Skip to main content

2017 | OriginalPaper | Buchkapitel

9. GaN Nanowall Network: Laser Assisted Molecular Beam Epitaxy Growth and Properties

verfasst von : M. Senthil Kumar, Sunil S. Kushvaha

Erschienen in: Recent Trends in Nanomaterials

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Low dimensional structures such as two-dimensional (2D) nanowalls, 1D nanorods or nanowires and 0-D quantum dots of semiconductors exhibit different mechanical, electrical and optical properties compared to their bulk counterpart. Despite the promising properties of 1D and 0-D GaN nanostructures, they require complicated and expensive process to handle them individually for fabrication of specific devices. Here, 2D nanowall network draws a special attention due to their continuity in lateral direction and porous surfaces for fruitful applications in the field of nitride based sensors and other nano-scale devices. Among various semiconducting materials, a great attention has been given to the wide, direct band gap III-nitride semiconductors because of their applications in high efficient full color-spectrum light emitting diodes (LEDs), high power electronics devices and ultra-violet photo-detectors among others. This chapter describes the growth of 2D GaN nanowall network on GaN template and sapphire (0001) substrates using laser assisted molecular beam epitaxy (LMBE) technique. The GaN nanowalls of different dimensions were grown by laser ablation of a high purity polycrystalline GaN target in the presence of active r.f. nitrogen plasma. The wall width and pore size were controlled by tuning the laser frequency in the range 10–40 Hz. The structural, optical and electronic properties of the GaN nanowalls were investigated using various characterization techniques such as high resolution X-ray diffraction, field emission scanning electron microscopy, Raman spectroscopy, Rutherford backscattering spectroscopy, photoluminescence and X-ray photoemission spectroscopy. Surface morphology studies exhibited a GaN nanowall network formation of wall width in the range 10–30 nm and pore sizes of 90–180 nm. The photoluminescence spectroscopy measurements showed the optical emission related to GaN nanowalls with a blue shift of about 100 meV from the bulk GaN emission for thinner GaN nanowalls of width <15 nm grown on both GaN template and sapphire (0001) substrates. The enhanced optical band gap of GaN nanowall network is the result of carrier confinement effect of two dimensional electrons when the wall width falls in range of Bohr exciton radius. The KOH wet-etching studies of homo-epitaxial GaN nanowalls confirmed the light emission from 2D GaN nanowall network structure due to quantum confinement.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S. Nakamura, T. Mukai, M. Senoh, Candela-class high-brightness InGaN/AlGaN double heterostructure blue light emitting diodes. Appl. Phys. Lett. 64, 1687 (1994)CrossRef S. Nakamura, T. Mukai, M. Senoh, Candela-class high-brightness InGaN/AlGaN double heterostructure blue light emitting diodes. Appl. Phys. Lett. 64, 1687 (1994)CrossRef
2.
Zurück zum Zitat S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, K. Chocho, Continuous-wave operation of InGaN/GaN/AlGaN based laser diodes grown on GaN substrates. Appl. Phys. Lett. 72, 2014 (1998)CrossRef S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, K. Chocho, Continuous-wave operation of InGaN/GaN/AlGaN based laser diodes grown on GaN substrates. Appl. Phys. Lett. 72, 2014 (1998)CrossRef
3.
Zurück zum Zitat F.A. Ponce, D.P. Bour, Nitride-based semiconductors for blue and green light-emitting devices. Nature 386, 351 (1997)CrossRef F.A. Ponce, D.P. Bour, Nitride-based semiconductors for blue and green light-emitting devices. Nature 386, 351 (1997)CrossRef
4.
Zurück zum Zitat S. Nakamura, G. Fasol, The Blue Laser Diode—GaN Based Light Emitters and Lasers (Springer, Berlin, 1997) S. Nakamura, G. Fasol, The Blue Laser Diode—GaN Based Light Emitters and Lasers (Springer, Berlin, 1997)
5.
Zurück zum Zitat S.C. Allen, A.J. Steck, A nearly ideal phosphor-converted white light emitting diode. Appl. Phys. Lett. 92, 143309 (2008)CrossRef S.C. Allen, A.J. Steck, A nearly ideal phosphor-converted white light emitting diode. Appl. Phys. Lett. 92, 143309 (2008)CrossRef
6.
Zurück zum Zitat J. Wu, When group-III nitrides go infrared: new properties and perspectives. J. Appl. Phys. 106, 011101 (2009)CrossRef J. Wu, When group-III nitrides go infrared: new properties and perspectives. J. Appl. Phys. 106, 011101 (2009)CrossRef
7.
Zurück zum Zitat H. Morkoc, Nitride Semiconductors and Devices (Springer, New York, 1999)CrossRef H. Morkoc, Nitride Semiconductors and Devices (Springer, New York, 1999)CrossRef
8.
Zurück zum Zitat O. Ambacher, Growth and applications of group III-nitrides. J. Phys. D Appl. Phys. 31, 2653 (1998)CrossRef O. Ambacher, Growth and applications of group III-nitrides. J. Phys. D Appl. Phys. 31, 2653 (1998)CrossRef
9.
Zurück zum Zitat M. Shur, B. Gelmont, M.A. Khan, Electron mobility in two-dimensional electron gas in AIGaN/GaN heterostructures and in bulk GaN. J. Electron. Mater. 25, 777 (1996)CrossRef M. Shur, B. Gelmont, M.A. Khan, Electron mobility in two-dimensional electron gas in AIGaN/GaN heterostructures and in bulk GaN. J. Electron. Mater. 25, 777 (1996)CrossRef
10.
