Skip to main content
Erschienen in: Adsorption 6/2017

16.06.2017

Gas adsorption effect on the graphene nanoribbon band structure and quantum capacitance

verfasst von: Ali H. Pourasl, Mohammad Taghi Ahmadi, Razali Ismail, Niayesh Gharaei

Erschienen in: Adsorption | Ausgabe 6/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Graphene nanoribbons (GNRs) as a quasi-one dimensional (1D) narrow strip of graphene hold great potential for applications in variety of sensors because of π-bonds that can react with chemical elements. Despite outstanding properties, graphene nanoribbons have not fully exploited for variety of application in nanoelectronic and nanosensors due to poor understanding of their physical, electrical properties and basic limitations on the synthesis. Therefore, in order to achieve analytical understanding on the interaction of the gas molecules with GNR surface and gas sensing mechanism, a theoretical method using tight binding model based on nearest neighbour approximation is developed in this study. Additionally, the adsorption effects of NO2 and CO2 gas molecules on the band structure and electrical properties of the GNRFET based gas sensor are investigated. Based on the proposed model numerical simulation is carried out which emphasizes the significant effect of the gas adsorption on the band structure and electrical properties of GNRs. On the other hand, quantum capacitance created between metal gate and channel as a sensing parameter is considered and its variations when GNR exposed to the NO2 and CO2 molecules are analytically modelled. Moreover, the adsorption energy and charge transfer occurred during gas molecules interaction with GNR surface are calculated. Also band structure and I–V characteristics are analysed using first principle calculation based on density functional theory. The current–voltage analysis clearly indicates the changes of the quantum capacitance when exposed to the gas molecules. The results of the proposed model are compared with the available experimental data or data obtained by density functional theory (DFT) calculations and good agreements are observed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abadi, H.K.F., Yusof, R., Naghib, S.D., Ahmadi, M.T., Rahmani, M., Kiani, M.J., Ghadiri, M.: Semi analytical modeling of quantum capacitance of graphene-based ion sensitive field effect transistor. J. Comput. Theor. Nanosci. 11(3), 596–600 (2014)CrossRef Abadi, H.K.F., Yusof, R., Naghib, S.D., Ahmadi, M.T., Rahmani, M., Kiani, M.J., Ghadiri, M.: Semi analytical modeling of quantum capacitance of graphene-based ion sensitive field effect transistor. J. Comput. Theor. Nanosci. 11(3), 596–600 (2014)CrossRef
Zurück zum Zitat Akbari, E., Buntat, Z., Afroozeh, A., Pourmand, S.E., Farhang, Y., Sanati, P.: Silicene and graphene nano materials in gas sensing mechanism. RSC Adv. 6(85), 81647–81653 (2016a)CrossRef Akbari, E., Buntat, Z., Afroozeh, A., Pourmand, S.E., Farhang, Y., Sanati, P.: Silicene and graphene nano materials in gas sensing mechanism. RSC Adv. 6(85), 81647–81653 (2016a)CrossRef
Zurück zum Zitat Akbari, E., Enzevaee, A., Karimi, H., Ahmadi, M.T., Buntat, Z.: Graphene-based gas sensor theoretical framework. In: Ahmadi, M.T., Ismail, R., Anwar, S. (eds.) Handbook of Research on Nanoelectronic Sensor Modeling and Applications, pp. 117–149. IGI Global, US (2016b) Akbari, E., Enzevaee, A., Karimi, H., Ahmadi, M.T., Buntat, Z.: Graphene-based gas sensor theoretical framework. In: Ahmadi, M.T., Ismail, R., Anwar, S. (eds.) Handbook of Research on Nanoelectronic Sensor Modeling and Applications, pp. 117–149. IGI Global, US (2016b)
