Skip to main content

Tipp

Weitere Kapitel dieses Buchs durch Wischen aufrufen

2021 | OriginalPaper | Buchkapitel

7. Fuzzy Logic Control for Virtual Inertia Synthesis

verfasst von : Thongchart Kerdphol, Fathin Saifur Rahman, Masayuki Watanabe, Yasunori Mitani

Erschienen in: Virtual Inertia Synthesis and Control

Verlag: Springer International Publishing

share
TEILEN

Abstract

Currently, renewable energy sources (RESs) and distributed generators (DGs) are highly integrated into power systems regarding energy crisis, environmental concerns, and economic growth. The RESs/DGs penetration brings more complexity to the power system, since its systems are decentralized, and power outputs are intermittent or unpredictable against time-varying. Nevertheless, the RESs/DGs may not participate in stability regulation (e.g., frequency/voltage control), which causes the lack of inertia and damping property to the system, resulting in the weakening of grid stability. This situation can lead to system instability, cascading failures, and power blackouts. To deal with this problem, the system requires high-level (advanced) inertia controllers in tracking various levels of RESs/DGs penetration. Fuzzy logic control can be considered as one of the solution techniques due to the high reliability in nonlinear modeling with the fast processing time. In this chapter, a fuzzy logic technique is integrated into a virtual inertia control loop to enable the self-adaptive ability of  virtual inertia constant against the different levels of RESs/DGs penetration regarding frequency control. As a result, the virtual inertia control unit can automatically adjust itself in emulating different amounts of inertia and damping responding the integrated levels of RESs/DGs at the specific time.  At the beginning, the fundamental of fuzzy logic is discussed, and the recent achievements in fuzzy applications for frequency control problems are briefly reviewed. Then, a decentralized fuzzy controller in scheduling virtual inertia control constant is designed. Lastly, the effectiveness of the proposed control scheme is demonstrated through a nonlinear simulation under wide ranges of critical RESs/DGs penetration regarding system inertia and damping variations.

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literatur
1.
Zurück zum Zitat C.T. Lin, C.S.G. Lee, Neural Fuzzy Systems (Prentice-Hall, NJ, USA, 1996) C.T. Lin, C.S.G. Lee, Neural Fuzzy Systems (Prentice-Hall, NJ, USA, 1996)
3.
Zurück zum Zitat E.H. Mamdani, Application of fuzzy algorithms for control of simple dynamic plant. Proc. Inst. Electr. Eng. 121(1), 1585–1588 (1974) CrossRef E.H. Mamdani, Application of fuzzy algorithms for control of simple dynamic plant. Proc. Inst. Electr. Eng. 121(1), 1585–1588 (1974) CrossRef
4.
Zurück zum Zitat L.P. Holmblad, J.J. Ostergaard, Control of a cement Kiln by fuzzy logic. Fuzzy Inf Decis Process. 1(1), 389–399 (1982) L.P. Holmblad, J.J. Ostergaard, Control of a cement Kiln by fuzzy logic. Fuzzy Inf Decis Process. 1(1), 389–399 (1982)
5.
Zurück zum Zitat H. Oshima, S. Yasunobu, S. Ichi Sekino, Automatic train operation system based on predictive fuzzy control, in Proc. International Workshop on Artificial Intelligence for  Industrial Applications, 485–489 (1988) H. Oshima, S. Yasunobu, S. Ichi Sekino, Automatic train operation system based on predictive fuzzy control, in Proc. International Workshop on Artificial Intelligence for  Industrial Applications, 485–489 (1988)
6.
Zurück zum Zitat J. Yen, R. Langari, L.A. Zadeh, Industrial Applications of Fuzzy Logic and Intelligent System (IEEE Press, NJ, USA, 1995) MATH J. Yen, R. Langari, L.A. Zadeh, Industrial Applications of Fuzzy Logic and Intelligent System (IEEE Press, NJ, USA, 1995) MATH
7.
