Skip to main content
Erschienen in: Medical & Biological Engineering & Computing 7/2018

19.12.2017 | Original Article

Gene selection for microarray data classification via subspace learning and manifold regularization

verfasst von: Chang Tang, Lijuan Cao, Xiao Zheng, Minhui Wang

Erschienen in: Medical & Biological Engineering & Computing | Ausgabe 7/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

With the rapid development of DNA microarray technology, large amount of genomic data has been generated. Classification of these microarray data is a challenge task since gene expression data are often with thousands of genes but a small number of samples. In this paper, an effective gene selection method is proposed to select the best subset of genes for microarray data with the irrelevant and redundant genes removed. Compared with original data, the selected gene subset can benefit the classification task. We formulate the gene selection task as a manifold regularized subspace learning problem. In detail, a projection matrix is used to project the original high dimensional microarray data into a lower dimensional subspace, with the constraint that the original genes can be well represented by the selected genes. Meanwhile, the local manifold structure of original data is preserved by a Laplacian graph regularization term on the low-dimensional data space. The projection matrix can serve as an importance indicator of different genes. An iterative update algorithm is developed for solving the problem. Experimental results on six publicly available microarray datasets and one clinical dataset demonstrate that the proposed method performs better when compared with other state-of-the-art methods in terms of microarray data classification.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Lj VTV, Dai H, Mj VDV, He YD, Hart AA, Mao M, Peterse HL, Van DKK, Marton MJ, Witteveen AT (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415(6871):530–536CrossRef Lj VTV, Dai H, Mj VDV, He YD, Hart AA, Mao M, Peterse HL, Van DKK, Marton MJ, Witteveen AT (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415(6871):530–536CrossRef
2.
Zurück zum Zitat Kolali KM, Bazrafkan M (2016) A novel sparse coding algorithm for classification of tumors based on gene expression data. Med Biol Eng Comput 54(6):869CrossRef Kolali KM, Bazrafkan M (2016) A novel sparse coding algorithm for classification of tumors based on gene expression data. Med Biol Eng Comput 54(6):869CrossRef
3.
Zurück zum Zitat Kurgan LA, Cios KJ, Tadeusiewicz R, Ogiela M, Goodenday LS (2001) Knowledge discovery approach to automated cardiac spect diagnosis. Artif Intell Med 23(2):149–169CrossRefPubMed Kurgan LA, Cios KJ, Tadeusiewicz R, Ogiela M, Goodenday LS (2001) Knowledge discovery approach to automated cardiac spect diagnosis. Artif Intell Med 23(2):149–169CrossRefPubMed
4.
Zurück zum Zitat Liao JC, Boscolo R, Yang YL, Tran LM, Sabatti C, Roychowdhury VP (2003) Network component analysis: reconstruction of regulatory signals in biological systems. Proc Natl Acad Sci USA 100(26):15522–15527CrossRefPubMedPubMedCentral Liao JC, Boscolo R, Yang YL, Tran LM, Sabatti C, Roychowdhury VP (2003) Network component analysis: reconstruction of regulatory signals in biological systems. Proc Natl Acad Sci USA 100(26):15522–15527CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Guo S, Guo D, Chen L, Jiang Q (2017) A l1-regularized feature selection method for local dimension reduction on microarray data. Comput Biol Chem 67:92–101CrossRefPubMed Guo S, Guo D, Chen L, Jiang Q (2017) A l1-regularized feature selection method for local dimension reduction on microarray data. Comput Biol Chem 67:92–101CrossRefPubMed
6.
Zurück zum Zitat Jiang X, Gao J, Hong X, Cai Z (2014) Gaussian processes autoencoder for dimensionality reduction. In: Pacific-asia conference on knowledge discovery and data mining, pp 62–73 Jiang X, Gao J, Hong X, Cai Z (2014) Gaussian processes autoencoder for dimensionality reduction. In: Pacific-asia conference on knowledge discovery and data mining, pp 62–73
7.
Zurück zum Zitat Jiang X, Song X, Gao J, Cai Z, Zhang D (2016) Nonparametrically guided autoencoder with laplace approximation for dimensionality reduction. In: International joint conference on neural networks, pp 3378–3384 Jiang X, Song X, Gao J, Cai Z, Zhang D (2016) Nonparametrically guided autoencoder with laplace approximation for dimensionality reduction. In: International joint conference on neural networks, pp 3378–3384
8.