Zurück zum Zitat Akbari, E., Yusof, R., Ahmadi, M.T., Enzevaee, A., Rahmani, M.: Analytical assessment of carbon nanomaterial performance for gas sensor applications. Measurement. 92, 295–302 (2016c)CrossRef Akbari, E., Yusof, R., Ahmadi, M.T., Enzevaee, A., Rahmani, M.: Analytical assessment of carbon nanomaterial performance for gas sensor applications. Measurement. 92, 295–302 (2016c)CrossRef
Zurück zum Zitat Amin, N.A., Ahmadi, M.T., Ismail, R.: Graphene nanoribbon field effect transistors. In: Ismail, R., Ahmadi, M.T., Anwar, S. (eds.) Advanced nanoelectronics, pp. 165–178. CRC Press, US (2012) Amin, N.A., Ahmadi, M.T., Ismail, R.: Graphene nanoribbon field effect transistors. In: Ismail, R., Ahmadi, M.T., Anwar, S. (eds.) Advanced nanoelectronics, pp. 165–178. CRC Press, US (2012)
Zurück zum Zitat Andzelm, J., Govind, N., Maiti, A.: Nanotube-based gas sensors–role of structural defects. Chem. Phys. Lett. 421(1), 58–62 (2006)CrossRef Andzelm, J., Govind, N., Maiti, A.: Nanotube-based gas sensors–role of structural defects. Chem. Phys. Lett. 421(1), 58–62 (2006)CrossRef
Zurück zum Zitat Aydin, M., Akins D.: (2011). Geometric and spectroscopic properties of carbon nanotubes and boron nitride nanotubes, INTECH Open Access Publisher, RijekaCrossRef Aydin, M., Akins D.: (2011). Geometric and spectroscopic properties of carbon nanotubes and boron nitride nanotubes, INTECH Open Access Publisher, RijekaCrossRef
Zurück zum Zitat Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., Lau, C.N.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902–907 (2008)CrossRef Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., Lau, C.N.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902–907 (2008)CrossRef
Zurück zum Zitat Berashevich, J., Chakraborty, T.: Tunable band gap and magnetic ordering by adsorption of molecules on graphene. Phys. Rev. B. 80(3), 033404 (2009)CrossRef Berashevich, J., Chakraborty, T.: Tunable band gap and magnetic ordering by adsorption of molecules on graphene. Phys. Rev. B. 80(3), 033404 (2009)CrossRef
Zurück zum Zitat Bresciani, M., Palestri, P., Esseni, D., Selmi, L.: Simple and efficient modeling of the E–k relationship and low-field mobility in graphene nano-ribbons. Solid State Electron. 54(9), 1015–1021 (2010)CrossRef Bresciani, M., Palestri, P., Esseni, D., Selmi, L.: Simple and efficient modeling of the E–k relationship and low-field mobility in graphene nano-ribbons. Solid State Electron. 54(9), 1015–1021 (2010)CrossRef
Zurück zum Zitat Craciun, M., Russo, S., Yamamoto, M., Tarucha, S.: (2011). Tuneable electronic properties in graphene. Nano Today 6(1), 42–60CrossRef Craciun, M., Russo, S., Yamamoto, M., Tarucha, S.: (2011). Tuneable electronic properties in graphene. Nano Today 6(1), 42–60CrossRef
Zurück zum Zitat Datta, S.: (2005). Quantum Transport: Atom to Transistor, Cambridge University Press, CambridgeCrossRef Datta, S.: (2005). Quantum Transport: Atom to Transistor, Cambridge University Press, CambridgeCrossRef
Zurück zum Zitat Dingle, R.B., Dingle R.: (1973). Asymptotic Expansions: Their Derivation and Interpretation, Academic Press, London Dingle, R.B., Dingle R.: (1973). Asymptotic Expansions: Their Derivation and Interpretation, Academic Press, London
Zurück zum Zitat DiVincenzo, D., Mele, E.: Self-consistent effective-mass theory for intralayer screening in graphite intercalation compounds. Phys. Rev. B. 29(4), 1685 (1984)CrossRef DiVincenzo, D., Mele, E.: Self-consistent effective-mass theory for intralayer screening in graphite intercalation compounds. Phys. Rev. B. 29(4), 1685 (1984)CrossRef