Zurück zum Zitat J. Yen, R. Langari, Fuzzy Logic: Intelligence, Control and Information (Prentice-Hall, NJ, USA) J. Yen, R. Langari, Fuzzy Logic: Intelligence, Control and Information (Prentice-Hall, NJ, USA)
8.
Zurück zum Zitat M. Mouzé-Amady, E. Raufaste, H. Prade, J.P. Meyer, Fuzzy-TLX: Using fuzzy integrals for evaluating human mental workload with NASA-Task Load indeX in laboratory and field studies. Ergonomics 56(5), 752–763 (2013) CrossRef M. Mouzé-Amady, E. Raufaste, H. Prade, J.P. Meyer, Fuzzy-TLX: Using fuzzy integrals for evaluating human mental workload with NASA-Task Load indeX in laboratory and field studies. Ergonomics 56(5), 752–763 (2013) CrossRef
9.
Zurück zum Zitat L.L.L. McLauchlan, Fuzzy logic controlled landing of a Boeing 747, in Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2009), 5369–5375 (2009) L.L.L. McLauchlan, Fuzzy logic controlled landing of a Boeing 747, in Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2009), 5369–5375 (2009)
10.
Zurück zum Zitat J.M. Mendel, H. Hagras, W.W. Tan, W.W. Melek, H. Ying, Introduction To Type-2 Fuzzy Logic Control: Theory and Applications (IEEE-Wiley, NJ, USA, 2014) J.M. Mendel, H. Hagras, W.W. Tan, W.W. Melek, H. Ying, Introduction To Type-2 Fuzzy Logic Control: Theory and Applications (IEEE-Wiley, NJ, USA, 2014)
11.
Zurück zum Zitat J.M. Mendel,  Electric Uncertain Rule-Based Fuzzy Systems (Springer, Switzerland, 2018) J.M. Mendel,  Electric Uncertain Rule-Based Fuzzy Systems (Springer, Switzerland, 2018)
12.
Zurück zum Zitat D.K. Chaturvedi, O.P. Malik, Neurofuzzy power system stabilizer. IEEE Trans. Energy Convers. 23(3), 887–894 (2008) CrossRef D.K. Chaturvedi, O.P. Malik, Neurofuzzy power system stabilizer. IEEE Trans. Energy Convers. 23(3), 887–894 (2008) CrossRef
13.
Zurück zum Zitat P. Hoang, K. Tomsovic, Design and analysis of an adaptive fuzzy power system stabilizer. IEEE Trans. Energy Convers. 11(2), 455–461 (1996) CrossRef P. Hoang, K. Tomsovic, Design and analysis of an adaptive fuzzy power system stabilizer. IEEE Trans. Energy Convers. 11(2), 455–461 (1996) CrossRef
14.
Zurück zum Zitat I.H. Altas, J. Neyens, A fuzzy logic decision maker and controller for reducing load frequency oscillations in multi-area power systems, in Proc.  IEEE PES General Meeting (IEEE PES GM), 1–6 (2006) I.H. Altas, J. Neyens, A fuzzy logic decision maker and controller for reducing load frequency oscillations in multi-area power systems, in Proc.  IEEE PES General Meeting (IEEE PES GM), 1–6 (2006)
15.
Zurück zum Zitat T. Chaiyatham, I. Ngamroo, Improvement of power system transient stability by PV farm with fuzzy gain scheduling of PID controller. IEEE Syst. J. 11(3), 1684–1691 (2017) CrossRef T. Chaiyatham, I. Ngamroo, Improvement of power system transient stability by PV farm with fuzzy gain scheduling of PID controller. IEEE Syst. J. 11(3), 1684–1691 (2017) CrossRef
16.
Zurück zum Zitat K.A. Varma, D.K. Mohanta, M.J.B. Reddy, Applications of type-2 fuzzy logic in power systems: a literature survey, in Proc.  International Conference on Environment and Electrical Engineering (EEEIC 2013), 1–6 (2013) K.A. Varma, D.K. Mohanta, M.J.B. Reddy, Applications of type-2 fuzzy logic in power systems: a literature survey, in Proc.  International Conference on Environment and Electrical Engineering (EEEIC 2013), 1–6 (2013)
17.
