Skip to main content
Erschienen in: Structural and Multidisciplinary Optimization 1/2019

24.01.2019 | Industrial Application

Gauge sensitivity analysis and optimization of the modular automotive body with different loadings

verfasst von: Yu Liu, Zijian Liu, Haolong Zhong, Huan Qin, Cheng Lv

Erschienen in: Structural and Multidisciplinary Optimization | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The structural optimization method based on sensitivity analysis is an effective way to reduce the mass of automotive body structure. In this paper, an effective structural optimization method is proposed to facilitate the lightweight design of modular automotive body, where gauge sensitivity analysis values are used to determine the optimized direction to increase or decrease the thickness of each beam element in the body model. An object-oriented MATLAB toolbox constructed in our previous study is adopted as a black box for the structural analysis and optimization of the body-in-white (BIW) model, in which the beam element sensitivity values of BIW structure under different loading conditions are fast calculated by the method of reverberation ray matrix (MRRM) and the finite difference method (FDM). Then, the optimized direction of each beam element is identified, and a structural optimization model is formulated and solved by the genetic algorithm (GA). In order to verify the effectiveness of this method, a simplified modular automotive body model is constructed to implement the performance indexes comparison between the initial body model and optimized body model. The analysis results show that this method is feasible and effective for the optimal design of modular automotive body structure.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Al-Zaher A, Elmaraghy W (2014) Design method of under-body platform automotive framing systems. Proc CIRP 17:380–385CrossRef Al-Zaher A, Elmaraghy W (2014) Design method of under-body platform automotive framing systems. Proc CIRP 17:380–385CrossRef
Zurück zum Zitat Apostol V, Santos JLT, Paiva M (2002) Sensitivity analysis and optimization of truss/beam components of arbitrary cross-section II. Shear stresses. Comput Struct 80(5):391–401CrossRef Apostol V, Santos JLT, Paiva M (2002) Sensitivity analysis and optimization of truss/beam components of arbitrary cross-section II. Shear stresses. Comput Struct 80(5):391–401CrossRef
Zurück zum Zitat Besharati SR, Dabbagh V, Amini H et al (2016) Multi-objective selection and structural optimization of the gantry in a gantry machine tool for improving static, dynamic, and weight and cost performance. Concurr Eng 24(1):83–93CrossRef Besharati SR, Dabbagh V, Amini H et al (2016) Multi-objective selection and structural optimization of the gantry in a gantry machine tool for improving static, dynamic, and weight and cost performance. Concurr Eng 24(1):83–93CrossRef
Zurück zum Zitat Chen W, Zuo WJ (2014) Component sensitivity analysis of conceptual vehicle body for lightweight design under static and dynamic stiffness demands. Int J Veh Des 66(2):107–123CrossRef Chen W, Zuo WJ (2014) Component sensitivity analysis of conceptual vehicle body for lightweight design under static and dynamic stiffness demands. Int J Veh Des 66(2):107–123CrossRef
Zurück zum Zitat Cheng GD, Liu YW (1987) A new computational scheme for sensitivity analysis. Eng Optim 12(3):219–234CrossRef Cheng GD, Liu YW (1987) A new computational scheme for sensitivity analysis. Eng Optim 12(3):219–234CrossRef
Zurück zum Zitat Doke P, Fard M, Jazar R (2012) Vehicle concept modeling: a new technology for structures weight reduction. Proc Eng 49:287–293CrossRef Doke P, Fard M, Jazar R (2012) Vehicle concept modeling: a new technology for structures weight reduction. Proc Eng 49:287–293CrossRef
Zurück zum Zitat Donders S, Takahashi Y, Hadjit R et al (2009) A reduced beam and joint concept modeling approach to optimize global vehicle body dynamics. Finite Elem Anal Des 45(6–7):439–455CrossRef Donders S, Takahashi Y, Hadjit R et al (2009) A reduced beam and joint concept modeling approach to optimize global vehicle body dynamics. Finite Elem Anal Des 45(6–7):439–455CrossRef