Zurück zum Zitat Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6(3), 183–191 (2007)CrossRef Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6(3), 183–191 (2007)CrossRef
Zurück zum Zitat Guinea, F., Neto, A.C., Peres, N.: Electronic states and Landau levels in graphene stacks. Phys. Rev. B. 73(24), 245426 (2006)CrossRef Guinea, F., Neto, A.C., Peres, N.: Electronic states and Landau levels in graphene stacks. Phys. Rev. B. 73(24), 245426 (2006)CrossRef
Zurück zum Zitat He, Q., Wu, S., Yin, Z., Zhang, H.: Graphene-based electronic sensors. Chem. Sci. 3(6), 1764–1772 (2012)CrossRef He, Q., Wu, S., Yin, Z., Zhang, H.: Graphene-based electronic sensors. Chem. Sci. 3(6), 1764–1772 (2012)CrossRef
Zurück zum Zitat Ho, K.-I., Liao, J.-H., Huang, C.-H., Su, C.-Y., Lai, C.-S.: (2013). Electrical probing of multi-ions solution by using graphene-based sensor. 2013 IEEE 5th International Nanoelectronics Conference (INEC) Ho, K.-I., Liao, J.-H., Huang, C.-H., Su, C.-Y., Lai, C.-S.: (2013). Electrical probing of multi-ions solution by using graphene-based sensor. 2013 IEEE 5th International Nanoelectronics Conference (INEC)
Zurück zum Zitat Huang, Y., Chang, C., Lin, M.-F.: Magnetic and quantum confinement effects on electronic and optical properties of graphene ribbons. Nanotechnology. 18(49), 495401 (2007)CrossRef Huang, Y., Chang, C., Lin, M.-F.: Magnetic and quantum confinement effects on electronic and optical properties of graphene ribbons. Nanotechnology. 18(49), 495401 (2007)CrossRef
Zurück zum Zitat Huang, B., Li, Z., Liu, Z., Zhou, G., Hao, S., Wu, J., Gu, B.-L., Duan, W.: Adsorption of gas molecules on graphene nanoribbons and its implication for nanoscale molecule sensor. J. Phys. Chem. C. 112(35), 13442–13446 (2008)CrossRef Huang, B., Li, Z., Liu, Z., Zhou, G., Hao, S., Wu, J., Gu, B.-L., Duan, W.: Adsorption of gas molecules on graphene nanoribbons and its implication for nanoscale molecule sensor. J. Phys. Chem. C. 112(35), 13442–13446 (2008)CrossRef
Zurück zum Zitat Karimi, H., Rahmani, R., Mashayekhi, R., Ranjbari, L., Shirdel, A. H., Haghighian, N., Movahedi, P., Hadiyan, M., Ismail, R.: Analytical development and optimization of a graphene–solution interface capacitance model. Beilstein J. Nanotechnol. 5(1), 603–609 (2014)CrossRef Karimi, H., Rahmani, R., Mashayekhi, R., Ranjbari, L., Shirdel, A. H., Haghighian, N., Movahedi, P., Hadiyan, M., Ismail, R.: Analytical development and optimization of a graphene–solution interface capacitance model. Beilstein J. Nanotechnol. 5(1), 603–609 (2014)CrossRef
Zurück zum Zitat Kažukauskas, V., Kalendra, V., Bumby, C., Ludbrook, B., Kaiser, A.: Electrical conductivity of carbon nanotubes and polystyrene composites. Phys. Status Solidi (c). 5(9), 3172–3174 (2008)CrossRef Kažukauskas, V., Kalendra, V., Bumby, C., Ludbrook, B., Kaiser, A.: Electrical conductivity of carbon nanotubes and polystyrene composites. Phys. Status Solidi (c). 5(9), 3172–3174 (2008)CrossRef
Zurück zum Zitat Kim, K.S., Walter, A.L., Moreschini, L., Seyller, T., Horn, K., Rotenberg, E., Bostwick, A.: Coexisting massive and massless Dirac fermions in symmetry-broken bilayer graphene. Nat. Mater. 12(10), 887–892 (2013)CrossRef Kim, K.S., Walter, A.L., Moreschini, L., Seyller, T., Horn, K., Rotenberg, E., Bostwick, A.: Coexisting massive and massless Dirac fermions in symmetry-broken bilayer graphene. Nat. Mater. 12(10), 887–892 (2013)CrossRef
Zurück zum Zitat Kong, J., Franklin, N.R., Zhou, C., Chapline, M.G., Peng, S., Cho, K., Dai, H.: Nanotube molecular wires as chemical sensors. Science. 287(5453), 622–625 (2000)CrossRef Kong, J., Franklin, N.R., Zhou, C., Chapline, M.G., Peng, S., Cho, K., Dai, H.: Nanotube molecular wires as chemical sensors. Science. 287(5453), 622–625 (2000)CrossRef