Zurück zum Zitat Y.A. Baysal, I.H. Altas, A fuzzy reasoning approach for optimal location and sizing of shunt capacitors in radial power systems, in Proc.  IEEE Energy Conversion Congress and Exposition, 1–6 (2015) Y.A. Baysal, I.H. Altas, A fuzzy reasoning approach for optimal location and sizing of shunt capacitors in radial power systems, in Proc.  IEEE Energy Conversion Congress and Exposition, 1–6 (2015)
18.
Zurück zum Zitat M. Cortés-Carmona, R. Palma-Behnke, G. Jiménez-Estévez, Fuzzy arithmetic for the DC load flow. IEEE Trans. Power Syst. 25(1), 206–214 (2010) CrossRef M. Cortés-Carmona, R. Palma-Behnke, G. Jiménez-Estévez, Fuzzy arithmetic for the DC load flow. IEEE Trans. Power Syst. 25(1), 206–214 (2010) CrossRef
19.
Zurück zum Zitat S. Kumar, D.K. Chaturvedi, Optimal power flow solution using fuzzy evolutionary and swarm optimization. Int. J. Electr. Power Energy Syst. 47(1), 416–423 (2013) CrossRef S. Kumar, D.K. Chaturvedi, Optimal power flow solution using fuzzy evolutionary and swarm optimization. Int. J. Electr. Power Energy Syst. 47(1), 416–423 (2013) CrossRef
20.
Zurück zum Zitat A. Gupta, D.K. Jain, S. Dahiya, Management of power exchange between hybrid microgrids using intelligent control, in Proc.  IEEE International Conference on Power Systems (ICPS 2016), 1–6 (2016) A. Gupta, D.K. Jain, S. Dahiya, Management of power exchange between hybrid microgrids using intelligent control, in Proc.  IEEE International Conference on Power Systems (ICPS 2016), 1–6 (2016)
21.
Zurück zum Zitat W.R. Anis Ibrahim, M.M. Morcos, Artificial intelligence and advanced mathematical tools for power quality applications: a survey. IEEE Trans. Power Deliv. 17(2), 668–673 (2002) W.R. Anis Ibrahim, M.M. Morcos, Artificial intelligence and advanced mathematical tools for power quality applications: a survey. IEEE Trans. Power Deliv. 17(2), 668–673 (2002)
22.
Zurück zum Zitat L. Suganthi, S. Iniyan, A.A. Samuel, Applications of fuzzy logic in renewable energy systems—a review. Renew. Sustain. Energy Rev. 48(1), 585–607 (2015) CrossRef L. Suganthi, S. Iniyan, A.A. Samuel, Applications of fuzzy logic in renewable energy systems—a review. Renew. Sustain. Energy Rev. 48(1), 585–607 (2015) CrossRef
23.
Zurück zum Zitat M.E. El-Hawary, Electric Power Applications of Fuzzy Systems (IEEE Press, NJ, USA, 2010) M.E. El-Hawary, Electric Power Applications of Fuzzy Systems (IEEE Press, NJ, USA, 2010)
24.
Zurück zum Zitat I.H. Altas, Fuzzy Logic Control in Energy Systems with Design Applications in MatLab/Simulink (The Institution of Engineering and Technology, UK, 2017) I.H. Altas, Fuzzy Logic Control in Energy Systems with Design Applications in MatLab/Simulink (The Institution of Engineering and Technology, UK, 2017)
25.
Zurück zum Zitat K. Hongesombut, T. Kerdphol, Robust interline power flow controller with wind power source using phase-plane fuzzy logic control. Trans. Electr. Eng. Electron. Commun. 11(2) (2013) K. Hongesombut, T. Kerdphol, Robust interline power flow controller with wind power source using phase-plane fuzzy logic control. Trans. Electr. Eng. Electron. Commun. 11(2) (2013)
26.
