Skip to main content

2014 | OriginalPaper | Buchkapitel

Fuzzy VEISV Epidemic Propagation Modeling for Network Worm Attack

verfasst von : Muthukrishnan Senthil Kumar, C. Veeramani

Erschienen in: Computational Intelligence, Cyber Security and Computational Models

Verlag: Springer India

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

An epidemic vulnerable—exposed—infectious—secured—vulnerable (VEISV) model for the fuzzy propagation of worms in computer network is formulated. In this paper, the comparison between classical basic reproduction number and fuzzy basic reproduction number is analyzed. Epidemic control strategies of worms in the computer network—low, medium, and high—are analyzed. Numerical illustration is provided to simulate and solve the set of equations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bimal Kumar Mishra, D.K. Saini, SEIRS epidemic model with delay for transmission of malicious objects in computer network, Appl. Math. Comput. 188 (2) (2007) 1476–1482. Bimal Kumar Mishra, D.K. Saini, SEIRS epidemic model with delay for transmission of malicious objects in computer network, Appl. Math. Comput. 188 (2) (2007) 1476–1482.
2.
Zurück zum Zitat Bimal Kumar Mishra, Dinesh Saini, Mathematical models on computer viruses, Appl. Math. Comput. 187 (2) (2007) 929–936. Bimal Kumar Mishra, Dinesh Saini, Mathematical models on computer viruses, Appl. Math. Comput. 187 (2) (2007) 929–936.
3.
Zurück zum Zitat Bimal Kumar Mishra, Navnit Jha, Fixed period of temporary immunity after run of anti-malicious software on computer nodes, Appl. Math. Comput.190 (2) (2007) 1207–1212. Bimal Kumar Mishra, Navnit Jha, Fixed period of temporary immunity after run of anti-malicious software on computer nodes, Appl. Math. Comput.190 (2) (2007) 1207–1212.
4.
Zurück zum Zitat E. Gelenbe, Dealing with software viruses: a biological paradigm, Inform. Secur. Tech. Rep. 12 (4) (2007) 242–250. E. Gelenbe, Dealing with software viruses: a biological paradigm, Inform. Secur. Tech. Rep. 12 (4) (2007) 242–250.
5.
Zurück zum Zitat W.O. Kermack, A.G. McKendrick, Contributions of mathematical theory to epidemics, Proc. R. Soc. Lond. Ser. A 115 (1927) 700–721. W.O. Kermack, A.G. McKendrick, Contributions of mathematical theory to epidemics, Proc. R. Soc. Lond. Ser. A 115 (1927) 700–721.
6.
Zurück zum Zitat W.O. Kermack, A.G. McKendrick, Contributions of mathematical theory to epidemics, Proc. R. Soc. Lond. Ser. A 138 (1932) 55–83. W.O. Kermack, A.G. McKendrick, Contributions of mathematical theory to epidemics, Proc. R. Soc. Lond. Ser. A 138 (1932) 55–83.
7.
Zurück zum Zitat W.O. Kermack, A.G. McKendrick, Contributions of mathematical theory to epidemics, Proc. R. Soc. Lond. Ser. A 141 (1933) 94–122. W.O. Kermack, A.G. McKendrick, Contributions of mathematical theory to epidemics, Proc. R. Soc. Lond. Ser. A 141 (1933) 94–122.
8.
Zurück zum Zitat J. Kim, S. Radhakrishana, J. Jang, Cost optimization in SIS model of worm infection, ETRI J. 28 (5) (2006) 692–695. J. Kim, S. Radhakrishana, J. Jang, Cost optimization in SIS model of worm infection, ETRI J. 28 (5) (2006) 692–695.
9.
Zurück zum Zitat H. Zhou, Y. Wen, H. Zhao, Modeling and analysis of active benign worms and hybrid benign worms containing the spread of worms, in: Proceedings of the IEEE International Conference on Networking (ICN07), 2007. H. Zhou, Y. Wen, H. Zhao, Modeling and analysis of active benign worms and hybrid benign worms containing the spread of worms, in: Proceedings of the IEEE International Conference on Networking (ICN07), 2007.
10.
Zurück zum Zitat M.H.R. Khouzani, S. Sarkar, E. Altman, Maximum damage malware attack in mobile wireless networks, in: IEEE Proceedings, INFOCOM10, 1419 Mar.2010, pp. 1–9. M.H.R. Khouzani, S. Sarkar, E. Altman, Maximum damage malware attack in mobile wireless networks, in: IEEE Proceedings, INFOCOM10, 1419 Mar.2010, pp. 1–9.
11.
Zurück zum Zitat X.Z. Li, L.L. Zhou, Global stability of an SEIR epidemic model with vertical transmission and saturating contact rate, Chaos Soliton. Fract. 40 (2007) 874–884. X.Z. Li, L.L. Zhou, Global stability of an SEIR epidemic model with vertical transmission and saturating contact rate, Chaos Soliton. Fract. 40 (2007) 874–884.
