Skip to main content

2022 | OriginalPaper | Buchkapitel

6. Future Perspectives of Quantum Applications Using AI

verfasst von : H. U. Leena, R. Lawrance

Erschienen in: Quantum Computing Environments

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter provides many applications of quantum computing such as “Under water communication using teleportation techniques,” drug development, and other applications. A new idea “quantum dots” is described in detail with lots of examples. The chapter also talks about artificial intelligence and machine learning–enabled quantum computing.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
5.
Zurück zum Zitat Bennett, C. H., & Brassard, G. (1984). Quantum cryptography: Public key distribution and coin tossing. In Proceedings of the IEEE international conference on computers systems and signal processing, Bangalore (p 175). Bennett, C. H., & Brassard, G. (1984). Quantum cryptography: Public key distribution and coin tossing. In Proceedings of the IEEE international conference on computers systems and signal processing, Bangalore (p 175).
7.
Zurück zum Zitat Lydersen, L. (2011). Practical security of quantum cryptography. Ph.D. dissertation, Norwegian University of Science and Technology, Trondheim. Lydersen, L. (2011). Practical security of quantum cryptography. Ph.D. dissertation, Norwegian University of Science and Technology, Trondheim.
8.
Zurück zum Zitat Bugge, N., Sauge, S., Ghazali, A. M. M., Skaar, J., Lydersen, L., & Makarov, V. (2014). Laser damage helps the eavesdropper in quantum cryptography. Physical Review Letters, 112(7), 070503.CrossRef Bugge, N., Sauge, S., Ghazali, A. M. M., Skaar, J., Lydersen, L., & Makarov, V. (2014). Laser damage helps the eavesdropper in quantum cryptography. Physical Review Letters, 112(7), 070503.CrossRef
9.
Zurück zum Zitat Gerhardt, J., Liu, Q., Lamas-Linares, A., Skaar, J., Kurtsiefer, C., & Makarov, V. (2011). Full-field implementation of a perfect eavesdropper on a quantum cryptography system. Nature Communications, 2(2027), 349.CrossRef Gerhardt, J., Liu, Q., Lamas-Linares, A., Skaar, J., Kurtsiefer, C., & Makarov, V. (2011). Full-field implementation of a perfect eavesdropper on a quantum cryptography system. Nature Communications, 2(2027), 349.CrossRef
11.
Zurück zum Zitat Lamas-Linares, A., & Kurtsiefer, C. (2007). Breaking a quantum key distribution system through a timing side channel. Optics Express, 15(15), 9388.CrossRef Lamas-Linares, A., & Kurtsiefer, C. (2007). Breaking a quantum key distribution system through a timing side channel. Optics Express, 15(15), 9388.CrossRef
12.
Zurück zum Zitat Li, H.-W., Wang, S., Huang, J.-Z., Chen, W., Yin, Z.-Q., Li, F.-Y., Zhou, Z., Liu, D., Zhang, Y., Gou, G.-C., Bao, W.-S., & Han, Z.-F. (2011). Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources. Physical Review A, 84(6), 062308.CrossRef Li, H.-W., Wang, S., Huang, J.-Z., Chen, W., Yin, Z.-Q., Li, F.-Y., Zhou, Z., Liu, D., Zhang, Y., Gou, G.-C., Bao, W.-S., & Han, Z.-F. (2011). Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources. Physical Review A, 84(6), 062308.CrossRef
13.
Zurück zum Zitat Lydersen, L., Jain, N., Wittmann, C., Marøy, Ø., Skaar, J., Marquardt, C., Makarov, V., & Leuchs, G. (2011). Superlinear threshold detectors in quantum cryptography. Physical Review A, 84(3), 032320.CrossRef Lydersen, L., Jain, N., Wittmann, C., Marøy, Ø., Skaar, J., Marquardt, C., Makarov, V., & Leuchs, G. (2011). Superlinear threshold detectors in quantum cryptography. Physical Review A, 84(3), 032320.CrossRef
14.
Zurück zum Zitat Lydersen, L., Wiechers, C., Wittmann, C., Elser, D., Skaar, J., & Makarov, V. (2010). Hacking commercial quantum cryptography systems by tailored bright illumination. Nature Photonics, 4(10), 686–689.CrossRef Lydersen, L., Wiechers, C., Wittmann, C., Elser, D., Skaar, J., & Makarov, V. (2010). Hacking commercial quantum cryptography systems by tailored bright illumination. Nature Photonics, 4(10), 686–689.CrossRef
15.