Zurück zum Zitat Ramos J, Castellanos-Garzón JA, González-Briones A, Paz JFD, Corchado JM (2017) An agent-based clustering approach for gene selection in gene expression microarray. Interdisciplinary Sci Comput Life Sci 9(1):1–13CrossRef Ramos J, Castellanos-Garzón JA, González-Briones A, Paz JFD, Corchado JM (2017) An agent-based clustering approach for gene selection in gene expression microarray. Interdisciplinary Sci Comput Life Sci 9(1):1–13CrossRef
9.
Zurück zum Zitat Wang WZ, Yang BP, Feng CL, Wang JG, Xiong GR, Zhao TT, Zhang SZ (2017) Efficient sugarcane transformation via bar gene selection. Trop Plant Biol 10:1–9CrossRef Wang WZ, Yang BP, Feng CL, Wang JG, Xiong GR, Zhao TT, Zhang SZ (2017) Efficient sugarcane transformation via bar gene selection. Trop Plant Biol 10:1–9CrossRef
10.
Zurück zum Zitat Sharbaf FV, Mosafer S, Moattar MH (2016) A hybrid gene selection approach for microarray data classification using cellular learning automata and ant colony optimization. Genomics 107(6):231CrossRef Sharbaf FV, Mosafer S, Moattar MH (2016) A hybrid gene selection approach for microarray data classification using cellular learning automata and ant colony optimization. Genomics 107(6):231CrossRef
11.
Zurück zum Zitat Lv J, Peng Q, Chen X, Sun Z (2016) A multi-objective heuristic algorithm for gene expression microarray data classification. Expert Syst Appl Int J 59:13–19CrossRef Lv J, Peng Q, Chen X, Sun Z (2016) A multi-objective heuristic algorithm for gene expression microarray data classification. Expert Syst Appl Int J 59:13–19CrossRef
12.
Zurück zum Zitat Wang H, Jing X, Niu B (2017) A discrete bacterial algorithm for feature selection in classification of microarray gene expression cancer data. Know-Based Syst 126:8–19CrossRef Wang H, Jing X, Niu B (2017) A discrete bacterial algorithm for feature selection in classification of microarray gene expression cancer data. Know-Based Syst 126:8–19CrossRef
13.
Zurück zum Zitat Zhou LT, Cao YH, Lv LL, Ma KL, Chen PS, Ni HF, Lei XD, Liu BC Feature selection and classification of urinary mrna microarray data by iterative random forest to diagnose renal fibrosis: a two-stage study, Scientific Reports 7 Zhou LT, Cao YH, Lv LL, Ma KL, Chen PS, Ni HF, Lei XD, Liu BC Feature selection and classification of urinary mrna microarray data by iterative random forest to diagnose renal fibrosis: a two-stage study, Scientific Reports 7
14.
Zurück zum Zitat Duda RO, Hart PE, Stork DG (2001) Pattern Classification (2nd Edition). Wiley, New York Duda RO, Hart PE, Stork DG (2001) Pattern Classification (2nd Edition). Wiley, New York
15.
Zurück zum Zitat Dy JG, Brodley CE (2004) Feature selection for unsupervised learning. J Mach Learn Res 5:845–889 Dy JG, Brodley CE (2004) Feature selection for unsupervised learning. J Mach Learn Res 5:845–889
16.
Zurück zum Zitat He X, Cai D, Niyogi P (2005) Laplacian score for feature selection. NIPS 18:507–514 He X, Cai D, Niyogi P (2005) Laplacian score for feature selection. NIPS 18:507–514
17.
Zurück zum Zitat Mitra P, Murthy C, Pal SK (2002) Unsupervised feature selection using feature similarity. IEEE Trans Pattern Anal Mach Intell 24(3):301–312CrossRef Mitra P, Murthy C, Pal SK (2002) Unsupervised feature selection using feature similarity. IEEE Trans Pattern Anal Mach Intell 24(3):301–312CrossRef
18.
Zurück zum Zitat Nie F, Xiang S, Jia Y, Zhang C, Yan S (2008) Trace ratio criterion for feature selection. In: NCAI, pp 671–676 Nie F, Xiang S, Jia Y, Zhang C, Yan S (2008) Trace ratio criterion for feature selection. In: NCAI, pp 671–676
19.
Zurück zum Zitat Oh IS, Lee JS, Moon BR (2004) Hybrid genetic algorithms for feature selection. IEEE Trans Pattern Anal Mach Intell 26(11):1424–37CrossRefPubMed Oh IS, Lee JS, Moon BR (2004) Hybrid genetic algorithms for feature selection. IEEE Trans Pattern Anal Mach Intell 26(11):1424–37CrossRefPubMed
20.
Zurück zum Zitat Bolón-Canedo V, Sánchez-Maroño N, Alonso-Betanzos A, Benítez JM, Herrera F (2014) A review of microarray datasets and applied feature selection methods. Inf Sci 282(5):111–135CrossRef Bolón-Canedo V, Sánchez-Maroño N, Alonso-Betanzos A, Benítez JM, Herrera F (2014) A review of microarray datasets and applied feature selection methods. Inf Sci 282(5):111–135CrossRef
21.
Zurück zum Zitat Cai D, Zhang C, He X (2010) Unsupervised feature selection for multi-cluster data. In: SIGKDD, pp 333–342 Cai D, Zhang C, He X (2010) Unsupervised feature selection for multi-cluster data. In: SIGKDD, pp 333–342
22.