Zurück zum Zitat Fellini R, Kokkolaras M, Michelena N et al (2004) A sensitivity-based commonality strategy for family products of mild variation, with application to automotive body structures. Struct Multidiscip Optim 27(1–2):89–96CrossRef Fellini R, Kokkolaras M, Michelena N et al (2004) A sensitivity-based commonality strategy for family products of mild variation, with application to automotive body structures. Struct Multidiscip Optim 27(1–2):89–96CrossRef
Zurück zum Zitat Hou WB, Zhang HZ, Chi RF, Hu P (2009) Development of an intelligent CAE system for auto-body concept design. Int J Automot Technol 10(2):175–180CrossRef Hou WB, Zhang HZ, Chi RF, Hu P (2009) Development of an intelligent CAE system for auto-body concept design. Int J Automot Technol 10(2):175–180CrossRef
Zurück zum Zitat Howard SM, Pao YH (1998) Analysis and experiments on stress waves in planar trusses. J Eng Mech 124(8):884–891CrossRef Howard SM, Pao YH (1998) Analysis and experiments on stress waves in planar trusses. J Eng Mech 124(8):884–891CrossRef
Zurück zum Zitat Liu YC, Glass G (2011) Effects of wall thickness and geometric shape on thin-walled parts structural performance. Thin-Walled Struct 49(1):223–231CrossRef Liu YC, Glass G (2011) Effects of wall thickness and geometric shape on thin-walled parts structural performance. Thin-Walled Struct 49(1):223–231CrossRef
Zurück zum Zitat Liu Y, Liu ZJ, Qin H et al (2018) An efficient structural optimization approach for the modular automotive body conceptual design. Struct Multidiscip Optim 58(3):1275–1289CrossRef Liu Y, Liu ZJ, Qin H et al (2018) An efficient structural optimization approach for the modular automotive body conceptual design. Struct Multidiscip Optim 58(3):1275–1289CrossRef
Zurück zum Zitat Martensson P, Zenkert D, Akermo M (2015) Integral versus differential design for high-volume manufacturing of composite structures. J Compos Mater 49(23):2897–2908CrossRef Martensson P, Zenkert D, Akermo M (2015) Integral versus differential design for high-volume manufacturing of composite structures. J Compos Mater 49(23):2897–2908CrossRef
Zurück zum Zitat Miao F, Sun G, Zhu P (2016) Developed reverberation-ray matrix analysis on transient responses of laminated composite frame based on the first-order shear deformation theory. Compos Struct 143:255–271CrossRef Miao F, Sun G, Zhu P (2016) Developed reverberation-ray matrix analysis on transient responses of laminated composite frame based on the first-order shear deformation theory. Compos Struct 143:255–271CrossRef
Zurück zum Zitat Mihaylova P, Baldanzini N, Pratellesi A, Pierini M (2012) Beam bounding box – a novel approach for beam concept modeling and optimization handling. Finite Elem Anal Des 60(9):13–24CrossRef Mihaylova P, Baldanzini N, Pratellesi A, Pierini M (2012) Beam bounding box – a novel approach for beam concept modeling and optimization handling. Finite Elem Anal Des 60(9):13–24CrossRef
Zurück zum Zitat Mohan R, Venkatesan H, Mahadevan S (2016) New methodology for light weight solutions to improve BIW structural performance using bulk head optimization. J Mech Sci Technol 30(8):3533–3537CrossRef Mohan R, Venkatesan H, Mahadevan S (2016) New methodology for light weight solutions to improve BIW structural performance using bulk head optimization. J Mech Sci Technol 30(8):3533–3537CrossRef
Zurück zum Zitat Mundo D, Hadjit R, Donders S et al (2009) Simplified modelling of joints and beam-like structures for BIW optimization in a concept phase of the vehicle design process. Finite Elem Anal Des 45(6–7):456–462CrossRef Mundo D, Hadjit R, Donders S et al (2009) Simplified modelling of joints and beam-like structures for BIW optimization in a concept phase of the vehicle design process. Finite Elem Anal Des 45(6–7):456–462CrossRef
Zurück zum Zitat Munster M, Schaffer M, Kopp G et al (2016) New approach for a comprehensive method for urban vehicle concepts with electric powertrain and their necessary vehicle structures. Transp Res Proc 14:3686–3695CrossRef Munster M, Schaffer M, Kopp G et al (2016) New approach for a comprehensive method for urban vehicle concepts with electric powertrain and their necessary vehicle structures. Transp Res Proc 14:3686–3695CrossRef