Zurück zum Zitat Nauerth, S., Fürst, M., Schmitt-Manderbach, T., Weier, H., & Weinfurter, H. (2009). Information leakage via side channels in freespace BB84 quantum cryptography. New Journal of Physics, 11(6), 065001.CrossRef Nauerth, S., Fürst, M., Schmitt-Manderbach, T., Weier, H., & Weinfurter, H. (2009). Information leakage via side channels in freespace BB84 quantum cryptography. New Journal of Physics, 11(6), 065001.CrossRef
16.
Zurück zum Zitat Sun, S.-H., Jiang, M.-S., & Liang, L.-M. (2011). Passive Faraday-mirror attack in a practical two-way quantum-keydistribution system. Physical Review A, 83(6), 062331.CrossRef Sun, S.-H., Jiang, M.-S., & Liang, L.-M. (2011). Passive Faraday-mirror attack in a practical two-way quantum-keydistribution system. Physical Review A, 83(6), 062331.CrossRef
17.
Zurück zum Zitat Wiechers, C., Lydersen, L., Wittmann, C., Elser, D., Skaar, J., Marquardt, C., Makarov, V., & Leuchs, G. (2011). After-gate attack on a quantum cryptosystem. New Journal of Physics, 13(1), 013043.CrossRef Wiechers, C., Lydersen, L., Wittmann, C., Elser, D., Skaar, J., Marquardt, C., Makarov, V., & Leuchs, G. (2011). After-gate attack on a quantum cryptosystem. New Journal of Physics, 13(1), 013043.CrossRef
18.
Zurück zum Zitat Xu, F., Qi, B., & Lo, H.-K. (2010). Experimental demonstration of phase-remapping attack in a practical quantum key distribution system. New Journal of Physics, 12(11), 113026.CrossRef Xu, F., Qi, B., & Lo, H.-K. (2010). Experimental demonstration of phase-remapping attack in a practical quantum key distribution system. New Journal of Physics, 12(11), 113026.CrossRef
19.
Zurück zum Zitat Zhao, Y., Fung, C.-H., Qi, B., Chen, C., & Lo, H.-K. (2008). Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Physical Review A, 78(4), 042333.CrossRef Zhao, Y., Fung, C.-H., Qi, B., Chen, C., & Lo, H.-K. (2008). Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Physical Review A, 78(4), 042333.CrossRef
20.
Zurück zum Zitat Khan, I., Jain, N., Stiller, B., Jouguet, P., Kunz-Jacques, S., Diamanti, E., Marquardt, C., & Leuchs, G. (2014). Trojan-horse attacks on practical continuous-variable quantum key distribution systems. QCRYPT. Khan, I., Jain, N., Stiller, B., Jouguet, P., Kunz-Jacques, S., Diamanti, E., Marquardt, C., & Leuchs, G. (2014). Trojan-horse attacks on practical continuous-variable quantum key distribution systems. QCRYPT.
21.
Zurück zum Zitat Sajeed, S., Radchenko, I., Kaiser, S., Bourgoin, J.-P., Monat, L., Legré, M., & Makarov, V. (2014). Securing two-way quantum communication: The monitoring detector and its flaws. QCRYPT. Sajeed, S., Radchenko, I., Kaiser, S., Bourgoin, J.-P., Monat, L., Legré, M., & Makarov, V. (2014). Securing two-way quantum communication: The monitoring detector and its flaws. QCRYPT.
22.
Zurück zum Zitat Scarani, V., Bechmann-Pasquinucci, H., Cerf, N., Dušek, M., Lütkenhaus, N., & Peev, M. (2009). The security of practical quantum key distribution. Reviews of Modern Physics, 81(3), 1301–1350.CrossRef Scarani, V., Bechmann-Pasquinucci, H., Cerf, N., Dušek, M., Lütkenhaus, N., & Peev, M. (2009). The security of practical quantum key distribution. Reviews of Modern Physics, 81(3), 1301–1350.CrossRef
23.
Zurück zum Zitat Jain, N. (2014). Security of practical quantum key distribution systems. Ph.D. dissertation (in progress), Max Planck Institute for the Science of Light, Erlangen. Jain, N. (2014). Security of practical quantum key distribution systems. Ph.D. dissertation (in progress), Max Planck Institute for the Science of Light, Erlangen.
24.
Zurück zum Zitat Makarov, V. (2007). Quantum cryptography and quantum cryptanalysis. Ph.D. dissertation, Norwegian University of Science and Technology, Trondheim. Makarov, V. (2007). Quantum cryptography and quantum cryptanalysis. Ph.D. dissertation, Norwegian University of Science and Technology, Trondheim.