12.
Zurück zum Zitat G. Li, J. Zhen, Global stability of an SEI epidemic model with general contact rate, Chaos Soliton. Fract. 23 (2004) 997–1004. G. Li, J. Zhen, Global stability of an SEI epidemic model with general contact rate, Chaos Soliton. Fract. 23 (2004) 997–1004.
13.
Zurück zum Zitat B.K. Mishra, N. Jha, SEIQRS model for the transmission of malicious objects in computer network, Appl. Math. Modell. 34 (2009) 1207–1212. B.K. Mishra, N. Jha, SEIQRS model for the transmission of malicious objects in computer network, Appl. Math. Modell. 34 (2009) 1207–1212.
14.
Zurück zum Zitat N. Yi, Q. Zhang, K. Mao, D. Yang, Q. Li, Analysis and control of an SEIR epidemic system with nonlinear transmission rate, Math. Comput. Modell. 50(2009) 1498–1513. N. Yi, Q. Zhang, K. Mao, D. Yang, Q. Li, Analysis and control of an SEIR epidemic system with nonlinear transmission rate, Math. Comput. Modell. 50(2009) 1498–1513.
15.
Zurück zum Zitat Y. Jin, W. Wang, S. Xiao, An SIRS model with a nonlinear incidence rate, Chaos Soliton. Fract. 34 (2007) 1482–1497. Y. Jin, W. Wang, S. Xiao, An SIRS model with a nonlinear incidence rate, Chaos Soliton. Fract. 34 (2007) 1482–1497.
16.
Zurück zum Zitat Q. Liu, R. Xu, S. Wang, Modelling and analysis of an SIRS model for worm propagation, in: Proceedings of the International Conference Computational Intelligence and Security, CIS 09, vol. 2, 1114 Dec. 2009, pp. 361–365. Q. Liu, R. Xu, S. Wang, Modelling and analysis of an SIRS model for worm propagation, in: Proceedings of the International Conference Computational Intelligence and Security, CIS 09, vol. 2, 1114 Dec. 2009, pp. 361–365.
17.
Zurück zum Zitat F. Wang, Y. Zhang, C. Wang, J. Ma, S. Moon, stability analysis of SEIQV epidemic model for rapid spreading worms, Comput. Secur. 29 (2010) 410–418. F. Wang, Y. Zhang, C. Wang, J. Ma, S. Moon, stability analysis of SEIQV epidemic model for rapid spreading worms, Comput. Secur. 29 (2010) 410–418.
18.
Zurück zum Zitat Ossama A. Toutonji, Seong-Moo Yoo, Moongyu Park, Stability analysis of VEISV propagation modeling for network worm attack, Appl. Math. Model. 36 (2012) 2751–2761. Ossama A. Toutonji, Seong-Moo Yoo, Moongyu Park, Stability analysis of VEISV propagation modeling for network worm attack, Appl. Math. Model. 36 (2012) 2751–2761.
19.
Zurück zum Zitat E. Massad, M.N. Burattini, N.R.S. Ortega, Fuzzy logic and measles vaccination: designing a control strategy, Int. J. Epidemiol. 28 (3) (1999) 550–557. E. Massad, M.N. Burattini, N.R.S. Ortega, Fuzzy logic and measles vaccination: designing a control strategy, Int. J. Epidemiol. 28 (3) (1999) 550–557.
20.
Zurück zum Zitat N.R.S. Ortega, P.C. Sallum, E. Massad, Fuzzy dynamical systems in epidemic modelling, Kybernetes 29 (12) (2000) 201–218. N.R.S. Ortega, P.C. Sallum, E. Massad, Fuzzy dynamical systems in epidemic modelling, Kybernetes 29 (12) (2000) 201–218.
21.
Zurück zum Zitat E. Massad, et al., Fuzzy Logic in Action: Applications and Epidemiology and Beyond, in: STUDFUZZ, vol. 232, Springer-Verlag, Berlin, Heidelberg, 2008. E. Massad, et al., Fuzzy Logic in Action: Applications and Epidemiology and Beyond, in: STUDFUZZ, vol. 232, Springer-Verlag, Berlin, Heidelberg, 2008.
22.
Zurück zum Zitat L.C. Barros, R.C. Bassanezi, M.B.F. Leite, The epidemiological models SI with a fuzzy transmission, Comput. Math. Appl. 45 (2003) 1619–1628. L.C. Barros, R.C. Bassanezi, M.B.F. Leite, The epidemiological models SI with a fuzzy transmission, Comput. Math. Appl. 45 (2003) 1619–1628.
23.
Zurück zum Zitat B K Mishra and S K Pandey, Fuzzy epidemic model for the transmission of worms in computer network,Nonlinear Analysis: Real World Applications 11 (2010) 4335–4341. B K Mishra and S K Pandey, Fuzzy epidemic model for the transmission of worms in computer network,Nonlinear Analysis: Real World Applications 11 (2010) 4335–4341.
Metadaten
Titel
Fuzzy VEISV Epidemic Propagation Modeling for Network Worm Attack
verfasst von
Muthukrishnan Senthil Kumar
C. Veeramani
Copyright-Jahr
2014
Verlag
Springer India
DOI
https://doi.org/10.1007/978-81-322-1680-3_32