactive yellow protein. Science, 346(6214), 1242–1246.CrossRef Tenboer, J., et al. (2014). Time-resolved serial crystallography captures high-resolution intermediates of photoactive yellow protein. Science, 346(6214), 1242–1246.CrossRef
22.
Zurück zum Zitat Arnlund, D., et al. (2014). Visualizing a protein quake with time-resolved X-ray scattering at a free-electron laser. Nature Methods, 11(9), 923–926.CrossRef Arnlund, D., et al. (2014). Visualizing a protein quake with time-resolved X-ray scattering at a free-electron laser. Nature Methods, 11(9), 923–926.CrossRef
23.
Zurück zum Zitat Bergh, M., et al. (2008). Feasibility of imaging living cells at subnanometer resolutions by ultrafast X-ray diffraction. Quarterly Reviews of Biophysics, 41(3-4), 181–204.CrossRef Bergh, M., et al. (2008). Feasibility of imaging living cells at subnanometer resolutions by ultrafast X-ray diffraction. Quarterly Reviews of Biophysics, 41(3-4), 181–204.CrossRef
24.
Zurück zum Zitat Huldt, G., Szoke, A., & Hajdu, J. (2003). Diffraction imaging of single particles and biomolecules. Journal of Structural Biology, 144(1-2), 219–227.CrossRef Huldt, G., Szoke, A., & Hajdu, J. (2003). Diffraction imaging of single particles and biomolecules. Journal of Structural Biology, 144(1-2), 219–227.CrossRef
25.
Zurück zum Zitat Aquila, A., Barty, A., Bostedt, C., Boutet, S., Carini, G., dePonte, D., et al. (2015). The Linac Coherent Light Source single particle imaging road map. Structural Dynamics, 2(4), 041701.CrossRef Aquila, A., Barty, A., Bostedt, C., Boutet, S., Carini, G., dePonte, D., et al. (2015). The Linac Coherent Light Source single particle imaging road map. Structural Dynamics, 2(4), 041701.CrossRef
26.
Zurück zum Zitat Kam, Z. (1977). Determination of macromolecular structure in solution by spatial correlation of scattering fluctuations. Macromolecules, 10(5), 927–934.CrossRef Kam, Z. (1977). Determination of macromolecular structure in solution by spatial correlation of scattering fluctuations. Macromolecules, 10(5), 927–934.CrossRef
27.
Zurück zum Zitat Kam, Z., Koch, M. H. J., & Bordas, J. (1981). Fluctuation X-ray-scattering from biological particles in frozen solution by using synchrotron radiation. Proceedings of the National Academy of Sciences of the United States of America-Biological Sciences, 78(6), 3559–3562.CrossRef Kam, Z., Koch, M. H. J., & Bordas, J. (1981). Fluctuation X-ray-scattering from biological particles in frozen solution by using synchrotron radiation. Proceedings of the National Academy of Sciences of the United States of America-Biological Sciences, 78(6), 3559–3562.CrossRef
28.
Zurück zum Zitat Malmerberg, E., Kerfeld, C. A., & Zwart, P. H. (2015). Operational properties of fluctuation X-ray scattering data. IUCrJ, 2, 309–316.CrossRef Malmerberg, E., Kerfeld, C. A., & Zwart, P. H. (2015). Operational properties of fluctuation X-ray scattering data. IUCrJ, 2, 309–316.CrossRef
29.
Zurück zum Zitat Saldin, D. K., Shneerson, V. L., Howells, M. R., Marchesini, S., Chapman, H. N., Bogan, M., et al. (2010). Structure of a single particle from scattering by many particles randomly oriented about an axis: Toward structure solution without crystallization? New Journal of Physics, 12, 035014.CrossRef Saldin, D. K., Shneerson, V. L., Howells, M. R., Marchesini, S., Chapman, H. N., Bogan, M., et al. (2010). Structure of a single particle from scattering by many particles randomly oriented about an axis: Toward structure solution without crystallization? New Journal of Physics, 12, 035014.CrossRef
30.
Zurück zum Zitat Hosseinizadeh, A., et al. (2014). High-resolution structure of viruses from random diffraction snapshots. Philosophical Transactions of the Royal Society B-Biological Sciences, 369(1647), 20130326.CrossRef Hosseinizadeh, A., et al. (2014). High-resolution structure of viruses from random diffraction snapshots. Philosophical Transactions of the Royal Society B-Biological Sciences, 369(1647), 20130326.CrossRef
31.
Zurück zum Zitat Dashti, A., et al. (2014). Trajectories of the ribosome as a Brownian nanomachine. Proceedings of the National Academy of Sciences of the United States of America, 111(49), 17492–17497.CrossRef Dashti, A., et al. (2014). Trajectories of the ribosome as a Brownian nanomachine. Proceedings of the National Academy of Sciences of the United States of America, 111(49), 17492–17497.CrossRef
32.