Zurück zum Zitat N. Tephiruk, W. Kanokbannakorn, T. Kerdphol, Y. Mitani, K. Hongesombut, Fuzzy logic control of a battery energy storage system for stability improvement in an islanded microgrid. Sustain. 10(5), 1–16 (2018) N. Tephiruk, W. Kanokbannakorn, T. Kerdphol, Y. Mitani, K. Hongesombut, Fuzzy logic control of a battery energy storage system for stability improvement in an islanded microgrid. Sustain. 10(5), 1–16 (2018)
27.
Zurück zum Zitat C.S. Rao, S.S. Nagaraju, P.S. Raju, Automatic generation control of TCPS based hydrothermal system under open market scenario: a fuzzy logic approach. Int. J. Electr. Power Energy Syst. 18(3), 266–280 (2009) C.S. Rao, S.S. Nagaraju, P.S. Raju, Automatic generation control of TCPS based hydrothermal system under open market scenario: a fuzzy logic approach. Int. J. Electr. Power Energy Syst. 18(3), 266–280 (2009)
28.
Zurück zum Zitat A.P. Fathima, M.A. Khan, Design of a new market structure and robust controller for the frequency regulation service in the deregulated power system. Electr. Power Components Syst. 36(1), 864–883 (2008) CrossRef A.P. Fathima, M.A. Khan, Design of a new market structure and robust controller for the frequency regulation service in the deregulated power system. Electr. Power Components Syst. 36(1), 864–883 (2008) CrossRef
29.
Zurück zum Zitat P. Attaviriyanupap, H. Kita, E. Tanaka, J. Hasegawa, A fuzzy-optimization approach to dynamic economic dispatch considering uncertainties. IEEE Trans. Power Syst. 19(3), 1299–1307 (2004) CrossRef P. Attaviriyanupap, H. Kita, E. Tanaka, J. Hasegawa, A fuzzy-optimization approach to dynamic economic dispatch considering uncertainties. IEEE Trans. Power Syst. 19(3), 1299–1307 (2004) CrossRef
30.
Zurück zum Zitat C.F. Juang, C.F. Lu, Load-frequency control by hybrid evolutionary fuzzy PI controller. IEE Proc. Gener. Transm. Distrib. 153(2), 196–204 (2006) CrossRef C.F. Juang, C.F. Lu, Load-frequency control by hybrid evolutionary fuzzy PI controller. IEE Proc. Gener. Transm. Distrib. 153(2), 196–204 (2006) CrossRef
31.
Zurück zum Zitat G.A. Chown, R.C. Hartman, Design and experience with a fuzzy logic controller for automatic generation control (AGC). IEEE Power Eng. Rev. 13(3), 965–970 (1997) G.A. Chown, R.C. Hartman, Design and experience with a fuzzy logic controller for automatic generation control (AGC). IEEE Power Eng. Rev. 13(3), 965–970 (1997)
32.
Zurück zum Zitat A. Feliachi, D. Rerkpreedapong, NERC compliant load frequency control design using fuzzy rules. Electr. Power Syst. Res. 73(2), 101–106 (2005) CrossRef A. Feliachi, D. Rerkpreedapong, NERC compliant load frequency control design using fuzzy rules. Electr. Power Syst. Res. 73(2), 101–106 (2005) CrossRef
33.
Zurück zum Zitat A. Demiroren, E. Yesil, Automatic generation control with fuzzy logic controllers in the power system including SMES units. Int. J. Electr. Power Energy Syst. 26(1), 291–305 (2004) CrossRef A. Demiroren, E. Yesil, Automatic generation control with fuzzy logic controllers in the power system including SMES units. Int. J. Electr. Power Energy Syst. 26(1), 291–305 (2004) CrossRef
34.
Zurück zum Zitat M.K. El-Sherbiny, G. El-Saady, A.M. Yousef, Efficient fuzzy logic load-frequency controller. Energy Convers. Manag. 43(1), 1853–1863 (2002) CrossRef M.K. El-Sherbiny, G. El-Saady, A.M. Yousef, Efficient fuzzy logic load-frequency controller. Energy Convers. Manag. 43(1), 1853–1863 (2002) CrossRef
35.
