Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 5/2019

12.02.2019

Ga doping of nanocrystalline CdS thin films by electrodeposition method for solar cell application: the influence of dopant precursor concentration

verfasst von: O. K. Echendu, S. Z. Werta, F. B. Dejene, A. A. Ojo, I. M. Dharmadasa

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 5/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Ga doping of CdS thin films has been achieved using a simplified cathodic electrodeposition method and with glass/indium tin oxide (glass/ITO) as a substrate. CdCl2, Na2S2O3 and GaCl3 were used as precursors. The Ga-doped and un-doped CdS films obtained were characterized for their structural, optical, luminescence, compositional and morphological properties using state-of-the-art X-ray diffraction (XRD), spectrophotometry, room-temperature photoluminescence (PL), energy dispersive X-ray spectroscopy (EDX) and scanning electron microscopy (SEM), respectively. XRD results show that the presence of Ga ions in the deposition electrolyte and post-deposition annealing promote crystallinity of deposited CdS films, with estimated crystallite sizes of the films in the range (5–22) nm after annealing. Optical characterization results show that incorporation of Ga atoms into the crystal lattice of CdS results in increase in energy bandgap of the films, which makes them advantageous for application as window/buffer layers in solar cells. PL results show a single green emission peak whose intensity increases as Ga-content of the films increases. EDX results show a direct relationship between the percentage atomic Ga composition of the CdS:Ga films and the molar concentration of GaCl3 in the deposition electrolyte. SEM images reveal smooth surfaces of doped and un-doped CdS films. However, after annealing, cracks begin to develop in the films grown with electrolytic GaCl3 concentration in excess of 0.004 M, thus indicating a possible threshold in GaCl3 concentration for obtaining device-grade CdS:Ga films. The entire work presents one of the strengths of electrodeposition as a reliable semiconductor growth technique for device application.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat W. Wondmagegn, I. Mejia, A. Salas-Villasenor, H.J. Stiegler, M.A. Quevedo-Lopez, R.J. Pieper, B.E. Gnade, CdS thin film transistor for inverter and operational amplifier circuit applications. Microelectron. Eng. 157, 64–70 (2016)CrossRef W. Wondmagegn, I. Mejia, A. Salas-Villasenor, H.J. Stiegler, M.A. Quevedo-Lopez, R.J. Pieper, B.E. Gnade, CdS thin film transistor for inverter and operational amplifier circuit applications. Microelectron. Eng. 157, 64–70 (2016)CrossRef
2.
Zurück zum Zitat T. Gaewdang, N. Wongcharoen, Heterojunction properties of p-CuO/n-CdS diode. Adv. Mater. Res. 1098, 1–5 (2015)CrossRef T. Gaewdang, N. Wongcharoen, Heterojunction properties of p-CuO/n-CdS diode. Adv. Mater. Res. 1098, 1–5 (2015)CrossRef
3.
Zurück zum Zitat Y. Kraftmankher, Experiments on photoconductivity. Eur. J. Phys. 33, 503–511 (2012)CrossRef Y. Kraftmankher, Experiments on photoconductivity. Eur. J. Phys. 33, 503–511 (2012)CrossRef
4.
Zurück zum Zitat X. Wang, X. He, H. Zhu, L. Sun, W. Fu, X. Wang, L.C. Hoong, H. Wang, Q. Zeng, W. Zhao, J. Wei, Z. Jin, Z. Shen, J. Liu, T. Zhang, Z. Liu, Subatomic deformation driven by vertical piezoelectricity from CdS ultrathin films. Sci. Adv. 2(7), 1–9 (2016)CrossRef X. Wang, X. He, H. Zhu, L. Sun, W. Fu, X. Wang, L.C. Hoong, H. Wang, Q. Zeng, W. Zhao, J. Wei, Z. Jin, Z. Shen, J. Liu, T. Zhang, Z. Liu, Subatomic deformation driven by vertical piezoelectricity from CdS ultrathin films. Sci. Adv. 2(7), 1–9 (2016)CrossRef
5.
Zurück zum Zitat A.K. Bansal, F. Antolini, S. Zhang, L. Stroea, L. Ortolani, M. Lanzi, E. Serra, S. Allard, U. Scherf, I.D.W. Samuel, Highly luminescent colloidal CdS quantum dots with efficient near-infrared electroluminescence in light-emitting diodes. J. Phys. Chem. C 120, 1871–1880 (2016)CrossRef A.K. Bansal, F. Antolini, S. Zhang, L. Stroea, L. Ortolani, M. Lanzi, E. Serra, S. Allard, U. Scherf, I.D.W. Samuel, Highly luminescent colloidal CdS quantum dots with efficient near-infrared electroluminescence in light-emitting diodes. J. Phys. Chem. C 120, 1871–1880 (2016)CrossRef
6.
