Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

03.12.2018 | Focus

Gender classification from face images by mixing the classifier outcome of prime, distinct descriptors

Zeitschrift:
Soft Computing
Autoren:
A. Geetha, M. Sundaram, B. Vijayakumari
Wichtige Hinweise
Communicated by P. Pandian.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliation.

Abstract

Since the last decade, the area of recognizing gender of a person from an image of his/her face has been playing an important role in the research field. A automatic gender recognition is an important concept, essential for many fields like forensic science and automatic payment system. However, it is very onerous due to high variability factors such as illumination, expression, pose, age, scales, camera quality and occlusion. Humans can easily recognize the difference between genders, but it is a critical task for computer. To overcome this issue, many experimental results have been explained in the existing literature as per the advancement of machine vision. But, still definite optimal solution could not be found. For practical usage, a novel full approach to gender classification which is mainly based on image intensity variation, shape and texture features is proposed in this work. These multi-attribute features are mixed at different spatial scales or levels. The proposed novel system uses two datasets such as Facial ExpressIon Set (FEI) dataset and self-built dataset with various facial expressions. In this research, eight local directional pattern algorithms are used for extracting facial edge feature. Local binary pattern is also used for extracting texture feature, whereas intensity as a added feature. Finally, spatial histograms computed from the above features are concatenated to build a gender descriptor. The proposed descriptor efficiently extracts discriminating information from three different levels, including regional, global and directional level. After the extraction of a gender descriptor, effective linear kernel-based support vector machine superior to other classifiers is used to classify the face image as either male or female. The experimental results show that the classification accuracy obtained with the mixture of outcome of multi-scale, multi-block, distinct and prime feature classification is better than having a single-scaled image. It is worth mentioning that the proposed approach is implemented in MATLAB which achieves an accuracy of 99% on the FEI face dataset (200 faces) and 94% on self-built dataset (200 faces).

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit dem Kombi-Abo erhalten Sie vollen Zugriff auf über 1,8 Mio. Dokumente aus mehr als 61.000 Fachbüchern und rund 500 Fachzeitschriften aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit dem Wirtschafts-Abo erhalten Sie Zugriff auf über 1 Mio. Dokumente aus mehr als 45.000 Fachbüchern und 300 Fachzeitschriften aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit dem Technik-Abo erhalten Sie Zugriff auf über 1 Mio. Dokumente aus mehr als 40.000 Fachbüchern und 300 Fachzeitschriften aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Premium Partner

BranchenIndex Online

Die B2B-Firmensuche für Industrie und Wirtschaft: Kostenfrei in Firmenprofilen nach Lieferanten, Herstellern, Dienstleistern und Händlern recherchieren.

Whitepaper

- ANZEIGE -

Best Practices für die Mitarbeiter-Partizipation in der Produktentwicklung

Unternehmen haben das Innovationspotenzial der eigenen Mitarbeiter auch außerhalb der F&E-Abteilung erkannt. Viele Initiativen zur Partizipation scheitern in der Praxis jedoch häufig. Lesen Sie hier  - basierend auf einer qualitativ-explorativen Expertenstudie - mehr über die wesentlichen Problemfelder der mitarbeiterzentrierten Produktentwicklung und profitieren Sie von konkreten Handlungsempfehlungen aus der Praxis.
Jetzt gratis downloaden!

Bildnachweise