Zurück zum Zitat E. Yeşil, M. Güzelkaya, I. Eksin, Self tuning fuzzy PID type load and frequency controller. Energy Convers. Manag. 45(1), 377–390 (2004) CrossRef E. Yeşil, M. Güzelkaya, I. Eksin, Self tuning fuzzy PID type load and frequency controller. Energy Convers. Manag. 45(1), 377–390 (2004) CrossRef
36.
Zurück zum Zitat E. Çam, I. Kocaarslan, A fuzzy gain scheduling PI controller application for an interconnected electrical power system. Electr. Power Syst. Res. 73(3), 329–340 (2005) CrossRef E. Çam, I. Kocaarslan, A fuzzy gain scheduling PI controller application for an interconnected electrical power system. Electr. Power Syst. Res. 73(3), 329–340 (2005) CrossRef
37.
Zurück zum Zitat Y.L. Karnavas, D.P. Papadopoulos, AGC for autonomous power system using combined intelligent techniques. Electr. Power Syst. Res. 62(1), 225–239 (2002) CrossRef Y.L. Karnavas, D.P. Papadopoulos, AGC for autonomous power system using combined intelligent techniques. Electr. Power Syst. Res. 62(1), 225–239 (2002) CrossRef
38.
Zurück zum Zitat P. Subbaraj, K. Manickavasagam, Automatic generation control of multi-area power system using fuzzy logic controller. Eur. Trans. Electr. Power 18(3), 266–280 (2008) CrossRef P. Subbaraj, K. Manickavasagam, Automatic generation control of multi-area power system using fuzzy logic controller. Eur. Trans. Electr. Power 18(3), 266–280 (2008) CrossRef
39.
Zurück zum Zitat M.H. Ali, T. Murata, J. Tamura, Transient stability enhancement by fuzzy logic-controlled SMES considering coordination with optimal reclosing of circuit breakers. IEEE Trans. Power Syst. 23(2), 631–640 (2008) CrossRef M.H. Ali, T. Murata, J. Tamura, Transient stability enhancement by fuzzy logic-controlled SMES considering coordination with optimal reclosing of circuit breakers. IEEE Trans. Power Syst. 23(2), 631–640 (2008) CrossRef
40.
Zurück zum Zitat Q. Yaser, T. Kerdphol, Y. Mitani, Different optimization schemes for community based energy storage systems, in Proc. I nternational Conference on Electric Power and Energy Conversion Systems, 1–5 (2015) Q. Yaser, T. Kerdphol, Y. Mitani, Different optimization schemes for community based energy storage systems, in Proc. I nternational Conference on Electric Power and Energy Conversion Systems, 1–5 (2015)
41.
Zurück zum Zitat N.J. Schouten, M.A. Salman, N.A. Kheir, Fuzzy logic control for parallel hybrid vehicles. IEEE Trans. Control Syst. Technol. 10(3), 460–468 (2002) CrossRef N.J. Schouten, M.A. Salman, N.A. Kheir, Fuzzy logic control for parallel hybrid vehicles. IEEE Trans. Control Syst. Technol. 10(3), 460–468 (2002) CrossRef
42.
Zurück zum Zitat P.D. Brown, J.A. Peças Lopes, M.A. Matos, Optimization of pumped storage capacity in an isolated power system with large renewable penetration. IEEE Trans. Power Syst. 23(2), 523–531 (2008) P.D. Brown, J.A. Peças Lopes, M.A. Matos, Optimization of pumped storage capacity in an isolated power system with large renewable penetration. IEEE Trans. Power Syst. 23(2), 523–531 (2008)
43.
Zurück zum Zitat A. A. Ferreira, J. A. Pomilio, G. Spiazzi, L. de Araujo Silva, Energy management fuzzy logic supervisory for electric vehicle power supplies system. IEEE Trans. Power Electron. 23(1), 107–115 (2008) A. A. Ferreira, J. A. Pomilio, G. Spiazzi, L. de Araujo Silva, Energy management fuzzy logic supervisory for electric vehicle power supplies system. IEEE Trans. Power Electron. 23(1), 107–115 (2008)
44.
