Skip to main content
Erschienen in:

12.07.2016 | Original Article

Fuzzy decision function estimation using fuzzified particle swarm optimization

verfasst von: Hadi Shahraki, Seyed-Hamid Zahiri

Erschienen in: International Journal of Machine Learning and Cybernetics | Ausgabe 6/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Present paper reports an upgrade of particle swarm optimization (PSO) algorithm for fuzzy environment by the definition of the particles as fuzzy numbers and reformulating their motion by fuzzy equations. The proposed fuzzified PSO is used to construct a set of fuzzy hyperplanes in the feature space to distinguish different classes. Fuzzy decision hyperplane assign a fuzzy membership to each sample rather than allocating to a specific class. Also the weight vector of fuzzy decision hyperplane is a set of fuzzy numbers. The proposed fuzzy classifier is called fuzzified particle swarm classifier (FPS-classifier) and its performance is evaluated by some artificial and well known benchmarks data sets.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat Askari H, Zahiri S-H (2012) Decision function estimation using intelligent gravitational search algorithm. Int J Mach Learn Cybern 3:163–172CrossRef Askari H, Zahiri S-H (2012) Decision function estimation using intelligent gravitational search algorithm. Int J Mach Learn Cybern 3:163–172CrossRef
2.
Zurück zum Zitat Bahrololoum A, Nezamabadi-pour H, Bahrololoum H, Saeed M (2012) A prototype classifier based on gravitational search algorithm. Appl Soft Comput 12(2):819–825CrossRef Bahrololoum A, Nezamabadi-pour H, Bahrololoum H, Saeed M (2012) A prototype classifier based on gravitational search algorithm. Appl Soft Comput 12(2):819–825CrossRef
3.
Zurück zum Zitat Bandyopadhyay S, Murthy CA, Pal SK (1999) Theoretical performance of genetic pattern classifier. J Franklin Inst 336(3):387–422CrossRefMATHMathSciNet Bandyopadhyay S, Murthy CA, Pal SK (1999) Theoretical performance of genetic pattern classifier. J Franklin Inst 336(3):387–422CrossRefMATHMathSciNet
4.
Zurück zum Zitat Duda RO, Hart PE, Stork DG (2001) Pattern classification. Wiley, New YorkMATH Duda RO, Hart PE, Stork DG (2001) Pattern classification. Wiley, New YorkMATH
6.
Zurück zum Zitat He YL, Wang XZ, Huang JZX (2016) Fuzzy nonlinear regression analysis using a random weight network. Inf Sci 364–365(10):222–240CrossRef He YL, Wang XZ, Huang JZX (2016) Fuzzy nonlinear regression analysis using a random weight network. Inf Sci 364–365(10):222–240CrossRef
7.
Zurück zum Zitat Hrivastri S, Deshmukh R (2014) Data classification particle swarm optimization and gravitational search algorithm. Int J Innovat Res Sci Eng Technol (IJIRSET) 3(2):9734–9741 Hrivastri S, Deshmukh R (2014) Data classification particle swarm optimization and gravitational search algorithm. Int J Innovat Res Sci Eng Technol (IJIRSET) 3(2):9734–9741
8.
Zurück zum Zitat A-b Ji, Chen S, Hua Q (2014) Fuzzy classifier based on fuzzy support vector machine. J Intell Fuzzy Syst 26(1):421–430MATHMathSciNet A-b Ji, Chen S, Hua Q (2014) Fuzzy classifier based on fuzzy support vector machine. J Intell Fuzzy Syst 26(1):421–430MATHMathSciNet
9.
Zurück zum Zitat Kaufmann M (2015) Inductive fuzzy classification in marketing analytics. Springer International Publishing Kaufmann M (2015) Inductive fuzzy classification in marketing analytics. Springer International Publishing
10.
Zurück zum Zitat Keller J, Gray M, Givens J (1985) A fuzzy k-nearest neighbor algorithm. IEEE Trans Syst Man Cybern 15:580–585CrossRef Keller J, Gray M, Givens J (1985) A fuzzy k-nearest neighbor algorithm. IEEE Trans Syst Man Cybern 15:580–585CrossRef
11.
Zurück zum Zitat Keller JM, Hunt DJ (1985) Incorporating fuzzy membership functions into the perceptron algorithm. Pattern Anal Mach Intell IEEE Trans PAMI 7(6):693–699CrossRef Keller JM, Hunt DJ (1985) Incorporating fuzzy membership functions into the perceptron algorithm. Pattern Anal Mach Intell IEEE Trans PAMI 7(6):693–699CrossRef
12.
Zurück zum Zitat Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Paper presented at the proceedings of the IEEE international conference on neural networks Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Paper presented at the proceedings of the IEEE international conference on neural networks
14.
Zurück zum Zitat Z-g Liu, Pan Q, Dezert J, Mercier G (2014) Credal classification rule for uncertain data based on belief functions. Pattern Recogn 47(7):2532–2541CrossRef Z-g Liu, Pan Q, Dezert J, Mercier G (2014) Credal classification rule for uncertain data based on belief functions. Pattern Recogn 47(7):2532–2541CrossRef
16.
Zurück zum Zitat Rahgooy T, Yazdi HS, Monsefi R (2009) Fuzzy complex system of linear equations applied to circuit analysis. Int J Comput Electr Eng 1(5):537–538 Rahgooy T, Yazdi HS, Monsefi R (2009) Fuzzy complex system of linear equations applied to circuit analysis. Int J Comput Electr Eng 1(5):537–538