Zurück zum Zitat T. Brazzini, M.A. Casbon, H. Sun, M.J. Uren, J. Lees, P.J. Tasker, H. Jung, H. Blanck, M. Kuball, Electroluminescence of hot electrons in AlGaN/GaN high-electron-mobility transistors under radio frequency operation. Appl. Phys. Lett. 106, 213502 (2015)CrossRef T. Brazzini, M.A. Casbon, H. Sun, M.J. Uren, J. Lees, P.J. Tasker, H. Jung, H. Blanck, M. Kuball, Electroluminescence of hot electrons in AlGaN/GaN high-electron-mobility transistors under radio frequency operation. Appl. Phys. Lett. 106, 213502 (2015)CrossRef
11.
Zurück zum Zitat H.-Y. Shin, S.K. Kwon, Y.I. Chang, M.J. Cho, K.H. Park, Reducing dislocation density in GaN films using a cone-shaped patterned sapphire substrate. J. Cryst. Growth 311, 4167 (2009)CrossRef H.-Y. Shin, S.K. Kwon, Y.I. Chang, M.J. Cho, K.H. Park, Reducing dislocation density in GaN films using a cone-shaped patterned sapphire substrate. J. Cryst. Growth 311, 4167 (2009)CrossRef
12.
Zurück zum Zitat V.E. Bougrov, M.A. Odnoblyudov, A.E. Romanov, T. Lang, O.V. Konstantinov, Threading dislocation density reduction in two-stage growth of GaN layers. Phys. Stat. Sol. (a) 203, R25 (2006) V.E. Bougrov, M.A. Odnoblyudov, A.E. Romanov, T. Lang, O.V. Konstantinov, Threading dislocation density reduction in two-stage growth of GaN layers. Phys. Stat. Sol. (a) 203, R25 (2006)
13.
Zurück zum Zitat X. Weng, J.D. Acord, A. Jain, E.C. Dickey, J.M. Redwing, Evolution of threading dislocation density and stress in GaN films grown on (111) Si substrates by metalorganic chemical vapor deposition. J. Electron. Mater. 36, 346 (2007)CrossRef X. Weng, J.D. Acord, A. Jain, E.C. Dickey, J.M. Redwing, Evolution of threading dislocation density and stress in GaN films grown on (111) Si substrates by metalorganic chemical vapor deposition. J. Electron. Mater. 36, 346 (2007)CrossRef
14.
Zurück zum Zitat K. Okamoto, S. Inoue, N. Matsuki, T.-W. Kim, J. Ohto, M. Oshima, H. Fujioka, A. Ishii, Epitaxial growth of GaN films grown on single crystal Fe substrates. Appl. Phys. Lett. 93, 251906 (2008)CrossRef K. Okamoto, S. Inoue, N. Matsuki, T.-W. Kim, J. Ohto, M. Oshima, H. Fujioka, A. Ishii, Epitaxial growth of GaN films grown on single crystal Fe substrates. Appl. Phys. Lett. 93, 251906 (2008)CrossRef
15.
Zurück zum Zitat A. Kobayashi, S. Kawano, K. Ueno, J. Ohta, H. Fujioka, H. Amani, S. Nagao, H. Horie, Growth of a-plane GaN on lattice-matched ZnO substrates using a room-temperature buffer layer. Appl. Phys. Lett. 91, 191905 (2007)CrossRef A. Kobayashi, S. Kawano, K. Ueno, J. Ohta, H. Fujioka, H. Amani, S. Nagao, H. Horie, Growth of a-plane GaN on lattice-matched ZnO substrates using a room-temperature buffer layer. Appl. Phys. Lett. 91, 191905 (2007)CrossRef
16.
Zurück zum Zitat K. Sakurada, A. Kobayashi, Y. Kawaguchi, J. Ohta, H. Fujioka, Low temperature epitaxial growth of GaN films on LiGaO2 substrates. Appl. Phys. Lett. 90, 211913 (2007)CrossRef K. Sakurada, A. Kobayashi, Y. Kawaguchi, J. Ohta, H. Fujioka, Low temperature epitaxial growth of GaN films on LiGaO2 substrates. Appl. Phys. Lett. 90, 211913 (2007)CrossRef
17.
Zurück zum Zitat Y. Kawaguchi, J. Ohta, A. Kobayashi, H. Fujioka, Room-temperature epitaxial growth of GaN on lattice-matched ZrB2 substrates by pulsed-laser deposition. Appl. Phys. Lett. 87, 221907 (2005)CrossRef Y. Kawaguchi, J. Ohta, A. Kobayashi, H. Fujioka, Room-temperature epitaxial growth of GaN on lattice-matched ZrB2 substrates by pulsed-laser deposition. Appl. Phys. Lett. 87, 221907 (2005)CrossRef
18.
Zurück zum Zitat R.D. Vispute, V. Talyansky, R.P. Sharma, S. Choopun, M. Downes, T. Venkatesan, K.A. Jones, A.A. Iliadis, M. Asif Khan, J.W. Yang, Growth of epitaxial GaN films by pulsed laser deposition. Appl. Phys. Lett. 71, 102 (1997)CrossRef R.D. Vispute, V. Talyansky, R.P. Sharma, S. Choopun, M. Downes, T. Venkatesan, K.A. Jones, A.A. Iliadis, M. Asif Khan, J.W. Yang, Growth of epitaxial GaN films by pulsed laser deposition. Appl. Phys. Lett. 71, 102 (1997)CrossRef
19.
