Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

17.08.2020 | Original Article | Ausgabe 2/2021

International Journal of Machine Learning and Cybernetics 2/2021

Fuzzy entropies for class-specific and classification-based attribute reducts in three-way probabilistic rough set models

Zeitschrift:
International Journal of Machine Learning and Cybernetics > Ausgabe 2/2021
Autor:
Xi-Ao Ma
Wichtige Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

There exist two formulations of the theory of rough sets, consisting of the conceptual formulations and the computational formulations. Class-specific and classification-based attribute reducts are two crucial notions in three-way probabilistic rough set models. In terms of conceptual formulations, the two types of attribute reducts can be defined by considering probabilistic positive or negative region preservations of a decision class and a decision classification, respectively. However, in three-way probabilistic rough set models, there are few studies on the computational formulations of the two types of attribute reducts due to the non-monotonicity of probabilistic positive and negative regions. In this paper, we examine the computational formulations of the two types of attribute reducts in three-way probabilistic rough set models based on fuzzy entropies. We construct monotonic measures based on fuzzy entropies, from which we can obtain the computational formulations of the two types of attribute reducts. On this basis, we develop algorithms for finding the two types of attribute reducts based on addition-deletion method or deletion method. Finally, the experimental results verify the monotonicity of the proposed measures with respect to the set inclusion of attributes and show that class-specific attribute reducts provide a more effective way of attribute reduction with respect to a particular decision class compared with classification-based attribute reducts.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 2/2021

International Journal of Machine Learning and Cybernetics 2/2021 Zur Ausgabe