Skip to main content

Tipp

Weitere Kapitel dieses Buchs durch Wischen aufrufen

2022 | OriginalPaper | Buchkapitel

Future Threats to Connected and Automated Vehicles

verfasst von : Jonathan Petit, William Whyte

Erschienen in: Road Vehicle Automation 8

Verlag: Springer International Publishing

share
TEILEN

Abstract

Automated Vehicles rely on intelligent systems to enable safe and efficient transportation. Thanks to robust perception and reliable communication, automated vehicles will reshape transportation services. However, the security of automated vehicles has to be guaranteed at the component level. In this chapter, we provide an overview of two threats to connected and automated vehicles (CAV), namely adversarial AI in perception system, and impact of Quantum Computer on CAV security.
Literatur
1.
Zurück zum Zitat Marti, E., de Miguel, M.A., Garcia, F., Perez, J.: A review of sensor technologies for perception in automated driving. IEEE Intell. Transp. Syst. Mag. 11(4), 94–108 (2019) CrossRef Marti, E., de Miguel, M.A., Garcia, F., Perez, J.: A review of sensor technologies for perception in automated driving. IEEE Intell. Transp. Syst. Mag. 11(4), 94–108 (2019) CrossRef
2.
Zurück zum Zitat Eykholt, K., et al.: Robust physical-world attacks on deep learning visual classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1625–1634 (2018) Eykholt, K., et al.: Robust physical-world attacks on deep learning visual classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1625–1634 (2018)
3.
Zurück zum Zitat Cao, Y., et al.: Adversarial objects against lidar-based autonomous driving systems. arXiv preprint arXiv:1907.05418 (2019) Cao, Y., et al.: Adversarial objects against lidar-based autonomous driving systems. arXiv preprint arXiv:1907.05418 (2019)
5.
Zurück zum Zitat Ju, A., Wagner, D.: E-ABS: extending the analysis-by-synthesis robust classification model to more complex image domains. In: Proceedings of the 13th ACM Workshop on Artificial Intelligence and Security, pp. 25–36 (2020) Ju, A., Wagner, D.: E-ABS: extending the analysis-by-synthesis robust classification model to more complex image domains. In: Proceedings of the 13th ACM Workshop on Artificial Intelligence and Security, pp. 25–36 (2020)
6.
Zurück zum Zitat Xiong, Z., Eappen, J., Zhu, H., Jagannathan, S.: Robustness to Adversarial Attacks in Learning-Enabled Controllers. arXiv preprint arXiv:2006.06861 (2020) Xiong, Z., Eappen, J., Zhu, H., Jagannathan, S.: Robustness to Adversarial Attacks in Learning-Enabled Controllers. arXiv preprint arXiv:2006.06861 (2020)
7.
Zurück zum Zitat Akhtar, N., Mian, A.: Threat of adversarial attacks on deep learning in computer vision: a survey. IEEE Access 6, 14410–14430 (2018) CrossRef Akhtar, N., Mian, A.: Threat of adversarial attacks on deep learning in computer vision: a survey. IEEE Access 6, 14410–14430 (2018) CrossRef
Metadaten
Titel
Future Threats to Connected and Automated Vehicles
verfasst von
Jonathan Petit
William Whyte
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-030-80063-5_8