25.
Zurück zum Zitat Bethune, D. S., & Risk, W. P. (2000). An autocompensating fiber-optic quantum cryptography system based on polarization splitting of light. IEEE Journal of Quantum Electronics, 36(3), 340–347.CrossRef Bethune, D. S., & Risk, W. P. (2000). An autocompensating fiber-optic quantum cryptography system based on polarization splitting of light. IEEE Journal of Quantum Electronics, 36(3), 340–347.CrossRef
26.
Zurück zum Zitat Vakhitov, A., Makarov, V., & Hjelme, D. R. (2001). Large pulse attack as a method of conventional optical eavesdropping in quantum cryptography. Journal of Modern Optics, 48(13), 2023–2038.MATHCrossRef Vakhitov, A., Makarov, V., & Hjelme, D. R. (2001). Large pulse attack as a method of conventional optical eavesdropping in quantum cryptography. Journal of Modern Optics, 48(13), 2023–2038.MATHCrossRef
34.
Zurück zum Zitat Alferov, Z. I. (1998). The history and future of semiconductor heterostructures. Semiconductors, 32, 1–14.CrossRef Alferov, Z. I. (1998). The history and future of semiconductor heterostructures. Semiconductors, 32, 1–14.CrossRef
35.
Zurück zum Zitat Quantum Dots. Nanosys – Quantum dot pioneers. Retrieved December 4, 2015. Quantum Dots. Nanosys – Quantum dot pioneers. Retrieved December 4, 2015.
36.
Zurück zum Zitat Brus, L. E. (2007). Chemistry and physics of semiconductor nanocrystals. Retrieved July 7, 2009. Brus, L. E. (2007). Chemistry and physics of semiconductor nanocrystals. Retrieved July 7, 2009.
39.
Zurück zum Zitat Shirasaki, Y., Supran, G. J., Bawendi, M. G., & Bulovic, V. (2013). Emergence of colloidal quantum-dot light-emitting technologies. Nature Photonics, 7, 13–23.CrossRef Shirasaki, Y., Supran, G. J., Bawendi, M. G., & Bulovic, V. (2013). Emergence of colloidal quantum-dot light-emitting technologies. Nature Photonics, 7, 13–23.CrossRef
40.
Zurück zum Zitat Bhandari, S., Pramanik, S., Biswas, N. K., Roy, S., & Pan, U. N. (2019). Enhanced luminescence of a quantum dot complex following interaction with protein for applications in cellular imaging, sensing, and white-light generation. ACS Applied Nano Materials, 2, 2358–2366.CrossRef Bhandari, S., Pramanik, S., Biswas, N. K., Roy, S., & Pan, U. N. (2019). Enhanced luminescence of a quantum dot complex following interaction with protein for applications in cellular imaging, sensing, and white-light generation. ACS Applied Nano Materials, 2, 2358–2366.CrossRef
41.
Zurück zum Zitat Kokal, R. K., Bredar, A. R. C., Farnum, B. H., & Deepa, M. (2019). Solid-state succinonitrile/sulfide hole transport layer and carbon fabric counter electrode for a quantum dot solar cell. ACS Applied Nano Materials, 2, 7880–7887.CrossRef Kokal, R. K., Bredar, A. R. C., Farnum, B. H., & Deepa, M. (2019). Solid-state succinonitrile/sulfide hole transport layer and carbon fabric counter electrode for a quantum dot solar cell. ACS Applied Nano Materials, 2, 7880–7887.CrossRef
42.
Zurück zum Zitat Wolfbeisa, O. S. (2015). An overview of nanoparticles commonly used in fluorescent bioimaging. Chemical Society Reviews, 44, 4743–4768.CrossRef Wolfbeisa, O. S. (2015). An overview of nanoparticles commonly used in fluorescent bioimaging. Chemical Society Reviews, 44, 4743–4768.CrossRef
44.
Zurück zum Zitat Biju, V., Mundayoor, S., Omkumar, R. V., Anas, A., & Ishikawa, M. (2010). Bioconjugated quantum dots for cancer research: Present status, prospects and remaining issues. Biotechnology Advances, 28, 199–213.CrossRef Biju, V., Mundayoor, S., Omkumar, R. V., Anas, A., & Ishikawa, M. (2010). Bioconjugated quantum dots for cancer research: Present status, prospects and remaining issues. Biotechnology Advances, 28, 199–213.CrossRef
46.