Zurück zum Zitat Koshino, M., McCann, E.: Parity and valley degeneracy in multilayer graphene. Phys. Rev. B. 81(11), 115315 (2010)CrossRef Koshino, M., McCann, E.: Parity and valley degeneracy in multilayer graphene. Phys. Rev. B. 81(11), 115315 (2010)CrossRef
Zurück zum Zitat Lee, C., Wei, X., Kysar, J.W., Hone, J. (2008). Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–388CrossRef Lee, C., Wei, X., Kysar, J.W., Hone, J. (2008). Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–388CrossRef
Zurück zum Zitat Leenaerts, O., Partoens, B., Peeters, F.M.: Adsorption of H(2)O, NH(3), CO, NO(2), and NO on graphene, A first-principles study. Phys. Rev. B. 77(12), 125416 (2008)CrossRef Leenaerts, O., Partoens, B., Peeters, F.M.: Adsorption of H(2)O, NH(3), CO, NO(2), and NO on graphene, A first-principles study. Phys. Rev. B. 77(12), 125416 (2008)CrossRef
Zurück zum Zitat Lin, Y.-C., Lin, C.-Y., Chiu, P.-W.: Controllable graphene N-doping with ammonia plasma. Appl. Phys. Lett. 96(13), 133110 (2010)CrossRef Lin, Y.-C., Lin, C.-Y., Chiu, P.-W.: Controllable graphene N-doping with ammonia plasma. Appl. Phys. Lett. 96(13), 133110 (2010)CrossRef
Zurück zum Zitat Mousavi, S.M., Ahmadi, M.T., Sadeghi, H., Nilghaz, A., Amin, A., Johari, Z., Ismail, R.: Bilayer graphene nanoribbon carrier statistic in degenerate and non degenerate limit. J. Comput. Theor. Nanosci. 8(10), 2029–2032 (2011)CrossRef Mousavi, S.M., Ahmadi, M.T., Sadeghi, H., Nilghaz, A., Amin, A., Johari, Z., Ismail, R.: Bilayer graphene nanoribbon carrier statistic in degenerate and non degenerate limit. J. Comput. Theor. Nanosci. 8(10), 2029–2032 (2011)CrossRef
Zurück zum Zitat Mulliken, R.S.: Electronic population analysis on LCAO–MO molecular wave functions. I. J. Chem. Phys. 23(10), 1833–1840 (1955)CrossRef Mulliken, R.S.: Electronic population analysis on LCAO–MO molecular wave functions. I. J. Chem. Phys. 23(10), 1833–1840 (1955)CrossRef
Zurück zum Zitat Neto, A.C., Guinea, F., Peres, N., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81(1), 109 (2009)CrossRef Neto, A.C., Guinea, F., Peres, N., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81(1), 109 (2009)CrossRef
Zurück zum Zitat Novoselov, K., McCann, E., Morozov, S., Fal’ko, V. I., Katsnelson, M., Zeitler, U., Jiang, D., Schedin, F., Geim, A.: Unconventional quantum Hall effect and Berry’s phase of 2π in bilayer graphene. Nat. Phys. 2(3), 177–180 (2006)CrossRef Novoselov, K., McCann, E., Morozov, S., Fal’ko, V. I., Katsnelson, M., Zeitler, U., Jiang, D., Schedin, F., Geim, A.: Unconventional quantum Hall effect and Berry’s phase of 2π in bilayer graphene. Nat. Phys. 2(3), 177–180 (2006)CrossRef
Zurück zum Zitat Novoselov, K.S., Jiang, Z., Zhang, Y., Morozov, S., Stormer, H., Zeitler, U., Maan, J., Boebinger, G., Kim, P., Geim, A.: Room-temperature quantum Hall effect in graphene. Science. 315(5817), 1379–1379 (2007)CrossRef Novoselov, K.S., Jiang, Z., Zhang, Y., Morozov, S., Stormer, H., Zeitler, U., Maan, J., Boebinger, G., Kim, P., Geim, A.: Room-temperature quantum Hall effect in graphene. Science. 315(5817), 1379–1379 (2007)CrossRef
Zurück zum Zitat Passlack, M.: (2008). III–V metal-oxide-semiconductor technology. Indium Phosphide and Related Materials, 2008. IPRM 2008. 20th International Conference on, IEEE Passlack, M.: (2008). III–V metal-oxide-semiconductor technology. Indium Phosphide and Related Materials, 2008. IPRM 2008. 20th International Conference on, IEEE
