Skip to main content

2024 | OriginalPaper | Buchkapitel

GastroVision: A Multi-class Endoscopy Image Dataset for Computer Aided Gastrointestinal Disease Detection

verfasst von : Debesh Jha, Vanshali Sharma, Neethi Dasu, Nikhil Kumar Tomar, Steven Hicks, M. K. Bhuyan, Pradip K. Das, Michael A. Riegler, Pål Halvorsen, Ulas Bagci, Thomas de Lange

Erschienen in: Machine Learning for Multimodal Healthcare Data

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Integrating real-time artificial intelligence (AI) systems in clinical practices faces challenges such as scalability and acceptance. These challenges include data availability, biased outcomes, data quality, lack of transparency, and underperformance on unseen datasets from different distributions. The scarcity of large-scale, precisely labeled, and diverse datasets are the major challenge for clinical integration. This scarcity is also due to the legal restrictions and extensive manual efforts required for accurate annotations from clinicians. To address these challenges, we present GastroVision, a multi-center open-access gastrointestinal (GI) endoscopy dataset that includes different anatomical landmarks, pathological abnormalities, polyp removal cases and normal findings (a total of 27 classes) from the GI tract. The dataset comprises 8,000 images acquired from Bærum Hospital in Norway and Karolinska University Hospital in Sweden and was annotated and verified by experienced GI endoscopists. Furthermore, we validate the significance of our dataset with extensive benchmarking based on the popular deep learning based baseline models. We believe our dataset can facilitate the development of AI-based algorithms for GI disease detection and classification. Our dataset is available at https://​osf.​io/​84e7f/​.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Abadir, A.P., Ali, M.F., Karnes, W., Samarasena, J.B.: Artificial intelligence in gastrointestinal endoscopy. Clin. Endosc. 53(2), 132–141 (2020)CrossRef Abadir, A.P., Ali, M.F., Karnes, W., Samarasena, J.B.: Artificial intelligence in gastrointestinal endoscopy. Clin. Endosc. 53(2), 132–141 (2020)CrossRef
2.
Zurück zum Zitat Ahn, S.B., Han, D.S., Bae, J.H., Byun, T.J., Kim, J.P., Eun, C.S.: The miss rate for colorectal adenoma determined by quality-adjusted, back-to-back colonoscopies. Gut Liver 6(1), 64 (2012)CrossRef Ahn, S.B., Han, D.S., Bae, J.H., Byun, T.J., Kim, J.P., Eun, C.S.: The miss rate for colorectal adenoma determined by quality-adjusted, back-to-back colonoscopies. Gut Liver 6(1), 64 (2012)CrossRef
3.
Zurück zum Zitat Ali, S., et al.: Deep learning for detection and segmentation of artefact and disease instances in gastrointestinal endoscopy. Med. Image Anal. 70, 102002 (2021)CrossRef Ali, S., et al.: Deep learning for detection and segmentation of artefact and disease instances in gastrointestinal endoscopy. Med. Image Anal. 70, 102002 (2021)CrossRef
5.
Zurück zum Zitat Ali, S., et al.: A multi-centre polyp detection and segmentation dataset for generalisability assessment. Sci. Data 10(1), 75 (2023)MathSciNetCrossRef Ali, S., et al.: A multi-centre polyp detection and segmentation dataset for generalisability assessment. Sci. Data 10(1), 75 (2023)MathSciNetCrossRef
6.
Zurück zum Zitat Areia, M., et al.: Cost-effectiveness of artificial intelligence for screening colonoscopy: a modelling study. Lancet Digit. Health 4(6), e436–e444 (2022)CrossRef Areia, M., et al.: Cost-effectiveness of artificial intelligence for screening colonoscopy: a modelling study. Lancet Digit. Health 4(6), e436–e444 (2022)CrossRef
