Skip to main content
Erschienen in: Wireless Networks 6/2020

22.05.2020

Game-theory-based lifetime maximization of multi-channel cooperative spectrum sensing in wireless sensor networks

verfasst von: Asma Bagheri, Ataollah Ebrahimzadeh, Maryam Najimi

Erschienen in: Wireless Networks | Ausgabe 6/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Accurate and efficient detection of the radio-frequency spectrum is a challenging issue in wireless sensor networks (WSNs), which are used for multi-channel cooperative spectrum sensing (MCSS). Due to the limited battery power of sensors, lifetime maximization of a WSN is an important issue further sensing quality requirements. The issue is more complex if the low-cost sensors cannot sense more than one channel simultaneously, because they do not have high-speed Analogue-to-Digital-Convertors which need high-power batteries. This paper proposes a novel game-theoretic sensor selection algorithm for MCSS that extends the network lifetime assuming the quality of sensing and the limited ability of sensors. To this end, an optimization problem is formulated using the “max–min” method, in which the minimum remaining energy of sensors is maximized to keep energy balancing in the WSN. This paper proposes a coalition game to solve the problem, in which sensors act as game players and decide to make disjoint coalitions for MCSS. Each coalition senses one of the channels. Other nodes, that decide to sense none of the channels, turn off their sensing module to reserve energy. First, a novel utility function for the coalitions is proposed based on the remaining energy and consumption energy of sensors besides their detection quality. Then, an algorithm is designed to reach a Nash-Equilibrium (NE) coalition structure. The existence of at least one NE, converging toward one of the NEs, and the computational complexity of the proposed algorithm are discussed. Finally, simulations are presented to demonstrate the ability of the proposed algorithm, assuming the systems using IEEE802.15.4/Zigbee and IEEE802.11af.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
This assumption does not have an effect on the proposed algorithm, and it can be extended to the other existing proper detectors, easily.
 
2
There are studies on the SNR estimation of nodes in spectrum sensing networks, but it is not the goal of this paper. Although the assumption seems unrealistic for some scenarios, it does not affect the proposed algorithm, and the algorithm steps can be done based on the average SNR or Packet Reception Ratio, similarly [26].
 