Zurück zum Zitat M. Senthil Kumar, S.S. Kushvaha, K.K. Maurya, Low temperature growth of GaN epitaxial layers on sapphire (0001) by pulsed laser deposition using liquid Gallium target. Sci. Adv. Mater. 6, 1215 (2014) M. Senthil Kumar, S.S. Kushvaha, K.K. Maurya, Low temperature growth of GaN epitaxial layers on sapphire (0001) by pulsed laser deposition using liquid Gallium target. Sci. Adv. Mater. 6, 1215 (2014)
20.
Zurück zum Zitat S.S. Kushvaha, M. Senthil Kumar, K.K. Maurya, M.K. Dalai, N.D. Sharma, Highly c-axis oriented growth of GaN film on sapphire (0001) by laser molecular beam epitaxy using HVPE grown GaN bulk target. AIP Adv. 3, 092109 (2013)CrossRef S.S. Kushvaha, M. Senthil Kumar, K.K. Maurya, M.K. Dalai, N.D. Sharma, Highly c-axis oriented growth of GaN film on sapphire (0001) by laser molecular beam epitaxy using HVPE grown GaN bulk target. AIP Adv. 3, 092109 (2013)CrossRef
21.
Zurück zum Zitat M. Senthil Kumar, S.S. Kushvaha, K.K. Maurya, K. Saravanan, S. Ojha, High resolution X-ray diffraction and Rutherford backscattering spectroscopy studies on laser molecular beam epitaxy grown GaN layers on sapphire (0001). Adv. Sci. Lett. 20, 1406 (2014) M. Senthil Kumar, S.S. Kushvaha, K.K. Maurya, K. Saravanan, S. Ojha, High resolution X-ray diffraction and Rutherford backscattering spectroscopy studies on laser molecular beam epitaxy grown GaN layers on sapphire (0001). Adv. Sci. Lett. 20, 1406 (2014)
22.
Zurück zum Zitat S.S. Kushvaha, M. Senthil Kumar, M. Maheshwari, A.K. Shukla, P. Pal, K.K. Maurya, Structural and electronic properties of epitaxial GaN layer grown on sapphire (0001) using laser molecular beam epitaxy. Mater. Res. Express 1, 035903 (2014) S.S. Kushvaha, M. Senthil Kumar, M. Maheshwari, A.K. Shukla, P. Pal, K.K. Maurya, Structural and electronic properties of epitaxial GaN layer grown on sapphire (0001) using laser molecular beam epitaxy. Mater. Res. Express 1, 035903 (2014)
23.
Zurück zum Zitat M. Senthil Kumar, K.M.K. Srivatsa, S.S. Kushvaha, Detection of dislocation-related midgap levels in pulsed laser deposited GaN by photo-induced current transient spectroscopy. Phys. Stat. Sol. (b) 252, 800 (2015) M. Senthil Kumar, K.M.K. Srivatsa, S.S. Kushvaha, Detection of dislocation-related midgap levels in pulsed laser deposited GaN by photo-induced current transient spectroscopy. Phys. Stat. Sol. (b) 252, 800 (2015)
24.
Zurück zum Zitat S.S. Kushvaha, M. Senthil Kumar, B.S. Yadav, P.K. Tyagi, S. Ojha, K.K. Maurya, B.P. Singh, Influence of laser repetition rate on the structural and optical properties of GaN layers grown on sapphire (0001) by laser molecular beam epitaxy. Cryst. Eng. Comm. 18, 744 (2016)CrossRef S.S. Kushvaha, M. Senthil Kumar, B.S. Yadav, P.K. Tyagi, S. Ojha, K.K. Maurya, B.P. Singh, Influence of laser repetition rate on the structural and optical properties of GaN layers grown on sapphire (0001) by laser molecular beam epitaxy. Cryst. Eng. Comm. 18, 744 (2016)CrossRef
25.
Zurück zum Zitat Z. Zhong, F. Qian, D. Wang, C.M. Lieber, Synthesis of p-type gallium nitride nanowires for electronic and photonic nanodevices. Nano Lett. 3, 343 (2003)CrossRef Z. Zhong, F. Qian, D. Wang, C.M. Lieber, Synthesis of p-type gallium nitride nanowires for electronic and photonic nanodevices. Nano Lett. 3, 343 (2003)CrossRef
26.
Zurück zum Zitat Y. Huang, X. Duan, Y. Cui, C.M. Lieber, Gallium nitride nanowire nanodevices. Nano Lett. 2, 101 (2002)CrossRef Y. Huang, X. Duan, Y. Cui, C.M. Lieber, Gallium nitride nanowire nanodevices. Nano Lett. 2, 101 (2002)CrossRef
27.
Zurück zum Zitat A.T.M.G. Sarwar, S.D. Carnevale, F. Yang, T.F. Kent, J.J. Jamison, D.W. McComb, R.C. Myers, Semiconductor nanowire light-emitting diodes grown on metal: a direction toward large-scale fabrication of nanowire devices. Small 11, 5402 (2015)CrossRef A.T.M.G. Sarwar, S.D. Carnevale, F. Yang, T.F. Kent, J.J. Jamison, D.W. McComb, R.C. Myers, Semiconductor nanowire light-emitting diodes grown on metal: a direction toward large-scale fabrication of nanowire devices. Small 11, 5402 (2015)CrossRef
28.