Zurück zum Zitat S.K. Tripathi, R.K. Jyoti, Investigation of non-linear optical properties of CdS/PS polymer nanocomposite synthesized by chemical route. Opt. Commun. 352, 55–62 (2015)CrossRef S.K. Tripathi, R.K. Jyoti, Investigation of non-linear optical properties of CdS/PS polymer nanocomposite synthesized by chemical route. Opt. Commun. 352, 55–62 (2015)CrossRef
7.
Zurück zum Zitat A.A. Ojo, I.M. Dharmadasa, Optimisation of pH of cadmium chloride post-growth-treatment in processing CdS/CdTe based thin film solar cells. J. Mater. Sci.: Mater. Electron. 28, 7231–7242 (2017) A.A. Ojo, I.M. Dharmadasa, Optimisation of pH of cadmium chloride post-growth-treatment in processing CdS/CdTe based thin film solar cells. J. Mater. Sci.: Mater. Electron. 28, 7231–7242 (2017)
8.
Zurück zum Zitat J. Schaffner, E. Feldmeier, A. Swirschuk, H.J. Schimper, A. Klein, W. Jaegermann, Influence of substrate temperature, growth rate and TCO substrate on the properties of CSS-deposited CdS thin films. Thin Solid Films 519, 7556–7559 (2011)CrossRef J. Schaffner, E. Feldmeier, A. Swirschuk, H.J. Schimper, A. Klein, W. Jaegermann, Influence of substrate temperature, growth rate and TCO substrate on the properties of CSS-deposited CdS thin films. Thin Solid Films 519, 7556–7559 (2011)CrossRef
10.
Zurück zum Zitat N.R. Paudel, K.A. Wieland, A.D. Compaan, Ultrathin CdS/CdTe solar cells by sputtering. Sol. Energy Mater. Sol. Cells 105, 109–112 (2012)CrossRef N.R. Paudel, K.A. Wieland, A.D. Compaan, Ultrathin CdS/CdTe solar cells by sputtering. Sol. Energy Mater. Sol. Cells 105, 109–112 (2012)CrossRef
11.
Zurück zum Zitat A.H. Rubel, J. Podder, Optical properties of spray pyrolysis deposited CdS:Al thin films. J. Bangladesh Acad. Sci. 39(1), 25–30 (2015)CrossRef A.H. Rubel, J. Podder, Optical properties of spray pyrolysis deposited CdS:Al thin films. J. Bangladesh Acad. Sci. 39(1), 25–30 (2015)CrossRef
12.
Zurück zum Zitat T. Aramoto, S. Kumazawa, H. Higuchi, T. Arita, S. Shibutani, T. Nishio, J. Nakajima, M. Tsuji, A. Hanafusa, T. Hibino, K. Omura, H. Ohyama, M. Murozono, 16.0% efficient thin-film CdS/CdTe solar cells. Jpn. J. Appl. Phys. 36, 6304–6305 (1997)CrossRef T. Aramoto, S. Kumazawa, H. Higuchi, T. Arita, S. Shibutani, T. Nishio, J. Nakajima, M. Tsuji, A. Hanafusa, T. Hibino, K. Omura, H. Ohyama, M. Murozono, 16.0% efficient thin-film CdS/CdTe solar cells. Jpn. J. Appl. Phys. 36, 6304–6305 (1997)CrossRef
13.
Zurück zum Zitat J. Avila-Avendano, I. Mejia, H.N. Alshareef, Z. Guo, C. Young, M. Quevedo-Lopez, In-situ CdS/CdTe heterojuntions deposited by pulsed laser deposition. Thin Solid Films 608, 1–7 (2016)CrossRef J. Avila-Avendano, I. Mejia, H.N. Alshareef, Z. Guo, C. Young, M. Quevedo-Lopez, In-situ CdS/CdTe heterojuntions deposited by pulsed laser deposition. Thin Solid Films 608, 1–7 (2016)CrossRef
14.