3
Detection based sensor selection.
 
Literatur
1.
Zurück zum Zitat Ali, A., & Hamouda, W. (2016). Advances on spectrum sensing for cognitive radio networks: Theory and applications. IEEE Communications Surveys & Tutorials,19(2), 1277–1304. Ali, A., & Hamouda, W. (2016). Advances on spectrum sensing for cognitive radio networks: Theory and applications. IEEE Communications Surveys & Tutorials,19(2), 1277–1304.
2.
Zurück zum Zitat Kobo, H., Abu-Mahfouz, A., & Hancke, G. (2017). A survey on software-defined wireless sensor networks: Challenges and design requirements. IEEE Access,5, 1872–1899. Kobo, H., Abu-Mahfouz, A., & Hancke, G. (2017). A survey on software-defined wireless sensor networks: Challenges and design requirements. IEEE Access,5, 1872–1899.
3.
Zurück zum Zitat Cichoń, K., Kliks, A., & Bogucka, H. (2016). Energy-efficient cooperative spectrum sensing: A survey. IEEE Communications Surveys & Tutorials,18(3), 1861–1886. Cichoń, K., Kliks, A., & Bogucka, H. (2016). Energy-efficient cooperative spectrum sensing: A survey. IEEE Communications Surveys & Tutorials,18(3), 1861–1886.
4.
Zurück zum Zitat Deng, R., Chen, J., Yuen, C., Cheng, P., & Sun, Y. (2012). Energy-efficient cooperative spectrum sensing by optimal scheduling in sensor-aided cognitive radio networks. IEEE Transactions on Vehicular Technology,61(2), 716–726. Deng, R., Chen, J., Yuen, C., Cheng, P., & Sun, Y. (2012). Energy-efficient cooperative spectrum sensing by optimal scheduling in sensor-aided cognitive radio networks. IEEE Transactions on Vehicular Technology,61(2), 716–726.
5.
Zurück zum Zitat Maleki, S., Chepuri, S., & Leus, G. (2013). Optimization of hard fusion based spectrum sensing for energy-constrained cognitive radio networks. Physical Communication,9, 193–198. Maleki, S., Chepuri, S., & Leus, G. (2013). Optimization of hard fusion based spectrum sensing for energy-constrained cognitive radio networks. Physical Communication,9, 193–198.
6.
Zurück zum Zitat Vien, Q.-T., Nguyen, H. X., & Nallanathan, A. (2015). Cooperative spectrum sensing with secondary user selection for cognitive radio networks over Nakagami-m fading channels. IET Communications,10(1), 91–97. Vien, Q.-T., Nguyen, H. X., & Nallanathan, A. (2015). Cooperative spectrum sensing with secondary user selection for cognitive radio networks over Nakagami-m fading channels. IET Communications,10(1), 91–97.
7.
Zurück zum Zitat Najimi, M., Ebrahimzadeh, A., Andargoli, S. M. H., & Fallahi, A. (2014). Lifetime maximization in cognitive sensor networks based on the node selection. IEEE sensors Journal,14(7), 2376–2383. Najimi, M., Ebrahimzadeh, A., Andargoli, S. M. H., & Fallahi, A. (2014). Lifetime maximization in cognitive sensor networks based on the node selection. IEEE sensors Journal,14(7), 2376–2383.
8.
Zurück zum Zitat Hattab, G. & Ibnkahla, M. (2014). Multiband spectrum sensing: Challenges and limitations. In Proc. WiSense workshop, Ottawa. Hattab, G. & Ibnkahla, M. (2014). Multiband spectrum sensing: Challenges and limitations. In Proc. WiSense workshop, Ottawa.
9.
Zurück zum Zitat Quan, Z., Cui, S., Sayed, A. H., & Poor, H. V. (2009). Optimal multiband joint detection for spectrum sensing in cognitive radio network. IEEE Transactions on Signal Processing,57(3), 1128–1140.MathSciNetMATH Quan, Z., Cui, S., Sayed, A. H., & Poor, H. V. (2009). Optimal multiband joint detection for spectrum sensing in cognitive radio network. IEEE Transactions on Signal Processing,57(3), 1128–1140.MathSciNetMATH
10.
Zurück zum Zitat Wu, Y., & Cardei, M. (2016). Multi-channel and cognitive radio approaches for wireless sensor networks. Computer Communications,94, 30–45. Wu, Y., & Cardei, M. (2016). Multi-channel and cognitive radio approaches for wireless sensor networks. Computer Communications,94, 30–45.
11.
Zurück zum Zitat Zheng, M., Chen, L., Liang, W., Yu, H., & Wu, J. (2017). Energy-efficiency maximization for cooperative spectrum sensing in cognitive sensor networks. IEEE Transactions on Green Communications and Networking,1(1), 29–39. Zheng, M., Chen, L., Liang, W., Yu, H., & Wu, J. (2017). Energy-efficiency maximization for cooperative spectrum sensing in cognitive sensor networks. IEEE Transactions on Green Communications and Networking,1(1), 29–39.
12.
Zurück zum Zitat Ozger, M., Alagoz, F., & Akan, O. (2018). Clustering in multi-channel cognitive radio ad hoc and sensor networks. IEEE Communications Magazine,56(4), 156–162. Ozger, M., Alagoz, F., & Akan, O. (2018). Clustering in multi-channel cognitive radio ad hoc and sensor networks. IEEE Communications Magazine,56(4), 156–162.
13.