Zurück zum Zitat Pao YH, Sun G (2003) Dynamic bending strains in planar trusses with pinned or rigid joints. J Eng Mech 129(3):324–332CrossRef Pao YH, Sun G (2003) Dynamic bending strains in planar trusses with pinned or rigid joints. J Eng Mech 129(3):324–332CrossRef
Zurück zum Zitat Pao YH, Keh DC, Howard SM (1999) Dynamic response and wave propagation in plane trusses and frames. AIAA J 37(5):594–603CrossRef Pao YH, Keh DC, Howard SM (1999) Dynamic response and wave propagation in plane trusses and frames. AIAA J 37(5):594–603CrossRef
Zurück zum Zitat Park D, Jeong SH, Chang WK et al (2016) Material arrangement optimization for weight minimization of an automotive body in white using a bi-level design strategy. Proc Inst Mech Eng Part D J Autom Eng, Part D: Journal of Automobile Engineering 230(3):395–405CrossRef Park D, Jeong SH, Chang WK et al (2016) Material arrangement optimization for weight minimization of an automotive body in white using a bi-level design strategy. Proc Inst Mech Eng Part D J Autom Eng, Part D: Journal of Automobile Engineering 230(3):395–405CrossRef
Zurück zum Zitat Qin H, Liu ZJ, Liu Y, Zhong HL (2017) An object-oriented MATLAB toolbox for automotive body conceptual design using distributed parallel optimization. Adv Eng Softw 106:19–32CrossRef Qin H, Liu ZJ, Liu Y, Zhong HL (2017) An object-oriented MATLAB toolbox for automotive body conceptual design using distributed parallel optimization. Adv Eng Softw 106:19–32CrossRef
Zurück zum Zitat Qin H, Guo Y, Liu ZJ et al (2018) Shape optimization of automotive body frame using an improved genetic algorithm optimizer. Adv Eng Softw 121:235–249CrossRef Qin H, Guo Y, Liu ZJ et al (2018) Shape optimization of automotive body frame using an improved genetic algorithm optimizer. Adv Eng Softw 121:235–249CrossRef
Zurück zum Zitat Sergeyev O, Mroz Z (2000) Sensitivity analysis and optimal design of 3D frame structures for stress and frequency constraints. Comput Struct 75(2):167–185CrossRef Sergeyev O, Mroz Z (2000) Sensitivity analysis and optimal design of 3D frame structures for stress and frequency constraints. Comput Struct 75(2):167–185CrossRef
Zurück zum Zitat Shao D, Hu S, Wang Q et al (2017) Free vibration of refined higher-order shear deformation composite laminated beams with general boundary conditions. Compos Part B 108:75–90CrossRef Shao D, Hu S, Wang Q et al (2017) Free vibration of refined higher-order shear deformation composite laminated beams with general boundary conditions. Compos Part B 108:75–90CrossRef
Zurück zum Zitat Tang D, Yao XL, Wu GX, Peng Y (2017) Free and forced vibration analysis of multi-stepped circular cylindrical shells with arbitrary boundary conditions by the method of reverberation-ray matrix. Thin-Walled Struct 116:154–168CrossRef Tang D, Yao XL, Wu GX, Peng Y (2017) Free and forced vibration analysis of multi-stepped circular cylindrical shells with arbitrary boundary conditions by the method of reverberation-ray matrix. Thin-Walled Struct 116:154–168CrossRef
Zurück zum Zitat Torstenfelt B, Klarbring A (2006) Structural optimization of modular product families with application to car space frame structures. Struct Multidiscip Optim 32(2):133–140CrossRef Torstenfelt B, Klarbring A (2006) Structural optimization of modular product families with application to car space frame structures. Struct Multidiscip Optim 32(2):133–140CrossRef
Zurück zum Zitat Torstenfelt B, Klarbring A (2007) Conceptual optimal design of modular car product families using simultaneous size, shape and topology optimization. Finite Elem Anal Des 43(14):1050–1061MathSciNetCrossRef Torstenfelt B, Klarbring A (2007) Conceptual optimal design of modular car product families using simultaneous size, shape and topology optimization. Finite Elem Anal Des 43(14):1050–1061MathSciNetCrossRef