Zurück zum Zitat Z. Mi, S. Zhao, S.Y. Woo, M. Bugnet, M. Djavid, X. Liu, J. Kang, X. Kong, W. Ji, H. Guo, Z. Liu, G.A. Botton, Molecular beam epitaxial growth and characterization of Al(Ga)N nanowire deep ultraviolet light emitting diodes and lasers. J. Phys. D Appl. Phys. 49, 364006 (2016)CrossRef Z. Mi, S. Zhao, S.Y. Woo, M. Bugnet, M. Djavid, X. Liu, J. Kang, X. Kong, W. Ji, H. Guo, Z. Liu, G.A. Botton, Molecular beam epitaxial growth and characterization of Al(Ga)N nanowire deep ultraviolet light emitting diodes and lasers. J. Phys. D Appl. Phys. 49, 364006 (2016)CrossRef
29.
Zurück zum Zitat R. Calarco, M. Marso, T. Richter, A.I. Aykanat, R. Meijers, A.V.T. Hart, T. Stoica, H. Lüth, Size-dependent photoconductivity in MBE-grown GaN-nanowires. Nano Lett. 5, 981 (2008)CrossRef R. Calarco, M. Marso, T. Richter, A.I. Aykanat, R. Meijers, A.V.T. Hart, T. Stoica, H. Lüth, Size-dependent photoconductivity in MBE-grown GaN-nanowires. Nano Lett. 5, 981 (2008)CrossRef
30.
Zurück zum Zitat H.P. Bhasker, V. Thakur, S.M. Shivaprasad, S. Dhar, Quantum coherence of electrons in random networks of c-axis oriented wedge-shaped GaN nanowalls grown by molecular beam epitaxy. J. Phys. D Appl. Phys. 48, 255302 (2015)CrossRef H.P. Bhasker, V. Thakur, S.M. Shivaprasad, S. Dhar, Quantum coherence of electrons in random networks of c-axis oriented wedge-shaped GaN nanowalls grown by molecular beam epitaxy. J. Phys. D Appl. Phys. 48, 255302 (2015)CrossRef
31.
Zurück zum Zitat H.P. Bhasker, V. Thakur, M. Kesaria, S.M. Shivaprasad, S. Dhar, Transport and optical properties of c-axis oriented wedge shaped GaN nanowall network grown by molecular beam epitaxy. AIP Conf. Proc. 1583, 252 (2014)CrossRef H.P. Bhasker, V. Thakur, M. Kesaria, S.M. Shivaprasad, S. Dhar, Transport and optical properties of c-axis oriented wedge shaped GaN nanowall network grown by molecular beam epitaxy. AIP Conf. Proc. 1583, 252 (2014)CrossRef
32.
Zurück zum Zitat C.-H. Lee, Y.-J. Kim, J. Lee, Y.J. Hong, J.-M. Jeon, M. Kim, S. Hong, G.-C. Yi, Scalable network electrical devices using ZnO nanowalls. Nanotechnology 22, 055205 (2011)CrossRef C.-H. Lee, Y.-J. Kim, J. Lee, Y.J. Hong, J.-M. Jeon, M. Kim, S. Hong, G.-C. Yi, Scalable network electrical devices using ZnO nanowalls. Nanotechnology 22, 055205 (2011)CrossRef
33.
Zurück zum Zitat B.Q. Cao, T. Matsumoto, M. Matsumoto, M. Higashihata, D. Nakamura, T. Okada, ZnO nanowalls grown with high-pressure PLD and their applications as field emitters and UV detectors. J. Phys. Chem. C 113, 10975 (2009)CrossRef B.Q. Cao, T. Matsumoto, M. Matsumoto, M. Higashihata, D. Nakamura, T. Okada, ZnO nanowalls grown with high-pressure PLD and their applications as field emitters and UV detectors. J. Phys. Chem. C 113, 10975 (2009)CrossRef
34.
Zurück zum Zitat A. Zhong, K. Hane, Growth of GaN nanowall network on Si (111) substrate by molecular beam epitaxy. Nanoscale Res. Lett. 7, 686 (2012)CrossRef A. Zhong, K. Hane, Growth of GaN nanowall network on Si (111) substrate by molecular beam epitaxy. Nanoscale Res. Lett. 7, 686 (2012)CrossRef
35.
Zurück zum Zitat D. Poppitz, A. Lotnyk, J.W. Gerlach, B. Rauschenbach, Microstructure of porous gallium nitride nanowall networks. Acta Mater. 65, 98 (2014)CrossRef D. Poppitz, A. Lotnyk, J.W. Gerlach, B. Rauschenbach, Microstructure of porous gallium nitride nanowall networks. Acta Mater. 65, 98 (2014)CrossRef
36.
Zurück zum Zitat S.S. Kushvaha, M. Senthil Kumar, A.K. Shukla, B.S. Yadav, D.K. Singh, M. Jewariya, S.R. Ragam, K.K. Maurya, Structural, optical and electronic properties of homoepitaxial GaN nanowalls grown on GaN template by laser molecular beam epitaxy. RSC Adv. 5, 87818 (2015) S.S. Kushvaha, M. Senthil Kumar, A.K. Shukla, B.S. Yadav, D.K. Singh, M. Jewariya, S.R. Ragam, K.K. Maurya, Structural, optical and electronic properties of homoepitaxial GaN nanowalls grown on GaN template by laser molecular beam epitaxy. RSC Adv. 5, 87818 (2015)
37.