Zurück zum Zitat N. Sa-ngawong, I. Ngamroo, Intelligent photovoltaic farms for robust frequency stabilization in multi-area interconnected power system based on PSO-based optimal Sugeno fuzzy logic control. Renew. Energy 74, 555–567 (2015) CrossRef N. Sa-ngawong, I. Ngamroo, Intelligent photovoltaic farms for robust frequency stabilization in multi-area interconnected power system based on PSO-based optimal Sugeno fuzzy logic control. Renew. Energy 74, 555–567 (2015) CrossRef
45.
Zurück zum Zitat R.H. Liang, J.H. Liao, A fuzzy-optimization approach for generation scheduling with wind and solar energy systems. IEEE Trans. Power Syst. 22(4), 1665–1674 (2007) CrossRef R.H. Liang, J.H. Liao, A fuzzy-optimization approach for generation scheduling with wind and solar energy systems. IEEE Trans. Power Syst. 22(4), 1665–1674 (2007) CrossRef
46.
Zurück zum Zitat I.G. Damousis, M.C. Alexiadis, J.B. Theocharis, P.S. Dokopoulos, A fuzzy model for wind speed prediction and power generation in wind parks using spatial correlation. IEEE Trans. Energy Convers. 19(2), 352–361 (2004) CrossRef I.G. Damousis, M.C. Alexiadis, J.B. Theocharis, P.S. Dokopoulos, A fuzzy model for wind speed prediction and power generation in wind parks using spatial correlation. IEEE Trans. Energy Convers. 19(2), 352–361 (2004) CrossRef
47.
Zurück zum Zitat Y.T. Chen, Y.C. Jhang, R.H. Liang, A fuzzy-logic based auto-scaling variable step-size MPPT method for PV systems. Sol. Energy 126(1), 53–63 (2016) CrossRef Y.T. Chen, Y.C. Jhang, R.H. Liang, A fuzzy-logic based auto-scaling variable step-size MPPT method for PV systems. Sol. Energy 126(1), 53–63 (2016) CrossRef
48.
Zurück zum Zitat T.L. Kottas, Y.S. Boutalis, A.D. Karlis, New maximum power point tracker for PV arrays using fuzzy controller in close cooperation with fuzzy cognitive networks. IEEE Trans. Energy Convers. 21(3), 793–803 (2006) CrossRef T.L. Kottas, Y.S. Boutalis, A.D. Karlis, New maximum power point tracker for PV arrays using fuzzy controller in close cooperation with fuzzy cognitive networks. IEEE Trans. Energy Convers. 21(3), 793–803 (2006) CrossRef
49.
Zurück zum Zitat Y. Hirase, K. Abe, K. Sugimoto, Y. Shindo, A grid-connected inverter with virtual synchronous generator model of algebraic type. Electr. Eng. Japan (English Transl. Denki Gakkai Ronbunshi) 132-B(4), 10–21 (2013) Y. Hirase, K. Abe, K. Sugimoto, Y. Shindo, A grid-connected inverter with virtual synchronous generator model of algebraic type. Electr. Eng. Japan (English Transl. Denki Gakkai Ronbunshi) 132-B(4), 10–21 (2013)
50.
Zurück zum Zitat S. D’Arco, J.A. Suul, O.B. Fosso, A virtual synchronous machine implementation for distributed control of power converters in SmartGrids. Electr. Power Syst. Res. 122(1), 180–197 (2015) CrossRef S. D’Arco, J.A. Suul, O.B. Fosso, A virtual synchronous machine implementation for distributed control of power converters in SmartGrids. Electr. Power Syst. Res. 122(1), 180–197 (2015) CrossRef
51.
Zurück zum Zitat T. Shintai, Y. Miura, T. Ise, Oscillation damping of a distributed generator using a virtual synchronous generator. IEEE Trans. Power Deliv. 29(2), 668–676 (2014) CrossRef T. Shintai, Y. Miura, T. Ise, Oscillation damping of a distributed generator using a virtual synchronous generator. IEEE Trans. Power Deliv. 29(2), 668–676 (2014) CrossRef
52.