Zurück zum Zitat Kern, J., Tran, R., Alonso-Mori, R., Koroidov, S., Echols, N., Hattne, J., et al. (2014). Taking snapshots of photosynthetic water oxidation using femtosecond X-ray diffraction and spectroscopy. Nature Communications, 5, 4371.CrossRef Kern, J., Tran, R., Alonso-Mori, R., Koroidov, S., Echols, N., Hattne, J., et al. (2014). Taking snapshots of photosynthetic water oxidation using femtosecond X-ray diffraction and spectroscopy. Nature Communications, 5, 4371.CrossRef
33.
Zurück zum Zitat Kupitz, C., et al. (2014). Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser. Nature, 513(7517), 261–265.CrossRef Kupitz, C., et al. (2014). Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser. Nature, 513(7517), 261–265.CrossRef
34.
Zurück zum Zitat Huang, S., et al. (2017). Generating single-spike hard X-ray pulses with nonlinear bunch compression in free-electron lasers. Physical Review Letters, 119(15), 154801.CrossRef Huang, S., et al. (2017). Generating single-spike hard X-ray pulses with nonlinear bunch compression in free-electron lasers. Physical Review Letters, 119(15), 154801.CrossRef
35.
Zurück zum Zitat Marinelli, A., et al. (2017). Experimental demonstration of a single-spike hard-X-ray free-electron laser starting from noise. Applied Physics Letters, 111(15), 151101.CrossRef Marinelli, A., et al. (2017). Experimental demonstration of a single-spike hard-X-ray free-electron laser starting from noise. Applied Physics Letters, 111(15), 151101.CrossRef
36.
Zurück zum Zitat Marcus, G., Penn, G., & Zholents, A. A. (2014). Free-electron laser design for four-wave mixing experiments with soft-X-ray pulses. Physical Review Letters, 113(2), 024801.CrossRef Marcus, G., Penn, G., & Zholents, A. A. (2014). Free-electron laser design for four-wave mixing experiments with soft-X-ray pulses. Physical Review Letters, 113(2), 024801.CrossRef
37.
Zurück zum Zitat Zholents, A. A., & Fawley, W. M. (2004). Proposal for intense attosecond radiation from an x-ray free-electron laser. Physical Review Letters, 92(22), 224801.CrossRef Zholents, A. A., & Fawley, W. M. (2004). Proposal for intense attosecond radiation from an x-ray free-electron laser. Physical Review Letters, 92(22), 224801.CrossRef
38.
Zurück zum Zitat Allaria, E., et al. (2013). Two-stage seeded soft-X-ray free-electron laser. Nature Photonics, 7(11), 913–918.CrossRef Allaria, E., et al. (2013). Two-stage seeded soft-X-ray free-electron laser. Nature Photonics, 7(11), 913–918.CrossRef
39.
Zurück zum Zitat Hemsing, E., et al. (2016). Echo-enabled harmonics up to the 75th order from precisely tailored electron beams. Nature Photonics, 10(8), 512–515.CrossRef Hemsing, E., et al. (2016). Echo-enabled harmonics up to the 75th order from precisely tailored electron beams. Nature Photonics, 10(8), 512–515.CrossRef
40.
Zurück zum Zitat Stupakov, G. (2009). Using the beam-Echo effect for generation of short-wavelength radiation. Physical Review Letters, 102(7), 074801.CrossRef Stupakov, G. (2009). Using the beam-Echo effect for generation of short-wavelength radiation. Physical Review Letters, 102(7), 074801.CrossRef
41.
Zurück zum Zitat Ackermann, S., et al. (2013). Generation of coherent 19-and 38-nm radiation at a free-Electron laser directly seeded at 38 nm. Physical Review Letters, 111(11), 114801.CrossRef Ackermann, S., et al. (2013). Generation of coherent 19-and 38-nm radiation at a free-Electron laser directly seeded at 38 nm. Physical Review Letters, 111(11), 114801.CrossRef
42.
Zurück zum Zitat Schneidmiller, E. A., et al. (2017). First operation of a harmonic lasing self-seeded free electron laser. Physical Review Accelerators and Beams, 20(2), 020705.CrossRef Schneidmiller, E. A., et al. (2017). First operation of a harmonic lasing self-seeded free electron laser. Physical Review Accelerators and Beams, 20(2), 020705.CrossRef
43.
Zurück zum Zitat Xiang, D., et al. (2013). Purified self-amplified spontaneous emission free-electron lasers with slippage-boosted filtering. Physical Review Special Topics-Accelerators and Beams, 16(1), 010703.CrossRef Xiang, D., et al. (2013). Purified self-amplified spontaneous emission free-electron lasers with slippage-boosted filtering. Physical Review Special Topics-Accelerators and Beams, 16(1), 010703.CrossRef
44.