7.
Zurück zum Zitat Arnold, M., et al.: Global burden of 5 major types of gastrointestinal cancer. Gastroenterology 159(1), 335–349 (2020)CrossRef Arnold, M., et al.: Global burden of 5 major types of gastrointestinal cancer. Gastroenterology 159(1), 335–349 (2020)CrossRef
8.
Zurück zum Zitat Bernal, J., Aymeric, H.: MICCAI endoscopic vision challenge polyp detection and segmentation (2017) Bernal, J., Aymeric, H.: MICCAI endoscopic vision challenge polyp detection and segmentation (2017)
9.
Zurück zum Zitat Bernal, J., Sánchez, F.J., Fernández-Esparrach, G., Gil, D., Rodríguez, C., Vilariño, F.: WM-DOVA maps for accurate polyp highlighting in colonoscopy: validation vs. saliency maps from physicians. Comput. Med. Imaging Graph. 43, 99–111 (2015) Bernal, J., Sánchez, F.J., Fernández-Esparrach, G., Gil, D., Rodríguez, C., Vilariño, F.: WM-DOVA maps for accurate polyp highlighting in colonoscopy: validation vs. saliency maps from physicians. Comput. Med. Imaging Graph. 43, 99–111 (2015)
10.
Zurück zum Zitat Bernal, J., Sánchez, J., Vilarino, F.: Towards automatic polyp detection with a polyp appearance model. Pattern Recogn. 45(9), 3166–3182 (2012)CrossRef Bernal, J., Sánchez, J., Vilarino, F.: Towards automatic polyp detection with a polyp appearance model. Pattern Recogn. 45(9), 3166–3182 (2012)CrossRef
11.
Zurück zum Zitat Borgli, H., et al.: Hyperkvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy. Sci. Data 7(1), 1–14 (2020)CrossRef Borgli, H., et al.: Hyperkvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy. Sci. Data 7(1), 1–14 (2020)CrossRef
12.
Zurück zum Zitat Crafa, P., Diaz-Cano, S.J.: Changes in colonic structure and mucosal inflammation. In: Colonic Diverticular Disease, pp. 41–61 (2022) Crafa, P., Diaz-Cano, S.J.: Changes in colonic structure and mucosal inflammation. In: Colonic Diverticular Disease, pp. 41–61 (2022)
14.
Zurück zum Zitat He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)
15.
Zurück zum Zitat Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017) Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)
16.
Zurück zum Zitat Jha, D., et al.: Real-time polyp detection, localization and segmentation in colonoscopy using deep learning. IEEE Access 9, 40496–40510 (2021)CrossRef Jha, D., et al.: Real-time polyp detection, localization and segmentation in colonoscopy using deep learning. IEEE Access 9, 40496–40510 (2021)CrossRef
17.
Zurück zum Zitat Jha, D., et al.: Kvasir-SEG: a segmented polyp dataset. In: Proceedings of the International Conference on Multimedia Modeling (MMM), pp. 451–462 (2020) Jha, D., et al.: Kvasir-SEG: a segmented polyp dataset. In: Proceedings of the International Conference on Multimedia Modeling (MMM), pp. 451–462 (2020)
18.
Zurück zum Zitat Koulaouzidis, A., et al.: Kid project: an internet-based digital video atlas of capsule endoscopy for research purposes. Endosc. Int. Open 5(6), E477 (2017)CrossRef Koulaouzidis, A., et al.: Kid project: an internet-based digital video atlas of capsule endoscopy for research purposes. Endosc. Int. Open 5(6), E477 (2017)CrossRef
19.
Zurück zum Zitat Li, K., et al.: Colonoscopy polyp detection and classification: dataset creation and comparative evaluations. arXiv preprint arXiv:2104.10824 (2021) Li, K., et al.: Colonoscopy polyp detection and classification: dataset creation and comparative evaluations. arXiv preprint arXiv:​2104.​10824 (2021)