Zurück zum Zitat L. Sigrist, I. Egido, E. Lobato Miguelez, L. Rouco, Sizing and controller setting of ultracapacitors for frequency stability enhancement of small isolated power systems. IEEE Trans. Power Syst. 30(4), 2130–2138 (2015) L. Sigrist, I. Egido, E. Lobato Miguelez, L. Rouco, Sizing and controller setting of ultracapacitors for frequency stability enhancement of small isolated power systems. IEEE Trans. Power Syst. 30(4), 2130–2138 (2015)
53.
Zurück zum Zitat N. Soni, S. Doolla, M.C. Chandorkar, Improvement of transient response in microgrids using virtual inertia. IEEE Trans. Power Deliv. 28(3), 1830–1838 (2013) CrossRef N. Soni, S. Doolla, M.C. Chandorkar, Improvement of transient response in microgrids using virtual inertia. IEEE Trans. Power Deliv. 28(3), 1830–1838 (2013) CrossRef
54.
Zurück zum Zitat T. Kerdphol, F.S. Rahman, Y. Mitani, Virtual inertia control application to enhance frequency stability of interconnected power systems with high renewable energy penetration. Energies 11(4), 981–997 (2018) CrossRef T. Kerdphol, F.S. Rahman, Y. Mitani, Virtual inertia control application to enhance frequency stability of interconnected power systems with high renewable energy penetration. Energies 11(4), 981–997 (2018) CrossRef
55.
Zurück zum Zitat E. Rakhshani, D. Remon, A.M. Cantarellas, J.M. Garcia, P. Rodriguez, Virtual synchronous power strategy for multiple HVDC interconnections of multi-area AGC power systems. IEEE Trans. Power Syst. 32(3), 1665–1677 (2017) CrossRef E. Rakhshani, D. Remon, A.M. Cantarellas, J.M. Garcia, P. Rodriguez, Virtual synchronous power strategy for multiple HVDC interconnections of multi-area AGC power systems. IEEE Trans. Power Syst. 32(3), 1665–1677 (2017) CrossRef
56.
Zurück zum Zitat E. Rakhshani, P. Rodriguez, Inertia emulation in AC/DC interconnected power systems using derivative technique considering frequency measurement effects. IEEE Trans Power Syst 32(5), 3338–3351 (2017) CrossRef E. Rakhshani, P. Rodriguez, Inertia emulation in AC/DC interconnected power systems using derivative technique considering frequency measurement effects. IEEE Trans Power Syst 32(5), 3338–3351 (2017) CrossRef
57.
Zurück zum Zitat P. Rodriguez, E. Rakhshani, A. Mir Cantarellas, D. Remon, Analysis of derivative control based virtual inertia in multi-area high-voltage direct current interconnected power systems. IET Gener. Transm. Distrib. 10(6), 1458–1469 (2016) P. Rodriguez, E. Rakhshani, A. Mir Cantarellas, D. Remon, Analysis of derivative control based virtual inertia in multi-area high-voltage direct current interconnected power systems. IET Gener. Transm. Distrib. 10(6), 1458–1469 (2016)
58.
Zurück zum Zitat T. Kerdphol, M. Watanabe, K. Hongesombut, Y. Mitani, Self-adaptive virtual inertia control-based fuzzy logic to improve frequency stability of microgrid with high renewable penetration. IEEE Access 7(1), 76071–76083 (2019) CrossRef T. Kerdphol, M. Watanabe, K. Hongesombut, Y. Mitani, Self-adaptive virtual inertia control-based fuzzy logic to improve frequency stability of microgrid with high renewable penetration. IEEE Access 7(1), 76071–76083 (2019) CrossRef
59.
Zurück zum Zitat J. Alipoor, Y. Miura, T. Ise, Power system stabilization using virtual synchronous generator with alternating moment of inertia. IEEE J. Emerg. Sel. Top. Power Electron. 3(2), 451–458 (2015) J. Alipoor, Y. Miura, T. Ise, Power system stabilization using virtual synchronous generator with alternating moment of inertia. IEEE J. Emerg. Sel. Top. Power Electron. 3(2), 451–458 (2015)
60.