Zurück zum Zitat E.J. Tarsa, B. Heying, X.H. Wu, P. Fini, S.P. DenBaars, J.S. Speck, Homoepitaxial growth of GaN under Ga-stable and N-stable conditions by plasma-assisted molecular beam epitaxy. J. Appl. Phys. 82, 5472 (1997)CrossRef E.J. Tarsa, B. Heying, X.H. Wu, P. Fini, S.P. DenBaars, J.S. Speck, Homoepitaxial growth of GaN under Ga-stable and N-stable conditions by plasma-assisted molecular beam epitaxy. J. Appl. Phys. 82, 5472 (1997)CrossRef
38.
Zurück zum Zitat B. Heying, R. Averbeck, L.F. Chen, E. Haus, H. Riechert, J.S. Speck, Control of GaN surface morphologies using plasma-assisted molecular beam epitaxy. J. Appl. Phys. 88, 1855 (2000)CrossRef B. Heying, R. Averbeck, L.F. Chen, E. Haus, H. Riechert, J.S. Speck, Control of GaN surface morphologies using plasma-assisted molecular beam epitaxy. J. Appl. Phys. 88, 1855 (2000)CrossRef
39.
Zurück zum Zitat M. Kesaria, S. Shetty, S.M. Shivaprasad, Evidence for dislocation induced spontaneous formation of GaN nanowalls and nanocolumns on bare C-plane sapphire. Cryst. Growth Des. 11, 4900 (2011)CrossRef M. Kesaria, S. Shetty, S.M. Shivaprasad, Evidence for dislocation induced spontaneous formation of GaN nanowalls and nanocolumns on bare C-plane sapphire. Cryst. Growth Des. 11, 4900 (2011)CrossRef
40.
Zurück zum Zitat A. Zhong, K. Hane, Characterization of GaN nanowall network and optical property of InGaN/GaN quantum wells by molecular beam epitaxy. Jpn. J. Appl. Phys. 52, 08JE13 (2013) A. Zhong, K. Hane, Characterization of GaN nanowall network and optical property of InGaN/GaN quantum wells by molecular beam epitaxy. Jpn. J. Appl. Phys. 52, 08JE13 (2013)
41.
Zurück zum Zitat V. Thakur, M. Kesaria, S.M. Shivaprasad, Enhanced band edge luminescence from stress and defect free GaN nanowall network morphology. Solid State Comm. 171, 8 (2013)CrossRef V. Thakur, M. Kesaria, S.M. Shivaprasad, Enhanced band edge luminescence from stress and defect free GaN nanowall network morphology. Solid State Comm. 171, 8 (2013)CrossRef
42.
Zurück zum Zitat M. Kesaria, S.M. Shivaprasad, Nitrogen flux induced GaN nanostructure nucleation at misfit dislocations on Al2O3 (0001). Appl. Phys. Lett. 99, 143105 (2011)CrossRef M. Kesaria, S.M. Shivaprasad, Nitrogen flux induced GaN nanostructure nucleation at misfit dislocations on Al2O3 (0001). Appl. Phys. Lett. 99, 143105 (2011)CrossRef
43.
Zurück zum Zitat K.A. Bertness, A. Roshko, L.M. Mansfield, T.E. Harvey, N.A. Sanford, Mechanism for spontaneous growth of GaN nanowires with molecular beam epitaxy. J. Cryst. Growth 310, 3154 (2008)CrossRef K.A. Bertness, A. Roshko, L.M. Mansfield, T.E. Harvey, N.A. Sanford, Mechanism for spontaneous growth of GaN nanowires with molecular beam epitaxy. J. Cryst. Growth 310, 3154 (2008)CrossRef
44.
Zurück zum Zitat Z.C. Feng, W. Wang, S.J. Chua, P.X. Zhang, K.P.J. Williams, G.D. Pitt, Raman scattering properties of GaN thin films grown on sapphire under visible and ultraviolet excitation. J. Raman Spectrosc. 32, 840 (2001)CrossRef Z.C. Feng, W. Wang, S.J. Chua, P.X. Zhang, K.P.J. Williams, G.D. Pitt, Raman scattering properties of GaN thin films grown on sapphire under visible and ultraviolet excitation. J. Raman Spectrosc. 32, 840 (2001)CrossRef
45.
Zurück zum Zitat A. Kasic, D. Gogova, H. Larsson, C. Hemmingsson, I. Ivanov, B. Monemar, C. Bundesmann, M. Schubert, Micro-Raman scattering profiling studies on HVPE-grown free-standing GaN. Phys. Stat. Sol. (a) 201, 2773 (2004) A. Kasic, D. Gogova, H. Larsson, C. Hemmingsson, I. Ivanov, B. Monemar, C. Bundesmann, M. Schubert, Micro-Raman scattering profiling studies on HVPE-grown free-standing GaN. Phys. Stat. Sol. (a) 201, 2773 (2004)
46.
