Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Journal of Visualization 3/2021

03.01.2021 | Regular Paper

Gaussian mixture model-based target feature extraction and visualization

verfasst von: Ji Ma, Jinjin Chen, Liye Chen, Xingjian Zhou, Xujia Qin, Ying Tang, Guodao Sun, Jiazhou Chen

Erschienen in: Journal of Visualization | Ausgabe 3/2021

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

Effective extraction and visualization of complex target features from volume data are an important task, which allows the user to analyze and get insights of the complex features, and thus to make reasonable decisions. Some state-of-the-art techniques allow the user to perform such a task by interactively exploring in multiple linked parameter space views. However, interactions in the parameter space using trial and error may be unintuitive and time-consuming. Furthermore, switching between multiple views may be distracting. Some other state-of-the-art techniques allow the user to extract the complex features by directly interacting in the data space and subsequently visualize the extracted features in 3D view. They are intuitive and effective techniques for the user, as the user is familiar with the data space, and they do not require many trial and error to get the features. However, these techniques usually generate less accurate features. In this paper, we proposed a semiautomatic Gaussian mixture model-based target feature extraction and visualization method, which allows the user to quickly label single or multiple complex target features using lasso on two slices of the volume data and subsequently visualize the automatically extracted features in 3D view. We have applied it to various univariate or multivariate volume datasets from the medical field to demonstrate its effectiveness. Moreover, we have performed both qualitative and quantitative experiments to compare its results against the results from two state-of-the-art techniques and the ground truths. The experimental results showed that our method is able to generate the closest results to the ground truth.

Graphic abstract

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 15 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 15 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 15 Tage kostenlos.