Zurück zum Zitat Dong, Q., Liu, H., Hara, Y., Starr, H. E., Dempsey, J. L., & Lopez, R. (2019). Impact of background oxygen pressure on the pulsed-laser deposition of ZnO nanolayers and on their corresponding performance as electron acceptors in PbS quantum-dot solar cells. ACS Applied Nano Materials, 2, 767–777.CrossRef Dong, Q., Liu, H., Hara, Y., Starr, H. E., Dempsey, J. L., & Lopez, R. (2019). Impact of background oxygen pressure on the pulsed-laser deposition of ZnO nanolayers and on their corresponding performance as electron acceptors in PbS quantum-dot solar cells. ACS Applied Nano Materials, 2, 767–777.CrossRef
47.
Zurück zum Zitat Chen, G., Seo, J., Yang, C., & Prasad, P. N. (2013). Nanochemistry and nanomaterials for photovoltaics. Chemical Society Reviews, 42, 8304–8338.CrossRef Chen, G., Seo, J., Yang, C., & Prasad, P. N. (2013). Nanochemistry and nanomaterials for photovoltaics. Chemical Society Reviews, 42, 8304–8338.CrossRef
48.
Zurück zum Zitat Ahumada-Lazo, R., Fairclough, S. M., Hardman, S. J. O., Taylor, P. N., Green, M., Haigh, S. J., Saran, R., Curry, R. J., & Binks, D. J. (2019). Confinement effects and charge dynamics in Zn3N2 colloidal quantum dots: Implications for QD-LED displays. ACS Applied Nano Materials, 2, 7214–7219.CrossRef Ahumada-Lazo, R., Fairclough, S. M., Hardman, S. J. O., Taylor, P. N., Green, M., Haigh, S. J., Saran, R., Curry, R. J., & Binks, D. J. (2019). Confinement effects and charge dynamics in Zn3N2 colloidal quantum dots: Implications for QD-LED displays. ACS Applied Nano Materials, 2, 7214–7219.CrossRef
49.
Zurück zum Zitat McDaniel, H., et al. (2014). Simple yet versatile synthesis of CuInSexS2-x quantum dots for sunlight harvesting. Journal of Physical Chemistry C, 118, 16987–16994.CrossRef McDaniel, H., et al. (2014). Simple yet versatile synthesis of CuInSexS2-x quantum dots for sunlight harvesting. Journal of Physical Chemistry C, 118, 16987–16994.CrossRef
50.
Zurück zum Zitat Choi, J., Choi, W., & Jeon, D. Y. (2019). Ligand-exchange-ready CuInS2/ZnS quantum dots via surface-ligand composition control for film-type display devices. ACS Applied Nano Materials, 2, 5504–5511.CrossRef Choi, J., Choi, W., & Jeon, D. Y. (2019). Ligand-exchange-ready CuInS2/ZnS quantum dots via surface-ligand composition control for film-type display devices. ACS Applied Nano Materials, 2, 5504–5511.CrossRef
51.
Zurück zum Zitat Li, W., Li, M., Liu, Y., Pan, D., Li, Z., Wang, L., & Wu, M. (2018). Three minute ultrarapid microwave-assisted synthesis of bright fluorescent graphene quantum dots for live cell staining and white LEDs. ACS Applied Nano Materials, 1, 1623–1630.CrossRef Li, W., Li, M., Liu, Y., Pan, D., Li, Z., Wang, L., & Wu, M. (2018). Three minute ultrarapid microwave-assisted synthesis of bright fluorescent graphene quantum dots for live cell staining and white LEDs. ACS Applied Nano Materials, 1, 1623–1630.CrossRef
52.
Zurück zum Zitat Santiago, S. R. M. S., Chang, C.-H., Lin, T.-N., Yuan, C.-T., & Shen, J.-L. (2019). Diethylenetriamine-doped graphene oxide quantum dots with tunable photoluminescence for optoelectronic applications. ACS Applied Nano Materials, 2, 3925–3933.CrossRef Santiago, S. R. M. S., Chang, C.-H., Lin, T.-N., Yuan, C.-T., & Shen, J.-L. (2019). Diethylenetriamine-doped graphene oxide quantum dots with tunable photoluminescence for optoelectronic applications. ACS Applied Nano Materials, 2, 3925–3933.CrossRef
54.
Zurück zum Zitat Liu, L., Bisri, S. Z., Ishida, Y., Hashizume, D., Aida, T., & Iwasa, Y. (2018). Ligand and solvent effects on hole transport in colloidal quantum dot assemblies for electronic devices. ACS Applied Nano Materials, 1, 5217–5225.CrossRef Liu, L., Bisri, S. Z., Ishida, Y., Hashizume, D., Aida, T., & Iwasa, Y. (2018). Ligand and solvent effects on hole transport in colloidal quantum dot assemblies for electronic devices. ACS Applied Nano Materials, 1, 5217–5225.CrossRef
55.