Zurück zum Zitat McNeil, B. W. J., Thompson, N. R., & Dunning, D. J. (2013). Transform-limited X-ray pulse generation from a high-brightness self-amplified spontaneous-emission free-electron laser. Physical Review Letters, 110(13), 134802.CrossRef McNeil, B. W. J., Thompson, N. R., & Dunning, D. J. (2013). Transform-limited X-ray pulse generation from a high-brightness self-amplified spontaneous-emission free-electron laser. Physical Review Letters, 110(13), 134802.CrossRef
45.
Zurück zum Zitat Hara, T., et al. (2013). Two-colour hard X-ray free-electron laser with wide tunability. Nature Communications, 4, 2919.CrossRef Hara, T., et al. (2013). Two-colour hard X-ray free-electron laser with wide tunability. Nature Communications, 4, 2919.CrossRef
46.
Zurück zum Zitat Mozzanica, A., et al. (2016). Characterization results of the JUNGFRAU full scale readout ASIC. Journal of Instrumentation, 11, C02047.CrossRef Mozzanica, A., et al. (2016). Characterization results of the JUNGFRAU full scale readout ASIC. Journal of Instrumentation, 11, C02047.CrossRef
47.
Zurück zum Zitat Ramilli, M., et al. (2017). Measurements with MONCH, a 25 mu m pixel pitch hybrid pixel detector. Journal of Instrumentation, 12, C01071.CrossRef Ramilli, M., et al. (2017). Measurements with MONCH, a 25 mu m pixel pitch hybrid pixel detector. Journal of Instrumentation, 12, C01071.CrossRef
48.
Zurück zum Zitat Blaj, G., Caragiulo, P., Carini, G., Dragone, A., Haller, G., Hart, P., et al. (2016). Future of ePix detectors for high repetition rate FELs. AIP Conference Proceedings, 1741, 040012.CrossRef Blaj, G., Caragiulo, P., Carini, G., Dragone, A., Haller, G., Hart, P., et al. (2016). Future of ePix detectors for high repetition rate FELs. AIP Conference Proceedings, 1741, 040012.CrossRef
49.
Zurück zum Zitat Shanks, K. S., Philipp, H. T., Weiss, J. T., Becker, J., Tate, M. W., & Gruner, S. M. (2016). The high dynamic range pixel array detector (HDR-PAD): Concept and design. AIP Conference Proceedings, 1741, 040009.CrossRef Shanks, K. S., Philipp, H. T., Weiss, J. T., Becker, J., Tate, M. W., & Gruner, S. M. (2016). The high dynamic range pixel array detector (HDR-PAD): Concept and design. AIP Conference Proceedings, 1741, 040009.CrossRef
50.
Zurück zum Zitat Allahgholi, A., et al. (2015). AGIPD, a high dynamic range fast detector for the European XFEL. Journal of Instrumentation, 10, C12013.CrossRef Allahgholi, A., et al. (2015). AGIPD, a high dynamic range fast detector for the European XFEL. Journal of Instrumentation, 10, C12013.CrossRef
51.
Zurück zum Zitat Veale, M. C., et al. (2017). Characterisation of the high dynamic range large pixel detector (LPD) and its use at X-ray free electron laser sources. Journal of Instrumentation, 12, P12003.CrossRef Veale, M. C., et al. (2017). Characterisation of the high dynamic range large pixel detector (LPD) and its use at X-ray free electron laser sources. Journal of Instrumentation, 12, P12003.CrossRef
52.
Zurück zum Zitat Shin, K. W., Bradford, R., Lipton, R., Deptuch, G., Fahim, F., Madden, T., et al. (2015). Optimizing floating guard ring designs for FASPAX N-in-P silicon sensors. In 2015 IEEE nuclear science symposium and medical imaging conference (Nss/Mic) (pp. 1–8). New York: IEEE. Shin, K. W., Bradford, R., Lipton, R., Deptuch, G., Fahim, F., Madden, T., et al. (2015). Optimizing floating guard ring designs for FASPAX N-in-P silicon sensors. In 2015 IEEE nuclear science symposium and medical imaging conference (Nss/Mic) (pp. 1–8). New York: IEEE.
53.
Zurück zum Zitat Deptuch, G. W., et al. (2014). Design and tests of the vertically integrated photon imaging chip. IEEE Transactions on Nuclear Science, 61(1), 663–674.CrossRef Deptuch, G. W., et al. (2014). Design and tests of the vertically integrated photon imaging chip. IEEE Transactions on Nuclear Science, 61(1), 663–674.CrossRef
54.
Zurück zum Zitat Stan, C. A., et al. (2016). Liquid explosions induced by X-ray laser pulses. Nature Physics, 12(10), 966–971.CrossRef Stan, C. A., et al. (2016). Liquid explosions induced by X-ray laser pulses. Nature Physics, 12(10), 966–971.CrossRef
Metadaten
Titel
Future Directions of High Repetition Rate X-Ray Free Electron Lasers
verfasst von
Mike Dunne
Robert W. Schoenlein
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-030-00551-1_16

Neuer Inhalt