20.
Zurück zum Zitat Mahmud, N., Cohen, J., Tsourides, K., Berzin, T.M.: Computer vision and augmented reality in gastrointestinal endoscopy. Gastroenterol. Rep. 3(3), 179–184 (2015)CrossRef Mahmud, N., Cohen, J., Tsourides, K., Berzin, T.M.: Computer vision and augmented reality in gastrointestinal endoscopy. Gastroenterol. Rep. 3(3), 179–184 (2015)CrossRef
21.
Zurück zum Zitat Misawa, M., et al.: Development of a computer-aided detection system for colonoscopy and a publicly accessible large colonoscopy video database (with video). Gastrointest. Endosc. 93(4), 960–967 (2021) Misawa, M., et al.: Development of a computer-aided detection system for colonoscopy and a publicly accessible large colonoscopy video database (with video). Gastrointest. Endosc. 93(4), 960–967 (2021)
22.
Zurück zum Zitat Pogorelov, K., et al.: Kvasir: a multi-class image dataset for computer aided gastrointestinal disease detection. In: Proceedings of the 8th ACM on Multimedia Systems Conference, pp. 164–169 (2017) Pogorelov, K., et al.: Kvasir: a multi-class image dataset for computer aided gastrointestinal disease detection. In: Proceedings of the 8th ACM on Multimedia Systems Conference, pp. 164–169 (2017)
23.
Zurück zum Zitat Silva, J., Histace, A., Romain, O., Dray, X., Granado, B.: Toward embedded detection of polyps in WCE images for early diagnosis of colorectal cancer. Int. J. Comput. Assist. Radiol. Surg. 9(2), 283–293 (2014)CrossRef Silva, J., Histace, A., Romain, O., Dray, X., Granado, B.: Toward embedded detection of polyps in WCE images for early diagnosis of colorectal cancer. Int. J. Comput. Assist. Radiol. Surg. 9(2), 283–293 (2014)CrossRef
24.
Zurück zum Zitat Smedsrud, P.H., et al.: Kvasir-capsule, a video capsule endoscopy dataset. Sci. Data 8(1), 1–10 (2021)CrossRef Smedsrud, P.H., et al.: Kvasir-capsule, a video capsule endoscopy dataset. Sci. Data 8(1), 1–10 (2021)CrossRef
25.
Zurück zum Zitat Tajbakhsh, N., Gurudu, S.R., Liang, J.: Automated polyp detection in colonoscopy videos using shape and context information. IEEE Trans. Med. Imaging 35(2), 630–644 (2015)CrossRef Tajbakhsh, N., Gurudu, S.R., Liang, J.: Automated polyp detection in colonoscopy videos using shape and context information. IEEE Trans. Med. Imaging 35(2), 630–644 (2015)CrossRef
26.
Zurück zum Zitat Tan, M., Le, Q.: Efficientnet: rethinking model scaling for convolutional neural networks. In: Proceedings of the International Conference on Machine Learning, pp. 6105–6114 (2019) Tan, M., Le, Q.: Efficientnet: rethinking model scaling for convolutional neural networks. In: Proceedings of the International Conference on Machine Learning, pp. 6105–6114 (2019)
27.
Zurück zum Zitat Thambawita, V., et al.: The medico-task 2018: disease detection in the gastrointestinal tract using global features and deep learning. In: Proceedings of the MediaEval 2018 Workshop (2018) Thambawita, V., et al.: The medico-task 2018: disease detection in the gastrointestinal tract using global features and deep learning. In: Proceedings of the MediaEval 2018 Workshop (2018)
Metadaten
Titel
GastroVision: A Multi-class Endoscopy Image Dataset for Computer Aided Gastrointestinal Disease Detection
verfasst von
Debesh Jha
Vanshali Sharma
Neethi Dasu
Nikhil Kumar Tomar
Steven Hicks
M. K. Bhuyan
Pradip K. Das
Michael A. Riegler
Pål Halvorsen
Ulas Bagci
Thomas de Lange
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-47679-2_10

Premium Partner