Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

03.03.2018 | Sonderheft 6/2019

Cluster Computing 6/2019

Gabor wavelet multi-linear discriminant analysis for data extraction in ECG signals

Zeitschrift:
Cluster Computing > Sonderheft 6/2019
Autoren:
S. Velmurugan, A. Mahabub Basha, M. Vijayakumar

Abstract

Electrocardiogram (ECG) analysis is a common clinical cardiac examination for detecting the cardiac abnormalities. ECG signal has many components and features like P, QRS and T. The waveform with P, QRS and T components are used to identify the cardiac disease. But, the ECG signals are contaminated by the presence of many noise or artifacts. In addition, the data extraction and classification remained challenging issue in ECG signal analysis. In order to improve the data extraction rate and classification accuracy, Gabor Wavelet Multi-linear Discriminant based Data Extraction (GWMD-DE) technique is introduced. Initially in this technique, the preprocessing of ECG signal is carried out using median filter for removing the noise or artifacts. After performing the preprocessing tasks, Gabor Wavelet Transformation is used in GWMD-DE technique for extracting the P, T waves and QRS complex without any component loss from ECG signals resulting in higher data extraction rate. Finally, multi-linear discriminant analysis is performed in GWMD-DE technique for classifying the extracted data as P, T waves and QRS complex with higher classification accuracy. The performance of GWMD-DE technique is measured in terms of data extraction rate, classification accuracy, and execution time. The simulation results show that GWMD-DE technique is able to improve the performance of data extraction rate and also reduces the execution time of data extraction when compared to state-of-the-art works. Moreover, proposed GWMD-DE technique improves the classification accuracy and minimizes the signal-to-mean square error, computational complexity and space complexity when compared to existing methods, Symlets sym5 wavelet function and Hilbert transform based adaptive threshold technique (Lin et al., IRBM 35(6):351–361, 2014; Rodríguez et al., in IJART 13:261–269, 2015).

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Sonderheft 6/2019

Cluster Computing 6/2019 Zur Ausgabe

Premium Partner

    Bildnachweise