Zurück zum Zitat V.Y. Davydov, Y.E. Kitaev, I.N. Goncharuk, A.N. Smirnov, J. Graul, O. Semchinova, D. Uffman, M.B. Smirnov, A.P. Mirgorodsky, R.A. Evarestov, Phonon dispersion and Raman scattering in hexagonal GaN and AlN. Phys. Rev. B 58, 12899 (1998)CrossRef V.Y. Davydov, Y.E. Kitaev, I.N. Goncharuk, A.N. Smirnov, J. Graul, O. Semchinova, D. Uffman, M.B. Smirnov, A.P. Mirgorodsky, R.A. Evarestov, Phonon dispersion and Raman scattering in hexagonal GaN and AlN. Phys. Rev. B 58, 12899 (1998)CrossRef
47.
Zurück zum Zitat M.A. Reshchikov, H. Morkoc, Luminescence properties of defects in GaN. J. Appl. Phys. 97, 061301 (2005)CrossRef M.A. Reshchikov, H. Morkoc, Luminescence properties of defects in GaN. J. Appl. Phys. 97, 061301 (2005)CrossRef
48.
Zurück zum Zitat M. Kesaria, S. Shetty, S.M. Shivaprasad, Spontaneous formation of GaN nanostructures by molecular beam epitaxy. J. Cryst. Growth 326, 191 (2011)CrossRef M. Kesaria, S. Shetty, S.M. Shivaprasad, Spontaneous formation of GaN nanostructures by molecular beam epitaxy. J. Cryst. Growth 326, 191 (2011)CrossRef
49.
Zurück zum Zitat H.P. Bhasker, S. Dhar, A. Sain, M. Kesaria, S.M. Shivaprasad, High electron mobility through the edge states in random networks of c-axis oriented wedge-shaped GaN nanowalls grown by molecular beam epitaxy. Appl. Phys. Lett. 101, 132109 (2012)CrossRef H.P. Bhasker, S. Dhar, A. Sain, M. Kesaria, S.M. Shivaprasad, High electron mobility through the edge states in random networks of c-axis oriented wedge-shaped GaN nanowalls grown by molecular beam epitaxy. Appl. Phys. Lett. 101, 132109 (2012)CrossRef
50.
Zurück zum Zitat C.C. Wu, D.S. Wuu, T.N. Chen, T.E. Yu, P.R. Lin, R.H. Horng, H.Y. Lai, Growth and characterization of epitaxial ZnO Nanowall networks using metal organic chemical vapor deposition. Jpn. J. Appl. Phys. 47, 746 (2008)CrossRef C.C. Wu, D.S. Wuu, T.N. Chen, T.E. Yu, P.R. Lin, R.H. Horng, H.Y. Lai, Growth and characterization of epitaxial ZnO Nanowall networks using metal organic chemical vapor deposition. Jpn. J. Appl. Phys. 47, 746 (2008)CrossRef
51.
Zurück zum Zitat B. Ha, S.H. Seo, J.H. Cho, C.S. Yoon, J. Yoo, G.C. Yi, C.Y. Park, C.J. Lee, Optical and field emission properties of thin single-crystalline GaN nanowires. J. Phys. Chem. B 109, 11095 (2005)CrossRef B. Ha, S.H. Seo, J.H. Cho, C.S. Yoon, J. Yoo, G.C. Yi, C.Y. Park, C.J. Lee, Optical and field emission properties of thin single-crystalline GaN nanowires. J. Phys. Chem. B 109, 11095 (2005)CrossRef
52.
Zurück zum Zitat M.R. Coan, J.H. Woo, D. Johnson, I.R. Gatabi, H.R. Harris, Band offset measurements of the GaN/dielectric interfaces. J. Appl. Phys. 112, 024508 (2012)CrossRef M.R. Coan, J.H. Woo, D. Johnson, I.R. Gatabi, H.R. Harris, Band offset measurements of the GaN/dielectric interfaces. J. Appl. Phys. 112, 024508 (2012)CrossRef
53.
Zurück zum Zitat D. Li, M. Sumiya, S. Fuke, D. Yang, D. Que, Y. Suzuki, Y. Fukuda, Selective etching of GaN polar surface in potassium hydroxide solution studied by X-ray photoelectron spectroscopy. J. Appl. Phys. 90, 4219 (2001)CrossRef D. Li, M. Sumiya, S. Fuke, D. Yang, D. Que, Y. Suzuki, Y. Fukuda, Selective etching of GaN polar surface in potassium hydroxide solution studied by X-ray photoelectron spectroscopy. J. Appl. Phys. 90, 4219 (2001)CrossRef
54.
Zurück zum Zitat S.D. Wolter, B.P. Luther, D.L. Waltemyer, C. Önneby, S.E. Mohney, R.J. Molnar, X-ray photoelectron spectroscopy and X-ray diffraction study of the thermal oxide on gallium nitride. Appl. Phys. Lett. 70, 2156 (1997)CrossRef S.D. Wolter, B.P. Luther, D.L. Waltemyer, C. Önneby, S.E. Mohney, R.J. Molnar, X-ray photoelectron spectroscopy and X-ray diffraction study of the thermal oxide on gallium nitride. Appl. Phys. Lett. 70, 2156 (1997)CrossRef
55.
Zurück zum Zitat M. Petravic, V.A. Coleman, K.J. Kim, B. Kim, G. Li, Defect acceptor and donor in ion-bombarded GaN. J. Vac. Sci. Technol. A 23, 1340 (2005)CrossRef M. Petravic, V.A. Coleman, K.J. Kim, B. Kim, G. Li, Defect acceptor and donor in ion-bombarded GaN. J. Vac. Sci. Technol. A 23, 1340 (2005)CrossRef
56.
