Skip to main content

2018 | OriginalPaper | Buchkapitel

Fuzzy Object Growth Model for Neonatal Brain MR Understanding

verfasst von : Saadia Binte Alam, Syoji Kobashi, Jayaram K Udupa

Erschienen in: Artificial Intelligence in Decision Support Systems for Diagnosis in Medical Imaging

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter summaries a brain region segmentation method for newborn using magnetic resonance (MR) images. The method deploys fuzzy object growth model (FOGM) which is an extension of fuzzy object model. It is a 4-dimensional model which gives a prior knowledge of brain shape and position at any growing time. First we calculate 4th dimension of FOGM, called growth index in this chapter. Because the growth index will be different from person to person even in the same age group, the method estimates the growth index from cerebral shape using Manifold learning. Using the growth index, FOGM is constructed from the training dataset. To recognize the brain region in evaluating subject, it first estimates the growth index. Then, the brain region is segmented using fuzzy connected image segmentation with the FOGM matched by the growth index. To evaluate the method, this study segments the parenchymal region of 16 subjects (revised age; 0–2 years old) using synthesized FOGM.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Braak, H., Braak, E.: Neuropathologic staging of alzheimer-related changes. Acta Neuropathol. 82(4), 239–259 (1991)CrossRef Braak, H., Braak, E.: Neuropathologic staging of alzheimer-related changes. Acta Neuropathol. 82(4), 239–259 (1991)CrossRef
2.
Zurück zum Zitat Kitagaki, H., Mori, E., Yamaji, S., Ishii, K., Hirono, N., Kobashi, S., Hata, Y.: Frontotemporal dementia and alzheimer disease: evaluation of cortical atrophy with automated hemispheric surface display generated with MR images. Radiology 208(2), 431–439 (1998)CrossRef Kitagaki, H., Mori, E., Yamaji, S., Ishii, K., Hirono, N., Kobashi, S., Hata, Y.: Frontotemporal dementia and alzheimer disease: evaluation of cortical atrophy with automated hemispheric surface display generated with MR images. Radiology 208(2), 431–439 (1998)CrossRef
3.
Zurück zum Zitat Padilla, P., Lopez, M., Gorriz, J.M., Ramirez, J., Salas-Gonzalez, D., Alvarez, I.: NMF-SVM based CAD tool applied to functional brain images for the diagnosis of alzheimer’s disease. IEEE Trans. Med. Imaging 31(2), 207–216 (2012)CrossRef Padilla, P., Lopez, M., Gorriz, J.M., Ramirez, J., Salas-Gonzalez, D., Alvarez, I.: NMF-SVM based CAD tool applied to functional brain images for the diagnosis of alzheimer’s disease. IEEE Trans. Med. Imaging 31(2), 207–216 (2012)CrossRef
4.
Zurück zum Zitat Davis, B.C., Fletcher, P.T., Bullitt, E., Joshi, S.: Population shape regression from random design data. Int. J. Comput. Vis. 2010(2), 255–266 (2010)CrossRef Davis, B.C., Fletcher, P.T., Bullitt, E., Joshi, S.: Population shape regression from random design data. Int. J. Comput. Vis. 2010(2), 255–266 (2010)CrossRef
5.
Zurück zum Zitat Aljabar, P., Wolz, R., Srinivasan, L., Counsell, S., Boardman, J.P., Murgasova, M., Doria, V., Rutherford, M.A., Edwards, A.D., Hajnal, J.V., Rueckert, D.: Combining morphological information in a manifold learning framework: application to neonatal MRI. Lect. Notes Comput. Sci. Med. Image Comput. Comput. Assist. Interv. 6363, 1–8 (2010) Aljabar, P., Wolz, R., Srinivasan, L., Counsell, S., Boardman, J.P., Murgasova, M., Doria, V., Rutherford, M.A., Edwards, A.D., Hajnal, J.V., Rueckert, D.: Combining morphological information in a manifold learning framework: application to neonatal MRI. Lect. Notes Comput. Sci. Med. Image Comput. Comput. Assist. Interv. 6363, 1–8 (2010)
6.