Zurück zum Zitat Kaligineedi, P., & Bhargava, V. (2011). Sensor allocation and quantization schemes for multi-band cognitive radio cooperative sensing system. IEEE Transaction on Wireless Communications,10(1), 284–293. Kaligineedi, P., & Bhargava, V. (2011). Sensor allocation and quantization schemes for multi-band cognitive radio cooperative sensing system. IEEE Transaction on Wireless Communications,10(1), 284–293.
15.
Zurück zum Zitat Asheralieva, A., Quek, T., & Niyato, D. (2018). An asymmetric evolutionary bayesian coalition formation game for distributed resource sharing in a multi-cell device-to-device enabled cellular network. IEEE Transactions on Wireless Communications,17(6), 3752–3767. Asheralieva, A., Quek, T., & Niyato, D. (2018). An asymmetric evolutionary bayesian coalition formation game for distributed resource sharing in a multi-cell device-to-device enabled cellular network. IEEE Transactions on Wireless Communications,17(6), 3752–3767.
16.
Zurück zum Zitat Song, L., Li, Y., Ding, Z., & Poor, H. (2017). Resource management in non-orthogonal multiple access networks for 5G and beyond. IEEE Network,31(4), 8–14. Song, L., Li, Y., Ding, Z., & Poor, H. (2017). Resource management in non-orthogonal multiple access networks for 5G and beyond. IEEE Network,31(4), 8–14.
17.
Zurück zum Zitat Kim, S. (2014). Game theory applications in network design. Hershey: IGI Global. Kim, S. (2014). Game theory applications in network design. Hershey: IGI Global.
18.
Zurück zum Zitat Dai, Z., Wang, Z., & Wong, V. W. S. (2016). An overlapping coalitional game for cooperative spectrum sensing and access in cognitive radio networks. IEEE Transactions on Vehicular Technology,65(10), 8400–8413. Dai, Z., Wang, Z., & Wong, V. W. S. (2016). An overlapping coalitional game for cooperative spectrum sensing and access in cognitive radio networks. IEEE Transactions on Vehicular Technology,65(10), 8400–8413.
19.
Zurück zum Zitat Umar, R., & Mesbah, W. (2016). Coordinated coalition formation in throughput-efficient cognitive radio networks. Wireless Communications and Mobile Computing,16, 912–928. Umar, R., & Mesbah, W. (2016). Coordinated coalition formation in throughput-efficient cognitive radio networks. Wireless Communications and Mobile Computing,16, 912–928.
20.
Zurück zum Zitat Olawole, A., Takawira, F., & Oyerinde, O. (2019). Fusion rule and cluster head selection scheme in cooperative spectrum sensing. IET Communications,13(6), 758–765. Olawole, A., Takawira, F., & Oyerinde, O. (2019). Fusion rule and cluster head selection scheme in cooperative spectrum sensing. IET Communications,13(6), 758–765.
21.
Zurück zum Zitat Sasabe, M., Nishida, T., & Kasahara, S. (2019). Collaborative spectrum sensing mechanism based on user incentive in cognitive radio networks. Computer Communications,147, 1–13. Sasabe, M., Nishida, T., & Kasahara, S. (2019). Collaborative spectrum sensing mechanism based on user incentive in cognitive radio networks. Computer Communications,147, 1–13.
22.
Zurück zum Zitat Rajendran, M., & Duraisamy, M. (2019). Distributed coalition formation game for enhancing cooperative spectrum sensing in cognitive radio ad hoc networks. IET Networks,9(1), 12–22. Rajendran, M., & Duraisamy, M. (2019). Distributed coalition formation game for enhancing cooperative spectrum sensing in cognitive radio ad hoc networks. IET Networks,9(1), 12–22.
23.
Zurück zum Zitat Hao, X., Cheung, M., Wong, V., & Leung, V. (2011). A coalition formation game for energy-efficient cooperative spectrum sensing in cognitive radio networks with multiple channels. In GLOBECOM. Hao, X., Cheung, M., Wong, V., & Leung, V. (2011). A coalition formation game for energy-efficient cooperative spectrum sensing in cognitive radio networks with multiple channels. In GLOBECOM.
24.
Zurück zum Zitat Belghiti, I., Berrada, I., & El Kamili, M. (2019). A scalable framework for green large cognitive radio networks. Cognitive Computation and Systems,1(3), 79–84. Belghiti, I., Berrada, I., & El Kamili, M. (2019). A scalable framework for green large cognitive radio networks. Cognitive Computation and Systems,1(3), 79–84.
25.
Zurück zum Zitat Moualeu, J. M., Ngatched, T. M. N., Hamouda, W., & Takawira, F. (2014). Energy-efficient cooperative spectrum sensing and transmission in multi-channel cognitive radio networks. In IEEE international conference on communications (ICC), Sydney. Moualeu, J. M., Ngatched, T. M. N., Hamouda, W., & Takawira, F. (2014). Energy-efficient cooperative spectrum sensing and transmission in multi-channel cognitive radio networks. In IEEE international conference on communications (ICC), Sydney.
26.