Zurück zum Zitat Y.-J. Lin, C.-D. Tsai, Y.-T. Lyu, C.-T. Lee, X-ray photoelectron spectroscopy study of (NH4)2Sx-treated Mg-doped GaN layers. Appl. Phys. Lett. 77, 687 (2000)CrossRef Y.-J. Lin, C.-D. Tsai, Y.-T. Lyu, C.-T. Lee, X-ray photoelectron spectroscopy study of (NH4)2Sx-treated Mg-doped GaN layers. Appl. Phys. Lett. 77, 687 (2000)CrossRef
57.
Zurück zum Zitat J.J. Yeh, I. Lindau, Atomic subshell photoionization cross sections and asymmetry parameters: 1 ≤ Z ≤ 103. At. Data Nucl. Data Tables 32, 1 (1985)CrossRef J.J. Yeh, I. Lindau, Atomic subshell photoionization cross sections and asymmetry parameters: 1 ≤ Z ≤ 103. At. Data Nucl. Data Tables 32, 1 (1985)CrossRef
58.
Zurück zum Zitat S. Tanuma, C.J. Powell, D.R. Penn, Calculations of electron inelastic mean free paths. V. data for 14 organic compounds over the 50–2000 eV range. Surf. Interface Anal. 21, 165 (1993)CrossRef S. Tanuma, C.J. Powell, D.R. Penn, Calculations of electron inelastic mean free paths. V. data for 14 organic compounds over the 50–2000 eV range. Surf. Interface Anal. 21, 165 (1993)CrossRef
59.
Zurück zum Zitat G. Koblmüller, J. Brown, R. Averbeck, H. Riechert, P. Pongratz, J.S. Speck, Continuous evolution of Ga adlayer coverages during plasma-assisted molecular-beam epitaxy of (0001) GaN. Appl. Phys. Lett. 86, 041908 (2005)CrossRef G. Koblmüller, J. Brown, R. Averbeck, H. Riechert, P. Pongratz, J.S. Speck, Continuous evolution of Ga adlayer coverages during plasma-assisted molecular-beam epitaxy of (0001) GaN. Appl. Phys. Lett. 86, 041908 (2005)CrossRef
60.
Zurück zum Zitat S.H. Xu, H. Wu, X.Q. Dai, W.P. Lau, L.X. Zheng, M.H. Xie, S.Y. Tong, Direct observation of a Ga adlayer on a GaN (0001) surface by LEED Patterson inversion. Phys. Rev. B 67, 125409 (2003)CrossRef S.H. Xu, H. Wu, X.Q. Dai, W.P. Lau, L.X. Zheng, M.H. Xie, S.Y. Tong, Direct observation of a Ga adlayer on a GaN (0001) surface by LEED Patterson inversion. Phys. Rev. B 67, 125409 (2003)CrossRef
61.
Zurück zum Zitat A.R. Smith, R.M. Feenstra, D.W. Greve, J. Neugebauer, J.E. Northrup, Reconstructions of the GaN(000-1) Surface. Phys. Rev. Lett. 79, 3934 (1997)CrossRef A.R. Smith, R.M. Feenstra, D.W. Greve, J. Neugebauer, J.E. Northrup, Reconstructions of the GaN(000-1) Surface. Phys. Rev. Lett. 79, 3934 (1997)CrossRef
62.
Zurück zum Zitat W. Lei, D. Liu, J. Zhang, B. Liu, P. Zhu, T. Cui, Q. Cui, G. Zou, AlN nanostructures: tunable architectures and optical properties. Chem. Comm. 1365 (2009) W. Lei, D. Liu, J. Zhang, B. Liu, P. Zhu, T. Cui, Q. Cui, G. Zou, AlN nanostructures: tunable architectures and optical properties. Chem. Comm. 1365 (2009)
63.
Zurück zum Zitat K.A. Rickert, A.B. Ellis, F.J. Himpsel, J. Sun, T.F. Kuech, N–GaN surface treatments for metal contacts studied via X-ray photoemission spectroscopy. Appl. Phys. Lett. 80, 204 (2002)CrossRef K.A. Rickert, A.B. Ellis, F.J. Himpsel, J. Sun, T.F. Kuech, N–GaN surface treatments for metal contacts studied via X-ray photoemission spectroscopy. Appl. Phys. Lett. 80, 204 (2002)CrossRef
64.
Zurück zum Zitat H.W. Jang, J.L. Lee, Origin of the abnormal behavior of contact resistance in ohmic contacts to laser-irradiated n-type GaN. Appl. Phys. Lett. 94, 182108 (2009)CrossRef H.W. Jang, J.L. Lee, Origin of the abnormal behavior of contact resistance in ohmic contacts to laser-irradiated n-type GaN. Appl. Phys. Lett. 94, 182108 (2009)CrossRef
65.
Zurück zum Zitat T. Hashizume, R. Nakasaki, Discrete surface state related to nitrogen-vacancy defect on plasma-treated GaN surfaces. Appl. Phys. Lett. 80, 4564 (2002)CrossRef T. Hashizume, R. Nakasaki, Discrete surface state related to nitrogen-vacancy defect on plasma-treated GaN surfaces. Appl. Phys. Lett. 80, 4564 (2002)CrossRef
66.