Zurück zum Zitat Udupa, J.K., Samarasekera, S.: Fuzzy connectedness and object definition: theory, algorithms, and applications in image segmentation. Graph. Models Process. 58(3), 246–261 (1996)CrossRef Udupa, J.K., Samarasekera, S.: Fuzzy connectedness and object definition: theory, algorithms, and applications in image segmentation. Graph. Models Process. 58(3), 246–261 (1996)CrossRef
7.
Zurück zum Zitat Prastawa, M., Gilmore, J.H., Lin, W., Gerig, G.: Automatic segmentation of MR images of the developing newborn brain. Med. Image Anal. 9(5), 457–466 (2005)CrossRef Prastawa, M., Gilmore, J.H., Lin, W., Gerig, G.: Automatic segmentation of MR images of the developing newborn brain. Med. Image Anal. 9(5), 457–466 (2005)CrossRef
8.
Zurück zum Zitat Xue, H., Srinivasan, L., Jiang, S., Rutherford, M., Edwards, A.D., Rueckert, D., Hajnal, J.V.: Automatic segmentation and reconstruction of the cortex from neonatal MRI. Neuroimage 38(3), 461–477 (2007)CrossRef Xue, H., Srinivasan, L., Jiang, S., Rutherford, M., Edwards, A.D., Rueckert, D., Hajnal, J.V.: Automatic segmentation and reconstruction of the cortex from neonatal MRI. Neuroimage 38(3), 461–477 (2007)CrossRef
9.
Zurück zum Zitat Kobashi, S., Udupa, J.K.: Fuzzy object models for newborn brain MR image segmentation. In: Proceedings of SPIE Medical Imaging 2013, vol. 8672 (2013) Kobashi, S., Udupa, J.K.: Fuzzy object models for newborn brain MR image segmentation. In: Proceedings of SPIE Medical Imaging 2013, vol. 8672 (2013)
10.
Zurück zum Zitat Udupa, J.K., Odhner, D., Falcao, A.X., Ciesielski, K.C., Miranda, P.A.V., Vaideeswaran, P., Mishra, S., Grevera, G.J., Saboury, B., Torigian, D.A.: Fuzzy object modeling. In: Proceedings of SPIE Medical Imaging 2011, vol. 7964, pp. 79640B-1–10 (2011) Udupa, J.K., Odhner, D., Falcao, A.X., Ciesielski, K.C., Miranda, P.A.V., Vaideeswaran, P., Mishra, S., Grevera, G.J., Saboury, B., Torigian, D.A.: Fuzzy object modeling. In: Proceedings of SPIE Medical Imaging 2011, vol. 7964, pp. 79640B-1–10 (2011)
11.
Zurück zum Zitat Nakano, R., Kobashi, S., Kuramoto, K., Wakata, Y., Ando, K., Ishikura, R., Ishikawa, T., Hirota, S., Hata, Y.: Fuzzy object growth model for newborn brain using manifold learning. In: Proceedings of 2014 IEEE International Conference on Fuzzy Systems, pp. 1809–1816 (2014) Nakano, R., Kobashi, S., Kuramoto, K., Wakata, Y., Ando, K., Ishikura, R., Ishikawa, T., Hirota, S., Hata, Y.: Fuzzy object growth model for newborn brain using manifold learning. In: Proceedings of 2014 IEEE International Conference on Fuzzy Systems, pp. 1809–1816 (2014)
12.
Zurück zum Zitat Kobashi, S., Nakano, R., Kuramoto, K., Wakata, Y., Ando, K., Ishikura, R., Ishikawa, T., Hirota, S., Hata, Y., Kamiura, N.: Neonatal brain segmentation using 4-D Fuzzy object model. In: Proceedings of International Conference on Informatics, Electronics & Vision (2014) Kobashi, S., Nakano, R., Kuramoto, K., Wakata, Y., Ando, K., Ishikura, R., Ishikawa, T., Hirota, S., Hata, Y., Kamiura, N.: Neonatal brain segmentation using 4-D Fuzzy object model. In: Proceedings of International Conference on Informatics, Electronics & Vision (2014)
13.
Zurück zum Zitat Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15(6), 1373–1396 (2003)CrossRefMATH Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15(6), 1373–1396 (2003)CrossRefMATH
14.
Zurück zum Zitat Remy, E., Thiel, E.: Computing 3D medial axis for chamfer distances. Lect. Notes Comput. Sci. 1953, 418–430 (2000)CrossRefMATH Remy, E., Thiel, E.: Computing 3D medial axis for chamfer distances. Lect. Notes Comput. Sci. 1953, 418–430 (2000)CrossRefMATH
Metadaten
Titel
Fuzzy Object Growth Model for Neonatal Brain MR Understanding
verfasst von
Saadia Binte Alam
Syoji Kobashi
Jayaram K Udupa
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-68843-5_9