Zurück zum Zitat Wang CQ, Wang DF, Zhang S (2016) Design and application of lightweight multi-objective collaborative optimization for a parametric body-in-white structure. Proc Inst Mech Eng Part D J Autom Eng 230(2):273–288CrossRef Wang CQ, Wang DF, Zhang S (2016) Design and application of lightweight multi-objective collaborative optimization for a parametric body-in-white structure. Proc Inst Mech Eng Part D J Autom Eng 230(2):273–288CrossRef
Zurück zum Zitat Xia Y, Hao H (2000) Measurement selection for vibration-based structural damage identification. J Sound Vib 236(1):89–104CrossRef Xia Y, Hao H (2000) Measurement selection for vibration-based structural damage identification. J Sound Vib 236(1):89–104CrossRef
Zurück zum Zitat Xia L, Zhang L, Xia Q, Shi TL (2018) Stress-based topology optimization using bi-directional evolutionary structural optimization method. Comput Methods Appl Mech Eng 333:356–370MathSciNetCrossRef Xia L, Zhang L, Xia Q, Shi TL (2018) Stress-based topology optimization using bi-directional evolutionary structural optimization method. Comput Methods Appl Mech Eng 333:356–370MathSciNetCrossRef
Zurück zum Zitat Yoshimura M, Nishiwaki S, Izui K (2005) A multiple cross-sectional shape optimization method for automotive body frames. J Mech Des 127(1):49–57CrossRef Yoshimura M, Nishiwaki S, Izui K (2005) A multiple cross-sectional shape optimization method for automotive body frames. J Mech Des 127(1):49–57CrossRef
Zurück zum Zitat Zhang SY, Jr GP (2009) A study of the effect of elastic instability on stiffness-based gauge sensitivity indices for vehicle body structure assessment. Thin-Walled Struct 47(12):1590–1596CrossRef Zhang SY, Jr GP (2009) A study of the effect of elastic instability on stiffness-based gauge sensitivity indices for vehicle body structure assessment. Thin-Walled Struct 47(12):1590–1596CrossRef
Zurück zum Zitat Zhang SY, Jr GP (2011) Gauge sensitivity indices and application for assessing vehicle body structural stiffness. Int J Veh Des 57(1):1–16CrossRef Zhang SY, Jr GP (2011) Gauge sensitivity indices and application for assessing vehicle body structural stiffness. Int J Veh Des 57(1):1–16CrossRef
Zurück zum Zitat Zuo WJ (2013) An object-oriented graphics interface design and optimization software for cross-sectional shape of automobile body. Adv Eng Softw 64:1–10CrossRef Zuo WJ (2013) An object-oriented graphics interface design and optimization software for cross-sectional shape of automobile body. Adv Eng Softw 64:1–10CrossRef
Zurück zum Zitat Zuo WJ (2015) Bi-level optimization for the cross-sectional shape of a thin-walled car body frame with static stiffness and dynamic frequency stiffness constraints. Proc Inst Mech Eng Part D J Autom Eng 229(8):1046–1059CrossRef Zuo WJ (2015) Bi-level optimization for the cross-sectional shape of a thin-walled car body frame with static stiffness and dynamic frequency stiffness constraints. Proc Inst Mech Eng Part D J Autom Eng 229(8):1046–1059CrossRef
Zurück zum Zitat Zuo WJ, Bai JT (2016) Cross-sectional shape design and optimization of automotive body with stamping constraints. Int J Automot Technol 17(6):1003–1011CrossRef Zuo WJ, Bai JT (2016) Cross-sectional shape design and optimization of automotive body with stamping constraints. Int J Automot Technol 17(6):1003–1011CrossRef
Zurück zum Zitat Zuo J, Yao WX, Xia TX (2016) A sensitivity-based coordination method for optimization of product families. Eng Optim 48(7):1145–1163MathSciNetCrossRef Zuo J, Yao WX, Xia TX (2016) A sensitivity-based coordination method for optimization of product families. Eng Optim 48(7):1145–1163MathSciNetCrossRef
Metadaten
Titel
Gauge sensitivity analysis and optimization of the modular automotive body with different loadings
verfasst von
Yu Liu
Zijian Liu
Haolong Zhong
Huan Qin
Cheng Lv
Publikationsdatum
24.01.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Structural and Multidisciplinary Optimization / Ausgabe 1/2019
Print ISSN: 1615-147X
Elektronische ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-019-02202-0

Weitere Artikel der Ausgabe 1/2019

Structural and Multidisciplinary Optimization 1/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.