Zurück zum Zitat Y.J. Lin, Y.L. Chu, Effect of reactive ion etching-induced defects on the surface band bending of heavily Mg-doped p-type GaN. J. Appl. Phys. 97, 104904 (2005)CrossRef Y.J. Lin, Y.L. Chu, Effect of reactive ion etching-induced defects on the surface band bending of heavily Mg-doped p-type GaN. J. Appl. Phys. 97, 104904 (2005)CrossRef
67.
Zurück zum Zitat M.G. Ganchenkova, R.M. Nieminen, Nitrogen vacancies as major point defects in gallium nitride. Phys. Rev. Lett. 96, 196402 (2006)CrossRef M.G. Ganchenkova, R.M. Nieminen, Nitrogen vacancies as major point defects in gallium nitride. Phys. Rev. Lett. 96, 196402 (2006)CrossRef
68.
Zurück zum Zitat D.J. Carter, M. Fuchs, C. Stampfl, Vacancies in GaN bulk and nanowires: effect of self-interaction corrections. J. Phys. Condens. Matter 24, 255801 (2012)CrossRef D.J. Carter, M. Fuchs, C. Stampfl, Vacancies in GaN bulk and nanowires: effect of self-interaction corrections. J. Phys. Condens. Matter 24, 255801 (2012)CrossRef
69.
Zurück zum Zitat F. Gao, E.J. Bylaska, A. El-Azab, W.J. Webber, Wannier orbitals and bonding properties of interstitial and antisite defects in GaN. Appl. Phys. Lett. 85, 5565 (2004)CrossRef F. Gao, E.J. Bylaska, A. El-Azab, W.J. Webber, Wannier orbitals and bonding properties of interstitial and antisite defects in GaN. Appl. Phys. Lett. 85, 5565 (2004)CrossRef
70.
Zurück zum Zitat W.R.L. Lambrecht, B. Segall, S. Strite, G. Martin, A. Agarwal, H. Morkoc, A. Rockett, X-ray photoelectron spectroscopy and theory of the valence band and semicore Ga 3d states in GaN. Phys. Rev. B 50, 14155 (1994)CrossRef W.R.L. Lambrecht, B. Segall, S. Strite, G. Martin, A. Agarwal, H. Morkoc, A. Rockett, X-ray photoelectron spectroscopy and theory of the valence band and semicore Ga 3d states in GaN. Phys. Rev. B 50, 14155 (1994)CrossRef
71.
Zurück zum Zitat P. Lorenz, T. Haensel, R. Gutt, R.J. Koch, J.A. Schaefer, S. Krischok, Analysis of polar GaN surfaces with photoelectron and high resolution electron energy loss spectroscopy. Phys. Stat. Sol. (b) 247, 1658 (2010) P. Lorenz, T. Haensel, R. Gutt, R.J. Koch, J.A. Schaefer, S. Krischok, Analysis of polar GaN surfaces with photoelectron and high resolution electron energy loss spectroscopy. Phys. Stat. Sol. (b) 247, 1658 (2010)
72.
Zurück zum Zitat D. Skuridina, D.V. Dinh, B. Lacroix, P. Ruterana, M. Hoffmann, Z. Sitar, M. Pristovsek, M. Kneissl, P. Vogt, Polarity determination of polar and semipolar (11-22) InN and GaN layers by valence band photoemission spectroscopy. J. Appl. Phys. 114, 173503 (2013)CrossRef D. Skuridina, D.V. Dinh, B. Lacroix, P. Ruterana, M. Hoffmann, Z. Sitar, M. Pristovsek, M. Kneissl, P. Vogt, Polarity determination of polar and semipolar (11-22) InN and GaN layers by valence band photoemission spectroscopy. J. Appl. Phys. 114, 173503 (2013)CrossRef
73.
Zurück zum Zitat M.A. Garcia, S.D. Wolter, T.-H. Kim, S. Choi, J. Baier, A. Brown, M. Losurdo, G. Bruno, Surface oxide relationships to band bending in GaN. Appl. Phys. Lett. 88, 013506 (2006)CrossRef M.A. Garcia, S.D. Wolter, T.-H. Kim, S. Choi, J. Baier, A. Brown, M. Losurdo, G. Bruno, Surface oxide relationships to band bending in GaN. Appl. Phys. Lett. 88, 013506 (2006)CrossRef
74.
Zurück zum Zitat S.S. Kushvaha, M. Senthil Kumar, Advances in Nanomaterials (Springer, India, 2016) S.S. Kushvaha, M. Senthil Kumar, Advances in Nanomaterials (Springer, India, 2016)
75.
Zurück zum Zitat S. Siddhanta, V. Thakur, C. Narayana, S.M. Shivaprasad, Universal metal-semiconductor hybrid nanostructured SERS substrate for biosensing. ACS Appl. Mater. Interfaces. 4, 5807 (2012)CrossRef S. Siddhanta, V. Thakur, C. Narayana, S.M. Shivaprasad, Universal metal-semiconductor hybrid nanostructured SERS substrate for biosensing. ACS Appl. Mater. Interfaces. 4, 5807 (2012)CrossRef
Metadaten
Titel
GaN Nanowall Network: Laser Assisted Molecular Beam Epitaxy Growth and Properties
verfasst von
M. Senthil Kumar
Sunil S. Kushvaha
Copyright-Jahr
2017
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-3842-6_9

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.