Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

19.02.2018 | Focus | Ausgabe 11/2018

Soft Computing 11/2018

Fuzzy integral-based ELM ensemble for imbalanced big data classification

Zeitschrift:
Soft Computing > Ausgabe 11/2018
Autoren:
Junhai Zhai, Sufang Zhang, Mingyang Zhang, Xiaomeng Liu
Wichtige Hinweise
Communicated by X. Wang, A. K. Sangaiah, M. Pelillo.
Junhai Zhai and Sufang Zhang have contributed equally to this paper.

Abstract

Big data are data too big to be handled and analyzed by traditional software tools, big data can be characterized by five V’s features: volume, velocity, variety, value and veracity. However, in the real world, some big data have another feature, i.e., class imbalanced, such as e-health big data, credit card fraud detection big data and extreme weather forecast big data are all class imbalanced. In order to deal with the problem of classifying binary imbalanced big data, based on MapReduce, non-iterative learning, ensemble learning and oversampling, this paper proposed an promising algorithm which includes three stages. Firstly, for each positive instance, its enemy nearest neighbor is found with MapReduce, and p positive instances are randomly generated with uniform distribution in its enemy nearest neighbor hypersphere, i.e., oversampling p positive instances within the hypersphere. Secondly, l balanced data subsets are constructed and l classifiers are trained on the constructed data subsets with an non-iterative learning approach. Finally, the trained classifiers are integrated by fuzzy integral to classify unseen instances. We experimentally compared the proposed algorithm with three related algorithms: SMOTE, SMOTE+RF-BigData and MR-V-ELM, and conducted a statistical analysis on the experimental results. The experimental results and the statistical analysis demonstrate that the proposed algorithm outperforms the other three methods.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe​​​​​​​




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 11/2018

Soft Computing 11/2018 Zur Ausgabe

Premium Partner

    Bildnachweise