Zurück zum Zitat D. Li, Q. Zhu, S. Lin, X.Y. Bian, A self-adaptive inertia and damping combination control of VSG to support frequency stability. IEEE Trans. Energy Convers. 32(1), 397–398 (2017) CrossRef D. Li, Q. Zhu, S. Lin, X.Y. Bian, A self-adaptive inertia and damping combination control of VSG to support frequency stability. IEEE Trans. Energy Convers. 32(1), 397–398 (2017) CrossRef
61.
Zurück zum Zitat M. A. Torres L., L.A.C. Lopes, L.A. Moran T., J.R. Espinoza C, Self-tuning virtual synchronous machine: a control strategy for energy storage systems to support dynamic frequency control. IEEE Trans. Energy Convers. 29(4), 833–840 (2014) M. A. Torres L., L.A.C. Lopes, L.A. Moran T., J.R. Espinoza C, Self-tuning virtual synchronous machine: a control strategy for energy storage systems to support dynamic frequency control. IEEE Trans. Energy Convers. 29(4), 833–840 (2014)
62.
Zurück zum Zitat J. Harris, Fuzzy Logic Application in Engineering Science (Springer, Netherlands, 2006) J. Harris, Fuzzy Logic Application in Engineering Science (Springer, Netherlands, 2006)
63.
Zurück zum Zitat J. Espinosa, J. Vandewalle, V. Wertz, Fuzzy Logic, Identification and Predictive Control (Springer, London. UK., 2005) MATHCrossRef J. Espinosa, J. Vandewalle, V. Wertz, Fuzzy Logic, Identification and Predictive Control (Springer, London. UK., 2005) MATHCrossRef
64.
Zurück zum Zitat A. Gunasekaran, Agile Manufacturing: The 21st Century Competitive Strategy (Elsevier, UK, 2001) A. Gunasekaran, Agile Manufacturing: The 21st Century Competitive Strategy (Elsevier, UK, 2001)
65.
Zurück zum Zitat A. Soteris, Kalogirou, Solar Energy Engineering (Acedemic Press-Elsevier, USA., 2013) A. Soteris, Kalogirou, Solar Energy Engineering (Acedemic Press-Elsevier, USA., 2013)
66.
Zurück zum Zitat H.D. Jude, D. Gupta, V.E. Balas, Intelligent Data Analysis for Biomedical Applications. (Acedemic Press-Elsevier, USA, 2019) H.D. Jude, D. Gupta, V.E. Balas, Intelligent Data Analysis for Biomedical Applications. (Acedemic Press-Elsevier, USA, 2019)
67.
Zurück zum Zitat C. Wagner, H. Hagras, Toward general type-2 fuzzy logic systems based on zSlices. IEEE Trans. Fuzzy Syst. 18(4), 637–660 (2012) CrossRef C. Wagner, H. Hagras, Toward general type-2 fuzzy logic systems based on zSlices. IEEE Trans. Fuzzy Syst. 18(4), 637–660 (2012) CrossRef
68.
Zurück zum Zitat L. Wang,  Model Predictive Control System Design and Implementation Using MATLAB ® (Springer-Verlag, London, UK, 2009) L. Wang,  Model Predictive Control System Design and Implementation Using MATLAB ® (Springer-Verlag, London, UK, 2009)
69.
Zurück zum Zitat AEMC Reliability Panel, Stage One Final Determination: Review of the Frequency Operating Standard, Final Report, Australia, Sydney (2017) AEMC Reliability Panel, Stage One Final Determination: Review of the Frequency Operating Standard, Final Report, Australia, Sydney (2017)
Metadaten
Titel
Fuzzy Logic Control for Virtual Inertia Synthesis
verfasst von
Thongchart Kerdphol
Fathin Saifur Rahman
Masayuki Watanabe
Yasunori Mitani
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-57961-6_7