Zurück zum Zitat Arora, N., & Mahajan, R. (2014). Cooperative spectrum sensing using hard decision fusion scheme. International Journal of Engineering Research and General Science,2(4), 36–43. Arora, N., & Mahajan, R. (2014). Cooperative spectrum sensing using hard decision fusion scheme. International Journal of Engineering Research and General Science,2(4), 36–43.
27.
Zurück zum Zitat Noori, M., & Ardakani, M. (2011). Lifetime analysis of random event-driven clustered wireless sensor networks. IEEE Transactions on Mobile Computing,10(10), 1448–1458. Noori, M., & Ardakani, M. (2011). Lifetime analysis of random event-driven clustered wireless sensor networks. IEEE Transactions on Mobile Computing,10(10), 1448–1458.
28.
Zurück zum Zitat Li, P., Gua, S., & Cheng, Z. (2014). Max-min lifetime optimization for cooperative communications in cognitive radio networks. IEEE Transactions on Parallel and Distributed Systems,25(6), 1533–1542. Li, P., Gua, S., & Cheng, Z. (2014). Max-min lifetime optimization for cooperative communications in cognitive radio networks. IEEE Transactions on Parallel and Distributed Systems,25(6), 1533–1542.
29.
Zurück zum Zitat Shapely, L. S. (1988). A value for n-person games. In A. E. Roth (Ed.), The shapely value (pp. 31–40). Cambridge: University of Cambridge Press. Shapely, L. S. (1988). A value for n-person games. In A. E. Roth (Ed.), The shapely value (pp. 31–40). Cambridge: University of Cambridge Press.
30.
Zurück zum Zitat Xu, Y., Wang, J., Wu, Q., Anpalagan, A., & Yao, Y. (2012). Opportunistic spectrum access in unknown dynamic environment: a game-theoretic stochastic learning solution. IEEE Transaction on Wireless Communications,11(4), 1380–1390. Xu, Y., Wang, J., Wu, Q., Anpalagan, A., & Yao, Y. (2012). Opportunistic spectrum access in unknown dynamic environment: a game-theoretic stochastic learning solution. IEEE Transaction on Wireless Communications,11(4), 1380–1390.
31.
Zurück zum Zitat Lã, Q. D., Chew, Y. H., & Soong, B.-H. (2016). Potential game theory: applications in radio resource allocation. Berlin: Springer.MATH Lã, Q. D., Chew, Y. H., & Soong, B.-H. (2016). Potential game theory: applications in radio resource allocation. Berlin: Springer.MATH
32.
Zurück zum Zitat Mardan, J., Arslan, G., & Shamma, J. S. (2009). Cooperative control and potential games. IEEE Transactions on Systems, Man and Cybernetics,39(6), 1393–1407. Mardan, J., Arslan, G., & Shamma, J. S. (2009). Cooperative control and potential games. IEEE Transactions on Systems, Man and Cybernetics,39(6), 1393–1407.
33.
Zurück zum Zitat Monderer, D., & Shapely, L. S. (1996). Potential games. Games and Economic Behavior,14, 124–143.MathSciNetMATH Monderer, D., & Shapely, L. S. (1996). Potential games. Games and Economic Behavior,14, 124–143.MathSciNetMATH
34.
Zurück zum Zitat Han, D., & Lim, J. H. (2010). Smart home energy management system. IEEE Transactions on Consumer Electronics,56(3), 1403–1410. Han, D., & Lim, J. H. (2010). Smart home energy management system. IEEE Transactions on Consumer Electronics,56(3), 1403–1410.
35.
Zurück zum Zitat Ismail, N., & Othman, M. (2009). Low power phase locked loop frequency synthesizer for 2.4 GHz band Zigbee. American Journal of Engineering and Applied Sciences,2(2), 337–343. Ismail, N., & Othman, M. (2009). Low power phase locked loop frequency synthesizer for 2.4 GHz band Zigbee. American Journal of Engineering and Applied Sciences,2(2), 337–343.
36.
Zurück zum Zitat Flores, A., Guerra, R., Knightly, E., Ecclesine, P., & Pandey, S. (2013). IEEE 802.11 af: A standard for TV white space spectrum sharing. IEEE Communications Magazine,51(10), 92–100. Flores, A., Guerra, R., Knightly, E., Ecclesine, P., & Pandey, S. (2013). IEEE 802.11 af: A standard for TV white space spectrum sharing. IEEE Communications Magazine,51(10), 92–100.
37.
Zurück zum Zitat Banerji S. (2013). Upcoming standards in wireless local area networks. Wireless & Mobile Technologies. arXiv preprint arXiv:1307.7633. Banerji S. (2013). Upcoming standards in wireless local area networks. Wireless & Mobile Technologies. arXiv preprint arXiv:​1307.​7633.
38.
Zurück zum Zitat Chiaravalloti, S., Idzikowski, F., & Budzisz, Ł. (2011). Power consumption of WLAN network elements. Berlin: Technische Universität Berlin. Chiaravalloti, S., Idzikowski, F., & Budzisz, Ł. (2011). Power consumption of WLAN network elements. Berlin: Technische Universität Berlin.
Metadaten
Titel
Game-theory-based lifetime maximization of multi-channel cooperative spectrum sensing in wireless sensor networks
verfasst von
Asma Bagheri
Ataollah Ebrahimzadeh
Maryam Najimi
Publikationsdatum
22.05.2020
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 6/2020
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-020-02369-1

Weitere Artikel der Ausgabe 6/2020

Wireless Networks 6/2020 Zur Ausgabe

Neuer Inhalt