Zurück zum Zitat P. Boieriu, R. Sporken, Y. Xin, N.D. Browning, S. Sivananthan, Wurtzite CdS on CdTe grown by molecular beam epitaxy. J. Electron. Mater. 29(6), 718–722 (2000)CrossRef P. Boieriu, R. Sporken, Y. Xin, N.D. Browning, S. Sivananthan, Wurtzite CdS on CdTe grown by molecular beam epitaxy. J. Electron. Mater. 29(6), 718–722 (2000)CrossRef
15.
Zurück zum Zitat A.A. Ziabari, F.E. Ghodsi, Growth, characterization and studying of sol-gel derived CdS nanocrystalline thin films incorporated in polyethyleneglycol: effect of post-growth heat treatment. Sol. Energy Mater. Sol. Cells 105, 249–262 (2012)CrossRef A.A. Ziabari, F.E. Ghodsi, Growth, characterization and studying of sol-gel derived CdS nanocrystalline thin films incorporated in polyethyleneglycol: effect of post-growth heat treatment. Sol. Energy Mater. Sol. Cells 105, 249–262 (2012)CrossRef
16.
Zurück zum Zitat Z. Lu, R. Jin, Y. Liu, L. Guo, X. Liu, J. Liu, K. Cheng, Z. Du, Optimization of chemical bath deposited cadmium sulfide buffer layer for high-efficient CIGS thin film solar cells. Mater. Lett. 204, 53–56 (2017)CrossRef Z. Lu, R. Jin, Y. Liu, L. Guo, X. Liu, J. Liu, K. Cheng, Z. Du, Optimization of chemical bath deposited cadmium sulfide buffer layer for high-efficient CIGS thin film solar cells. Mater. Lett. 204, 53–56 (2017)CrossRef
17.
Zurück zum Zitat O.K. Echendu, F.B. Dejene, I.M. Dharmadasa, F.C. Eze, Characteristics of nanocrystallite-CdS produced by low-cost electrochemical technique for thin film photovoltaic application: the influence of deposition voltage. Int. J. Photoenergy (2017). https://doi.org/10.1155/2017/3989432 O.K. Echendu, F.B. Dejene, I.M. Dharmadasa, F.C. Eze, Characteristics of nanocrystallite-CdS produced by low-cost electrochemical technique for thin film photovoltaic application: the influence of deposition voltage. Int. J. Photoenergy (2017). https://​doi.​org/​10.​1155/​2017/​3989432
18.
Zurück zum Zitat M. Kim, A. Ochirbat, H.J. Lee, CuS/CdS quantum dot composite sensitizer and its applications to various TiO2 mesoporous film-based solar cell devices. Langmuir 31, 7609–7615 (2015)CrossRef M. Kim, A. Ochirbat, H.J. Lee, CuS/CdS quantum dot composite sensitizer and its applications to various TiO2 mesoporous film-based solar cell devices. Langmuir 31, 7609–7615 (2015)CrossRef
19.
Zurück zum Zitat N. Naghavi, G. Renou, V. Bockelee, F. Donsanti, P. Genevee, M. Jubault, J.F. Guillemoles, D. Lincot, Chemical deposition methods for Cd-free buffer layers in CI(G)S solar cells: role of window layers. Thin Solid Films 519(21), 7600–7605 (2011)CrossRef N. Naghavi, G. Renou, V. Bockelee, F. Donsanti, P. Genevee, M. Jubault, J.F. Guillemoles, D. Lincot, Chemical deposition methods for Cd-free buffer layers in CI(G)S solar cells: role of window layers. Thin Solid Films 519(21), 7600–7605 (2011)CrossRef
21.
Zurück zum Zitat O.K. Echendu, F. Fauzi, A.R. Weerasinghe, I.M. Dharmadasa, High short-circuit current density CdTe solar cells using all-electrodeposited semiconductors. Thin Solid Films 556, 529–534 (2014)CrossRef O.K. Echendu, F. Fauzi, A.R. Weerasinghe, I.M. Dharmadasa, High short-circuit current density CdTe solar cells using all-electrodeposited semiconductors. Thin Solid Films 556, 529–534 (2014)CrossRef
22.
Zurück zum Zitat J.H. Lee, J.S. Yi, K.J. Yang, J.H. Park, R.D. Oh, Electrical and optical properties of boron doped CdS thin films prepared by chemical bath deposition. Thin Solid Films 431–432, 344–348 (2003)CrossRef J.H. Lee, J.S. Yi, K.J. Yang, J.H. Park, R.D. Oh, Electrical and optical properties of boron doped CdS thin films prepared by chemical bath deposition. Thin Solid Films 431–432, 344–348 (2003)CrossRef
23.