Zurück zum Zitat Cho, K.-S., et al. (2009). High-performance cross linked colloidal quantum-dot light emitting diodes. Nature Photonics, 3, 341–345.CrossRef Cho, K.-S., et al. (2009). High-performance cross linked colloidal quantum-dot light emitting diodes. Nature Photonics, 3, 341–345.CrossRef
56.
Zurück zum Zitat Singh, V. K., Yadav, S. M., Mishra, H., Kumar, R., Tiwari, R. S., Pandey, A., & Srivastava, A. (2019). WS2 quantum dot graphene nanocomposite film for UV photo detection. ACS Applied Nano Materials, 2, 3934–3942.CrossRef Singh, V. K., Yadav, S. M., Mishra, H., Kumar, R., Tiwari, R. S., Pandey, A., & Srivastava, A. (2019). WS2 quantum dot graphene nanocomposite film for UV photo detection. ACS Applied Nano Materials, 2, 3934–3942.CrossRef
57.
Zurück zum Zitat Mallick, S., Kumar, P., & Koner, A. L. (2019). Freeze-resistant cadmium-free quantum dots for live-cell imaging. ACS Applied Nano Materials, 2, 661–666.CrossRef Mallick, S., Kumar, P., & Koner, A. L. (2019). Freeze-resistant cadmium-free quantum dots for live-cell imaging. ACS Applied Nano Materials, 2, 661–666.CrossRef
58.
Zurück zum Zitat McCree, K. J. (1972). The action spectrum, absorptance and quantum yield of photosynthesis in crop plants. Agricultural and Forest Meteorology, 9, 191–216.CrossRef McCree, K. J. (1972). The action spectrum, absorptance and quantum yield of photosynthesis in crop plants. Agricultural and Forest Meteorology, 9, 191–216.CrossRef
59.
Zurück zum Zitat Snowden, M. C., Cope, K. R., & Bugbee, B. (2016). Sensitivity of seven diverse species to blue and green light: Interactions with photon flux. PLoS One, 11, e0163121.CrossRef Snowden, M. C., Cope, K. R., & Bugbee, B. (2016). Sensitivity of seven diverse species to blue and green light: Interactions with photon flux. PLoS One, 11, e0163121.CrossRef
60.
Zurück zum Zitat Cope, K. R., Snowden, M. C., & Bugbee, B. (2014). Photobiological interactions of blue light and photosynthetic photon flux: Effects of monochromatic and broadspectrum light sources. Photochemistry and Photobiology, 90, 574–584.CrossRef Cope, K. R., Snowden, M. C., & Bugbee, B. (2014). Photobiological interactions of blue light and photosynthetic photon flux: Effects of monochromatic and broadspectrum light sources. Photochemistry and Photobiology, 90, 574–584.CrossRef
61.
Zurück zum Zitat Nelson, J. A., & Bugbee, B. (2014). Economic analysis of greenhouse lighting: Light emitting diodes vs. high intensity discharge fixtures. PLoS One, 9, e99010.CrossRef Nelson, J. A., & Bugbee, B. (2014). Economic analysis of greenhouse lighting: Light emitting diodes vs. high intensity discharge fixtures. PLoS One, 9, e99010.CrossRef
62.
Zurück zum Zitat Smullen, C. W., Mohan, V., Nigam, A., Gurumurthi, S., & Stan, M. R. (2011). Relaxing non-volatility for fast and energy-efficient STT-RAM caches. In HPCA’11 proceedings of the 2011 IEEE 17th international symposium on high performance computer architecture (pp. 50–61). Smullen, C. W., Mohan, V., Nigam, A., Gurumurthi, S., & Stan, M. R. (2011). Relaxing non-volatility for fast and energy-efficient STT-RAM caches. In HPCA’11 proceedings of the 2011 IEEE 17th international symposium on high performance computer architecture (pp. 50–61).
63.
Zurück zum Zitat Chen, A., Hutchby, J., Zhirnov, V., & Bourianoff, G. (2015). Emerging nanoelectronic devises (1st ed.). Wiley. Chen, A., Hutchby, J., Zhirnov, V., & Bourianoff, G. (2015). Emerging nanoelectronic devises (1st ed.). Wiley.
Metadaten
Titel
Future Perspectives of Quantum Applications Using AI
verfasst von
H. U. Leena
R. Lawrance
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-030-89746-8_6

Neuer Inhalt