Literatur
Zurück zum Zitat Bao XK, Wang YH, Cheng ZL, Tu CH, Zhou FF, Chen BQ (2018) Analogy-based volume exploration using ellipsoidal Gaussian transfer functions. J Vis 21:511–523 CrossRef Bao XK, Wang YH, Cheng ZL, Tu CH, Zhou FF, Chen BQ (2018) Analogy-based volume exploration using ellipsoidal Gaussian transfer functions. J Vis 21:511–523 CrossRef
Zurück zum Zitat Cai LL, Nguyen BP, Chui CK, Ong SH (2015) Rule-enhanced transfer function generation for medical volume visualization. Comput Graph Forum 34(3):121–130 CrossRef Cai LL, Nguyen BP, Chui CK, Ong SH (2015) Rule-enhanced transfer function generation for medical volume visualization. Comput Graph Forum 34(3):121–130 CrossRef
Zurück zum Zitat Cai LL, Nguyen BP, Chui CK, Ong SH (2017) A two-level clustering approach for multidimensional transfer function specification in volume visualization. Vis Comput 33(2):163–177 CrossRef Cai LL, Nguyen BP, Chui CK, Ong SH (2017) A two-level clustering approach for multidimensional transfer function specification in volume visualization. Vis Comput 33(2):163–177 CrossRef
Zurück zum Zitat Chuang KS, Tzeng HL, Chen S, Wu J, Chen TJ (2006) Fuzzy c-means clustering with spatial information for image segmentation. Comput Med Imaging Graph 30:9–15 CrossRef Chuang KS, Tzeng HL, Chen S, Wu J, Chen TJ (2006) Fuzzy c-means clustering with spatial information for image segmentation. Comput Med Imaging Graph 30:9–15 CrossRef
Zurück zum Zitat Correa CD, Ma KL (2009) The occlusion spectrum for volume visualization and classification. IEEE Trans Vis Comput Graph 15(6):1465–1472 CrossRef Correa CD, Ma KL (2009) The occlusion spectrum for volume visualization and classification. IEEE Trans Vis Comput Graph 15(6):1465–1472 CrossRef
Zurück zum Zitat Dutta S, Shen HW (2016) Distribution driven extraction and tracking of features for time-varying data analysis. IEEE Trans Vis Comput Graph 22(1):837–846 CrossRef Dutta S, Shen HW (2016) Distribution driven extraction and tracking of features for time-varying data analysis. IEEE Trans Vis Comput Graph 22(1):837–846 CrossRef
Zurück zum Zitat Guo H, Xiao H, Yuan X (2011) Multi-dimensional transfer function design based on flexible dimension projection embedded in parallel coordinates. In: PacificVis, pp 19–26 Guo H, Xiao H, Yuan X (2011) Multi-dimensional transfer function design based on flexible dimension projection embedded in parallel coordinates. In: PacificVis, pp 19–26
Zurück zum Zitat Haidacher M, Patel D, Bruckner S, Kanitsar A, Groller M (2010) Volume visualization based on statistical transfer-function spaces. In: PacificVis, pp 17–24 Haidacher M, Patel D, Bruckner S, Kanitsar A, Groller M (2010) Volume visualization based on statistical transfer-function spaces. In: PacificVis, pp 17–24
Zurück zum Zitat Hladuvka J, Konig A, Groller E (2000) Curvature-based transfer function for direct volume rendering. In: Proceedings of spring conference on computer graphics, vol 16, pp 58–65 Hladuvka J, Konig A, Groller E (2000) Curvature-based transfer function for direct volume rendering. In: Proceedings of spring conference on computer graphics, vol 16, pp 58–65
Zurück zum Zitat Johnson CR, Huang J (2009) Distribution-driven visualization of volume data. IEEE Trans Vis Comput Graph 15(5):734–746 CrossRef Johnson CR, Huang J (2009) Distribution-driven visualization of volume data. IEEE Trans Vis Comput Graph 15(5):734–746 CrossRef
Zurück zum Zitat Kim HS, Schulze JP, Cone AC, Sosinsky GE, Martone ME (2010) Dimensionality reduction on multi-dimensional transfer function for multi-channel volume data sets. Inf Vis 9(3):167–180 CrossRef Kim HS, Schulze JP, Cone AC, Sosinsky GE, Martone ME (2010) Dimensionality reduction on multi-dimensional transfer function for multi-channel volume data sets. Inf Vis 9(3):167–180 CrossRef
Zurück zum Zitat Kindlmann G, Durkin JW (1998) Semi-automatic generation of transfer functions for direct volume rendering. In: Proceedings of IEEE symposium on volume visualization, pp 79–86 Kindlmann G, Durkin JW (1998) Semi-automatic generation of transfer functions for direct volume rendering. In: Proceedings of IEEE symposium on volume visualization, pp 79–86
Zurück zum Zitat Kniss J, Wang G (2011) Supervised manifold distance segmentation. IEEE Trans Vis Comput Graph 17(11):1637–1649 CrossRef Kniss J, Wang G (2011) Supervised manifold distance segmentation. IEEE Trans Vis Comput Graph 17(11):1637–1649 CrossRef
Zurück zum Zitat Liu S, Levine J, Bremer P, Pascucci V (2012) Gaussian mixture model based volume visualization. In: IEEE symposium on large-scale data analysis and visualization, pp 73–7 Liu S, Levine J, Bremer P, Pascucci V (2012) Gaussian mixture model based volume visualization. In: IEEE symposium on large-scale data analysis and visualization, pp 73–7
Zurück zum Zitat Lp CY, Varshney A, Jaja J (2012) Hierarchical exploration of volumes using multilevel segmentation of the intensity-gradient histograms. IEEE Trans Vis Comput Graph 18(12):2355–2363 CrossRef Lp CY, Varshney A, Jaja J (2012) Hierarchical exploration of volumes using multilevel segmentation of the intensity-gradient histograms. IEEE Trans Vis Comput Graph 18(12):2355–2363 CrossRef