Zurück zum Zitat H. Khallaf, G. Chai, O. Lupan, L. Chow, S. Park, A. Schulte, Characterization of gallium-doped CdS thin films grown by chemical bath deposition. Appl. Surf. Sci. 255, 4129–4134 (2009)CrossRef H. Khallaf, G. Chai, O. Lupan, L. Chow, S. Park, A. Schulte, Characterization of gallium-doped CdS thin films grown by chemical bath deposition. Appl. Surf. Sci. 255, 4129–4134 (2009)CrossRef
24.
25.
Zurück zum Zitat J. Yang, R. Liu, S. Huang, Y. Shao, Y. Huang, Y. Yu, Enhanced photocatalytic activity and stability of interstitial Ga-doped CdS: combination of experiment and calculation. Catal. Today 224, 104–113 (2014)CrossRef J. Yang, R. Liu, S. Huang, Y. Shao, Y. Huang, Y. Yu, Enhanced photocatalytic activity and stability of interstitial Ga-doped CdS: combination of experiment and calculation. Catal. Today 224, 104–113 (2014)CrossRef
26.
Zurück zum Zitat J. Cai, J. Jie, P. Jiang, D. Wu, C. Xie, C. Wu, Z. Wang, Y. Yu, L. Wang, X. Zhang, Q. Peng, Y. Jiang, Tuning the electrical transport properties of n-type CdS nanowires via Ga doping and their nano-optoelectronic applications. Phys. Chem. Chem. Phys. 13, 14663–14667 (2011)CrossRef J. Cai, J. Jie, P. Jiang, D. Wu, C. Xie, C. Wu, Z. Wang, Y. Yu, L. Wang, X. Zhang, Q. Peng, Y. Jiang, Tuning the electrical transport properties of n-type CdS nanowires via Ga doping and their nano-optoelectronic applications. Phys. Chem. Chem. Phys. 13, 14663–14667 (2011)CrossRef
28.
Zurück zum Zitat R.N. Bhattacharya, CIGS-based solar cells prepared from electrodeposited stacked Cu/In/Ga layers. Sol. Energy Mater. Sol. Cells 113, 96–99 (2013)CrossRef R.N. Bhattacharya, CIGS-based solar cells prepared from electrodeposited stacked Cu/In/Ga layers. Sol. Energy Mater. Sol. Cells 113, 96–99 (2013)CrossRef
29.
Zurück zum Zitat J. Tao, L. Chen, H. Cao, C. Zhang, J. Liu, Y. Zhang, L. Huang, J. Jiang, P. Yang, J. Chu, Co-electrodeposited Cu2ZnSnS4 thin-film solar cells with over 7% efficiency fabricated via fine-tuning of the Zn content in absorber layers. J. Mater. Chem. A (2013). https://doi.org/10.1039/C5TA09636G J. Tao, L. Chen, H. Cao, C. Zhang, J. Liu, Y. Zhang, L. Huang, J. Jiang, P. Yang, J. Chu, Co-electrodeposited Cu2ZnSnS4 thin-film solar cells with over 7% efficiency fabricated via fine-tuning of the Zn content in absorber layers. J. Mater. Chem. A (2013). https://​doi.​org/​10.​1039/​C5TA09636G
30.
Zurück zum Zitat O.K. Echendu, U.S. Mbamara, K.B. Okeoma, C. Iroegbu, C.A. Madu, I.C. Ndukwe, I.M. Dharmadasa, Effects of deposition time and post-deposition annealing on the physical and chemical properties of electrodeposited CdS thin films for solar cell application. J. Mater. Sci.: Mater. Electron. 27, 10180–10191 (2016) O.K. Echendu, U.S. Mbamara, K.B. Okeoma, C. Iroegbu, C.A. Madu, I.C. Ndukwe, I.M. Dharmadasa, Effects of deposition time and post-deposition annealing on the physical and chemical properties of electrodeposited CdS thin films for solar cell application. J. Mater. Sci.: Mater. Electron. 27, 10180–10191 (2016)
31.
Zurück zum Zitat N.A. Abdul-Manaf, A.R. Weerasinghe, O.K. Echendu, I.M. Dharmadasa, Electro-plating and characterisation of cadmium sulphide thin films using ammonium thiosulphate as the sulphur source. J. Mater. Sci.: Mater. Electron. 26, 2418–2429 (2015) N.A. Abdul-Manaf, A.R. Weerasinghe, O.K. Echendu, I.M. Dharmadasa, Electro-plating and characterisation of cadmium sulphide thin films using ammonium thiosulphate as the sulphur source. J. Mater. Sci.: Mater. Electron. 26, 2418–2429 (2015)
32.