17.
Zurück zum Zitat Salimi J, Ghadiri N, Afrabandpey H (2015) Fuzzy least squares twin support vector machines. CoRR abs/1505.05451:1–16 Salimi J, Ghadiri N, Afrabandpey H (2015) Fuzzy least squares twin support vector machines. CoRR abs/1505.05451:1–16
18.
Zurück zum Zitat Shahraki H, Zahiri S-H (2013) Design and simulation of an RF MEMS switch for removing the self: actuation and latching phenomena using PSO method. Iran J Electr Comput Eng 12:56–63 Shahraki H, Zahiri S-H (2013) Design and simulation of an RF MEMS switch for removing the self: actuation and latching phenomena using PSO method. Iran J Electr Comput Eng 12:56–63
19.
Zurück zum Zitat Shahraki H, Zahiri S-H (2015) Classification of trapezoidal fuzzy data based on heuristic classifiers. Kasmera J 43:128–144 Shahraki H, Zahiri S-H (2015) Classification of trapezoidal fuzzy data based on heuristic classifiers. Kasmera J 43:128–144
20.
Zurück zum Zitat Shahraki H, Zahiri S-H (2015) Particle swarm classifier for fuzzy data sets. In: Paper presented at the artificial intelligence and signal processing (AISP) Shahraki H, Zahiri S-H (2015) Particle swarm classifier for fuzzy data sets. In: Paper presented at the artificial intelligence and signal processing (AISP)
21.
Zurück zum Zitat Simpson PK (1992) Fuzzy min-max neural networks. I. Classification. Neural Netw IEEE Trans 3(5):776–786CrossRef Simpson PK (1992) Fuzzy min-max neural networks. I. Classification. Neural Netw IEEE Trans 3(5):776–786CrossRef
22.
Zurück zum Zitat Wang XZ (2015) Uncertainty in learning from big data-editorial. J Intell Fuzzy Syst 28(5):2329–2330CrossRef Wang XZ (2015) Uncertainty in learning from big data-editorial. J Intell Fuzzy Syst 28(5):2329–2330CrossRef
23.
Zurück zum Zitat Wang XZ, Ashfaq RAR, Fu AM (2015) Fuzziness based sample categorization for classifier performance improvement. J Intell Fuzzy Syst 29(3):1185–1196CrossRefMathSciNet Wang XZ, Ashfaq RAR, Fu AM (2015) Fuzziness based sample categorization for classifier performance improvement. J Intell Fuzzy Syst 29(3):1185–1196CrossRefMathSciNet
24.
Zurück zum Zitat Wang XZ, He YL, Dong LC, Zhao HY (2011) Particle swarm optimization for determining fuzzy measures from data. Inf Sci 181(19):4230–4252CrossRefMATH Wang XZ, He YL, Dong LC, Zhao HY (2011) Particle swarm optimization for determining fuzzy measures from data. Inf Sci 181(19):4230–4252CrossRefMATH
25.
Zurück zum Zitat Wang XZ, Xing HJ, Li QH, Dong CR, Pedrycz W (2015) A study on relationship between generalization abilities and fuzziness of base classifiers in ensemble learning. IEEE Trans Fuzzy Syst 23(5):1638–1654CrossRef Wang XZ, Xing HJ, Li QH, Dong CR, Pedrycz W (2015) A study on relationship between generalization abilities and fuzziness of base classifiers in ensemble learning. IEEE Trans Fuzzy Syst 23(5):1638–1654CrossRef
26.
Zurück zum Zitat Werro N (2015) Fuzzy classification of online customers. Springer International Publishing Werro N (2015) Fuzzy classification of online customers. Springer International Publishing
28.
Zurück zum Zitat Zahiri S-H (2012) Classification rule discovery using learning automata. Int J Mach Learn Cybernet 3:205–213CrossRef Zahiri S-H (2012) Classification rule discovery using learning automata. Int J Mach Learn Cybernet 3:205–213CrossRef
29.
Zurück zum Zitat Zahiri S-H, Mashhadi HR, Seyedin S-A (2005) Intelligent and robust Genetic algorithm based classifier. Iran J Electr Electron Eng 1(3):1–9 Zahiri S-H, Mashhadi HR, Seyedin S-A (2005) Intelligent and robust Genetic algorithm based classifier. Iran J Electr Electron Eng 1(3):1–9
30.
Zurück zum Zitat Zahiri S-H, Seyedin S-A (2007) Swarm intelligence based classifiers. J Franklin Inst 344(5):362–376CrossRefMATH Zahiri S-H, Seyedin S-A (2007) Swarm intelligence based classifiers. J Franklin Inst 344(5):362–376CrossRefMATH
31.
Zurück zum Zitat Zahiri S-H, Seyedin S-A (2009) Using multi-objective Particle Swarm optimization for designing novel classifiers. Swarm Intell Multi-object Probl Data Mining 242:65–92CrossRef Zahiri S-H, Seyedin S-A (2009) Using multi-objective Particle Swarm optimization for designing novel classifiers. Swarm Intell Multi-object Probl Data Mining 242:65–92CrossRef
Metadaten
Titel
Fuzzy decision function estimation using fuzzified particle swarm optimization
verfasst von
Hadi Shahraki
Seyed-Hamid Zahiri
Publikationsdatum
12.07.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
International Journal of Machine Learning and Cybernetics / Ausgabe 6/2017
Print ISSN: 1868-8071
Elektronische ISSN: 1868-808X
DOI
https://doi.org/10.1007/s13042-016-0561-8

Weitere Artikel der Ausgabe 6/2017

International Journal of Machine Learning and Cybernetics 6/2017 Zur Ausgabe