Zurück zum Zitat Maier O, Wilms M, Gablentz JVD, Kramer UM, Munte TF, Handels H (2015) Extra tree forests for sub-acute ischemic stroke lesion segmentation in MR sequences. J Neurosci Methods 240:89–100 CrossRef Maier O, Wilms M, Gablentz JVD, Kramer UM, Munte TF, Handels H (2015) Extra tree forests for sub-acute ischemic stroke lesion segmentation in MR sequences. J Neurosci Methods 240:89–100 CrossRef
Zurück zum Zitat Menze BH et al (2015) The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS). IEEE Trans Med Imaging 34(10):1993–2024 CrossRef Menze BH et al (2015) The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS). IEEE Trans Med Imaging 34(10):1993–2024 CrossRef
Zurück zum Zitat Nguyen BP, Tay WL, Chui CK, Ong SH (2012) A clustering-based system to automate transfer function design for medical image visualization. Vis Comput 28(2):181–191 CrossRef Nguyen BP, Tay WL, Chui CK, Ong SH (2012) A clustering-based system to automate transfer function design for medical image visualization. Vis Comput 28(2):181–191 CrossRef
Zurück zum Zitat Obermaier H, Joy KI (2013) Local data models for probabilistic transfer function design. In: EuroVis, pp 43–47 Obermaier H, Joy KI (2013) Local data models for probabilistic transfer function design. In: EuroVis, pp 43–47
Zurück zum Zitat Sereda P, Bartroli AV, Serlie IWO, Gerritsen FA (2006) Visualization of boundaries in volumetric data sets using LH histograms. IEEE Trans Vis Comput Graph 12(2):208–218 CrossRef Sereda P, Bartroli AV, Serlie IWO, Gerritsen FA (2006) Visualization of boundaries in volumetric data sets using LH histograms. IEEE Trans Vis Comput Graph 12(2):208–218 CrossRef
Zurück zum Zitat Tzeng FY, Lum EB, Ma KL (2005) An intelligent system approach to higher-dimensional classification of volume data. IEEE Trans Vis Comput Graph 11(3):273–284 CrossRef Tzeng FY, Lum EB, Ma KL (2005) An intelligent system approach to higher-dimensional classification of volume data. IEEE Trans Vis Comput Graph 11(3):273–284 CrossRef
Zurück zum Zitat Vania M, Mureja D, Lee D (2019) Automatic spine segmentation from CT images using convolutional neural network via redundant generation of class labels. J Comput Des Eng 6(2):224–232 Vania M, Mureja D, Lee D (2019) Automatic spine segmentation from CT images using convolutional neural network via redundant generation of class labels. J Comput Des Eng 6(2):224–232
Zurück zum Zitat Wang YH, Chen W, Zhang J, Dong TX, Shan GH, Chi XB (2011) Efficient volume exploration using the Gaussian mixture model. IEEE Trans Vis Comput Graph 17(11):1560–1573 CrossRef Wang YH, Chen W, Zhang J, Dong TX, Shan GH, Chi XB (2011) Efficient volume exploration using the Gaussian mixture model. IEEE Trans Vis Comput Graph 17(11):1560–1573 CrossRef
Zurück zum Zitat Wang L, Zhao X, Kaufman AE (2012a) Modified dendrogram of attribute space for multidimensional transfer function design. IEEE Trans Vis Comput Graph 18(1):121–131 CrossRef Wang L, Zhao X, Kaufman AE (2012a) Modified dendrogram of attribute space for multidimensional transfer function design. IEEE Trans Vis Comput Graph 18(1):121–131 CrossRef
Zurück zum Zitat Wang Y, Zhang J, Lehmann D, Theisel H, Chi X (2012b) Automating transfer function design with valley cell-based clustering of 2D density plots. In: EuroVis, pp 1295–1304 Wang Y, Zhang J, Lehmann D, Theisel H, Chi X (2012b) Automating transfer function design with valley cell-based clustering of 2D density plots. In: EuroVis, pp 1295–1304
Zurück zum Zitat Wesarg S, Kirschner M (2009) 3D visualization of medical image data employing 2D histograms. In: Proceedings of second international conference in visualization, pp 153–158 Wesarg S, Kirschner M (2009) 3D visualization of medical image data employing 2D histograms. In: Proceedings of second international conference in visualization, pp 153–158
Zurück zum Zitat Wolfgang B (2014) Applied medial image processing: a basic course, 2nd edn. CRC Press, Boca Raton Wolfgang B (2014) Applied medial image processing: a basic course, 2nd edn. CRC Press, Boca Raton
Zurück zum Zitat Zhang HJ, Qu DZ, Liu QL, Shang Q, Hou YF, Shen HW (2018) Uncertainty visualization for variable associations analysis. Vis Comput 34:531–549 CrossRef Zhang HJ, Qu DZ, Liu QL, Shang Q, Hou YF, Shen HW (2018) Uncertainty visualization for variable associations analysis. Vis Comput 34:531–549 CrossRef
Zurück zum Zitat Zhao X, Kaufman A (2010) Multi-dimensional reduction and transfer function design using parallel coordinates. In: Proceedings of the 8th IEEE international conference on volume graphics, pp 69–76 Zhao X, Kaufman A (2010) Multi-dimensional reduction and transfer function design using parallel coordinates. In: Proceedings of the 8th IEEE international conference on volume graphics, pp 69–76
Zurück zum Zitat Zhou L, Hansen C (2014) GuideME: slice-guided semiautomatic multivariate exploration of volumes. Comput Graph Forum 33(3):151–160 CrossRef Zhou L, Hansen C (2014) GuideME: slice-guided semiautomatic multivariate exploration of volumes. Comput Graph Forum 33(3):151–160 CrossRef
Metadaten
Titel
Gaussian mixture model-based target feature extraction and visualization
verfasst von
Ji Ma
Jinjin Chen
Liye Chen
Xingjian Zhou
Xujia Qin
Ying Tang
Guodao Sun
Jiazhou Chen
Publikationsdatum
03.01.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Journal of Visualization / Ausgabe 3/2021
Print ISSN: 1343-8875
Elektronische ISSN: 1875-8975
DOI
https://doi.org/10.1007/s12650-020-00724-0

Weitere Artikel der Ausgabe 3/2021

Journal of Visualization 3/2021 Zur Ausgabe

Premium Partner