Zurück zum Zitat Peng, Y., Li, J.: Ammonia adsorption on graphene and graphene oxide, a first-principles study. Front. Environm. Sci. Eng. 7(3), 403–411 (2013)CrossRef Peng, Y., Li, J.: Ammonia adsorption on graphene and graphene oxide, a first-principles study. Front. Environm. Sci. Eng. 7(3), 403–411 (2013)CrossRef
Zurück zum Zitat Pierret, R.F., Neudeck, G.W.:. Advanced Semiconductor Fundamentals, Addison-Wesley Reading, Boston (1987) Pierret, R.F., Neudeck, G.W.:. Advanced Semiconductor Fundamentals, Addison-Wesley Reading, Boston (1987)
Zurück zum Zitat Pourasl, A.H., Ahmadi, M.T., Rahmani, M., Ismail, R., Tan, M.L.P.: Graphene and CNT field effect transistors based biosensor models. In: Ahmadi, M.T., Ismail, R., Anwar, S. (eds.) Handbook of research on nanoelectronic sensor modeling and applications, pp. 294–333. IGI Global, US (2016) Pourasl, A.H., Ahmadi, M.T., Rahmani, M., Ismail, R., Tan, M.L.P.: Graphene and CNT field effect transistors based biosensor models. In: Ahmadi, M.T., Ismail, R., Anwar, S. (eds.) Handbook of research on nanoelectronic sensor modeling and applications, pp. 294–333. IGI Global, US (2016)
Zurück zum Zitat Pourasl, A., Ahmadi, M.T., Rahmani, M., Ismail, R.: Graphene based biosensor model for Escherichia Coli bacteria detection. J. Nanosci. Nanotechnol. 17(1), 601–605 (2017)CrossRef Pourasl, A., Ahmadi, M.T., Rahmani, M., Ismail, R.: Graphene based biosensor model for Escherichia Coli bacteria detection. J. Nanosci. Nanotechnol. 17(1), 601–605 (2017)CrossRef
Zurück zum Zitat Rahmani, M., Ismail, R., Ahmadi, M.T., Rahmani, K., Pourasl, A.H.: Trilayer graphene nanoribbon field effect transistor analytical model. Indones. J. Electr. Eng.Comput. Sci. 12(4), 2530–2535 (2014) Rahmani, M., Ismail, R., Ahmadi, M.T., Rahmani, K., Pourasl, A.H.: Trilayer graphene nanoribbon field effect transistor analytical model. Indones. J. Electr. Eng.Comput. Sci. 12(4), 2530–2535 (2014)
Zurück zum Zitat Rahmani, M., Karimi, F., Kiani, M., Pourasl, A.H., Rahmani, K., Ahmadi, M.T., Ismail, R.: Modeling trilayer graphene-based DET characteristics for a nanoscale sensor. In: Ahmadi, M.T., Ismail, R., Anwar, S. (eds.) Handbook of research on nanoelectronic sensor modeling and applications, pp. 19–38. IGI Global, US (2016) Rahmani, M., Karimi, F., Kiani, M., Pourasl, A.H., Rahmani, K., Ahmadi, M.T., Ismail, R.: Modeling trilayer graphene-based DET characteristics for a nanoscale sensor. In: Ahmadi, M.T., Ismail, R., Anwar, S. (eds.) Handbook of research on nanoelectronic sensor modeling and applications, pp. 19–38. IGI Global, US (2016)
Zurück zum Zitat Rivera, I.F., Joshi, R.K., Wang, J. Graphene-Based Ultra-Sensitive Gas Sensors. Sensors, 2010 IEEE, IEEE, (2010) Rivera, I.F., Joshi, R.K., Wang, J. Graphene-Based Ultra-Sensitive Gas Sensors. Sensors, 2010 IEEE, IEEE, (2010)
Zurück zum Zitat Ruffieux, P., Cai, J., Plumb, N.C., Patthey, L., Prezzi, D., Ferretti, A., Molinari, E., Feng, X., Müllen, K., Pignedoli, C.A.: Electronic structure of atomically precise graphene nanoribbons. Acs Nano. 6(8), 6930–6935 (2012)CrossRef Ruffieux, P., Cai, J., Plumb, N.C., Patthey, L., Prezzi, D., Ferretti, A., Molinari, E., Feng, X., Müllen, K., Pignedoli, C.A.: Electronic structure of atomically precise graphene nanoribbons. Acs Nano. 6(8), 6930–6935 (2012)CrossRef
Zurück zum Zitat Schedin, F., Geim, A., Morozov, S., Hill, E., Blake, P., Katsnelson, M., Novoselov, K.: Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6(9), 652–655 (2007)CrossRef Schedin, F., Geim, A., Morozov, S., Hill, E., Blake, P., Katsnelson, M., Novoselov, K.: Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6(9), 652–655 (2007)CrossRef