Zurück zum Zitat O.K. Echendu, S.Z. Werta, F.B. Dejene, V. Craciun, Electrochemical deposition and characterization of ZnOS thin films for photovoltaic and photocatalysis applications. J. Alloys Compd. 769, 201–209 (2018)CrossRef O.K. Echendu, S.Z. Werta, F.B. Dejene, V. Craciun, Electrochemical deposition and characterization of ZnOS thin films for photovoltaic and photocatalysis applications. J. Alloys Compd. 769, 201–209 (2018)CrossRef
33.
Zurück zum Zitat O.K. Echendu, S.Z. Werta, F.B. Dejene, K.O. Egbo, Structural, vibrational, optical, morphological and compositional properties of CdS films prepared by a low-cost electrochemical technique. J. Alloys Compd. 778, 197–203 (2019)CrossRef O.K. Echendu, S.Z. Werta, F.B. Dejene, K.O. Egbo, Structural, vibrational, optical, morphological and compositional properties of CdS films prepared by a low-cost electrochemical technique. J. Alloys Compd. 778, 197–203 (2019)CrossRef
34.
Zurück zum Zitat A.C.S. De Alwis, H.Y.R. Atapattu, D.S.M. De Silva, Influence of the type of conducting glass substrate on the properties of electrodeposited CdS and CdTe thin films. J. Mater. Sci.: Mater. Electron. 29(4), 12419–12428 (2018) A.C.S. De Alwis, H.Y.R. Atapattu, D.S.M. De Silva, Influence of the type of conducting glass substrate on the properties of electrodeposited CdS and CdTe thin films. J. Mater. Sci.: Mater. Electron. 29(4), 12419–12428 (2018)
35.
Zurück zum Zitat O.K. Echendu, F.B. Dejene, I.M. Dharmadasa, An investigation of the influence of different transparent conducting oxide substrates/front contacts on the performance of CdS/CdTe thin film solar cells. J. Mater. Sci.: Mater. Electron. 28, 18865–18872 (2017) O.K. Echendu, F.B. Dejene, I.M. Dharmadasa, An investigation of the influence of different transparent conducting oxide substrates/front contacts on the performance of CdS/CdTe thin film solar cells. J. Mater. Sci.: Mater. Electron. 28, 18865–18872 (2017)
36.
Zurück zum Zitat E. Burstein, Anomalous optical absorption limit in InSb. Phys. Rev. 93, 632–633 (1954)CrossRef E. Burstein, Anomalous optical absorption limit in InSb. Phys. Rev. 93, 632–633 (1954)CrossRef
37.
Zurück zum Zitat T.S. Moss, The interpretation of the properties of indium antimonide. Proc. Phys. Soc. B 67, 775 (1954)CrossRef T.S. Moss, The interpretation of the properties of indium antimonide. Proc. Phys. Soc. B 67, 775 (1954)CrossRef
38.
Zurück zum Zitat H. Jager, E. Seipp, Burstein-Moss shift in heavily In-doped evaporated CdS layers. J. Appl. Phys. 52(1), 425–427 (1981)CrossRef H. Jager, E. Seipp, Burstein-Moss shift in heavily In-doped evaporated CdS layers. J. Appl. Phys. 52(1), 425–427 (1981)CrossRef
39.
Zurück zum Zitat K.F. Berggren, B.E. Sernelius, Band-gap narrowing in heavily doped many-valley semiconductors. Phys. Rev. B 24(4), 1971–1986 (1981)CrossRef K.F. Berggren, B.E. Sernelius, Band-gap narrowing in heavily doped many-valley semiconductors. Phys. Rev. B 24(4), 1971–1986 (1981)CrossRef
Metadaten
Titel
Ga doping of nanocrystalline CdS thin films by electrodeposition method for solar cell application: the influence of dopant precursor concentration
verfasst von
O. K. Echendu
S. Z. Werta
F. B. Dejene
A. A. Ojo
I. M. Dharmadasa
Publikationsdatum
12.02.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 5/2019
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-00794-3

Weitere Artikel der Ausgabe 5/2019

Journal of Materials Science: Materials in Electronics 5/2019 Zur Ausgabe

Neuer Inhalt