Zurück zum Zitat Son, Y.-W., Cohen, M.L., Louie, S.G.: Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97(21), 216803 (2006)CrossRef Son, Y.-W., Cohen, M.L., Louie, S.G.: Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97(21), 216803 (2006)CrossRef
Zurück zum Zitat Sonin, E.: Charge transport and shot noise in a ballistic graphene sheet. Phys. Rev. B. 77(23), 233408 (2008)CrossRef Sonin, E.: Charge transport and shot noise in a ballistic graphene sheet. Phys. Rev. B. 77(23), 233408 (2008)CrossRef
Zurück zum Zitat Takahashi, T., Sugawara, K., Noguchi, E., Sato, T., Takahashi, T.: Band-gap tuning of monolayer graphene by oxygen adsorption. Carbon. 73, 141–145 (2014)CrossRef Takahashi, T., Sugawara, K., Noguchi, E., Sato, T., Takahashi, T.: Band-gap tuning of monolayer graphene by oxygen adsorption. Carbon. 73, 141–145 (2014)CrossRef
Zurück zum Zitat Tien, H.M., Chau, N.H., Loan, P.T.K. (2009). Tight-binding calculations of band structure and conductance in graphene nano-ribbons. Commun. Phys. 19(1), 1–8 Tien, H.M., Chau, N.H., Loan, P.T.K. (2009). Tight-binding calculations of band structure and conductance in graphene nano-ribbons. Commun. Phys. 19(1), 1–8
Zurück zum Zitat Vafek, O., Vishwanath, A.: Dirac fermions in solids: from high-Tc cuprates and graphene to topological insulators and Weyl semimetals. Annu. Rev. Condens. Matter Phys. 5(1), 83–112 (2014)CrossRef Vafek, O., Vishwanath, A.: Dirac fermions in solids: from high-Tc cuprates and graphene to topological insulators and Weyl semimetals. Annu. Rev. Condens. Matter Phys. 5(1), 83–112 (2014)CrossRef
Zurück zum Zitat Wehling, T., Novoselov, K., Morozov, S., Vdovin, E., Katsnelson, M., Geim, A., Lichtenstein, A.: Molecular doping of graphene. Nano Lett. 8(1), 173–177 (2008)CrossRef Wehling, T., Novoselov, K., Morozov, S., Vdovin, E., Katsnelson, M., Geim, A., Lichtenstein, A.: Molecular doping of graphene. Nano Lett. 8(1), 173–177 (2008)CrossRef
Zurück zum Zitat Wu, S., He, Q., Tan, C., Wang, Y., Zhang, H.: Graphene-based electrochemical sensors. Small. 9(8), 1160–1172 (2013)CrossRef Wu, S., He, Q., Tan, C., Wang, Y., Zhang, H.: Graphene-based electrochemical sensors. Small. 9(8), 1160–1172 (2013)CrossRef
Zurück zum Zitat Xia, J., Chen, F., Li, J., Tao, N.: Measurement of the quantum capacitance of graphene. Nat. Nanotechnol. 4(8), 505–509 (2009)CrossRef Xia, J., Chen, F., Li, J., Tao, N.: Measurement of the quantum capacitance of graphene. Nat. Nanotechnol. 4(8), 505–509 (2009)CrossRef
Zurück zum Zitat Zhang, Y.-H., Chen, Y.-B., Zhou, K.-G., Liu, C.-H., Zeng, J., Zhang, H.-L., Peng, Y.: Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study. Nanotechnology. 20(18), 185504 (2009)CrossRef Zhang, Y.-H., Chen, Y.-B., Zhou, K.-G., Liu, C.-H., Zeng, J., Zhang, H.-L., Peng, Y.: Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study. Nanotechnology. 20(18), 185504 (2009)CrossRef
Zurück zum Zitat Zheng, H., Wang, Z., Luo, T., Shi, Q., Chen, J.: Analytical study of electronic structure in armchair graphene nanoribbons. Phys. Rev. B. 75(16), 165414 (2007)CrossRef Zheng, H., Wang, Z., Luo, T., Shi, Q., Chen, J.: Analytical study of electronic structure in armchair graphene nanoribbons. Phys. Rev. B. 75(16), 165414 (2007)CrossRef
Metadaten
Titel
Gas adsorption effect on the graphene nanoribbon band structure and quantum capacitance
verfasst von
Ali H. Pourasl
Mohammad Taghi Ahmadi
Razali Ismail
Niayesh Gharaei
Publikationsdatum
16.06.2017
Verlag
Springer US
Erschienen in
Adsorption / Ausgabe 6/2017
Print ISSN: 0929-5607
Elektronische ISSN: 1572-8757
DOI
https://doi.org/10.1007/s10450-017-9895-0

Weitere Artikel der Ausgabe 6/2017

Adsorption 6/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.