Zurück zum Zitat Zhao Z, Wang L, Liu H et al (2010) Efficient spectral feature selection with minimum redundancy. In: AAAI, pp 673–678 Zhao Z, Wang L, Liu H et al (2010) Efficient spectral feature selection with minimum redundancy. In: AAAI, pp 673–678
23.
Zurück zum Zitat Zhao Z, Liu H (2007) Spectral feature selection for supervised and unsupervised learning. In: ICML, pp 1151–1157 Zhao Z, Liu H (2007) Spectral feature selection for supervised and unsupervised learning. In: ICML, pp 1151–1157
24.
Zurück zum Zitat Li Z, Yang Y, Liu J, Zhou X, Lu H (2012) Unsupervised feature selection using nonnegative spectral analysis. In: NCAI, pp 1026–1032 Li Z, Yang Y, Liu J, Zhou X, Lu H (2012) Unsupervised feature selection using nonnegative spectral analysis. In: NCAI, pp 1026–1032
25.
Zurück zum Zitat Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA (1999) Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Brain Res 501(2):205–14 Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA (1999) Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Brain Res 501(2):205–14
26.
Zurück zum Zitat Thomas JG, Olson JM, Tapscott SJ, Zhao LP (2001) An efficient and robust statistical modeling approach to discover differentially expressed genes using genomic expression profiles. Genome Res 11(7):1227CrossRefPubMedPubMedCentral Thomas JG, Olson JM, Tapscott SJ, Zhao LP (2001) An efficient and robust statistical modeling approach to discover differentially expressed genes using genomic expression profiles. Genome Res 11(7):1227CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Dudoit S, Yang YH, Callow MJ, Speed TP (2000) Statistical methods for identifying differentially expressed genes in replicated cdna microarray experiments. Stat sinica 12(1):111–139 Dudoit S, Yang YH, Callow MJ, Speed TP (2000) Statistical methods for identifying differentially expressed genes in replicated cdna microarray experiments. Stat sinica 12(1):111–139
28.
Zurück zum Zitat Long AD, Mangalam HJ, Chan BY, Tolleri L, Hatfield GW, Baldi P (2001) Improved statistical inference from dna microarray data using analysis of variance and a bayesian statistical framework. analysis of global gene expression in escherichia coli k12. J Biol Chem 276(23):19937–44CrossRefPubMed Long AD, Mangalam HJ, Chan BY, Tolleri L, Hatfield GW, Baldi P (2001) Improved statistical inference from dna microarray data using analysis of variance and a bayesian statistical framework. analysis of global gene expression in escherichia coli k12. J Biol Chem 276(23):19937–44CrossRefPubMed
29.
Zurück zum Zitat Cai R, Hao Z, Yang X, Wen W (2009) An efficient gene selection algorithm based on mutual information. Neurocomputing 72(4-6):991–999CrossRef Cai R, Hao Z, Yang X, Wen W (2009) An efficient gene selection algorithm based on mutual information. Neurocomputing 72(4-6):991–999CrossRef
30.
Zurück zum Zitat Chuang LY, Yang CH, Li JC, Yang CH (2012) A hybrid bpso-cga approach for gene selection and classification of microarray data. J Comput Biol A J Comput Mol Cell Biol 19(1):68CrossRef Chuang LY, Yang CH, Li JC, Yang CH (2012) A hybrid bpso-cga approach for gene selection and classification of microarray data. J Comput Biol A J Comput Mol Cell Biol 19(1):68CrossRef
31.
Zurück zum Zitat Wang Y, Tetko IV, Hall MA, Frank E, Facius A, Mayer KFX, Mewes HW (2005) Gene selection from microarray data for cancer classification-a machine learning approach. Comput Biol Chem 29(1):37–46CrossRefPubMed Wang Y, Tetko IV, Hall MA, Frank E, Facius A, Mayer KFX, Mewes HW (2005) Gene selection from microarray data for cancer classification-a machine learning approach. Comput Biol Chem 29(1):37–46CrossRefPubMed
32.
Zurück zum Zitat Gevaert O, Smet FD, Timmerman D, Moreau Y, Moor BD (2006) Predicting the prognosis of breast cancer by integrating clinical and microarray data with bayesian networks. Bioinformatics 22(14):e184—90CrossRefPubMed Gevaert O, Smet FD, Timmerman D, Moreau Y, Moor BD (2006) Predicting the prognosis of breast cancer by integrating clinical and microarray data with bayesian networks. Bioinformatics 22(14):e184—90CrossRefPubMed
33.
Zurück zum Zitat Peng H, Long F, Ding C (2005) Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27(8):1226–1238CrossRefPubMed Peng H, Long F, Ding C (2005) Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27(8):1226–1238CrossRefPubMed
34.
Zurück zum Zitat Battiti R (1994) Using mutual information for selecting features in supervised neural net learning. IEEE Trans Neural Netw 5(4):537–550CrossRefPubMed Battiti R (1994) Using mutual information for selecting features in supervised neural net learning. IEEE Trans Neural Netw 5(4):537–550CrossRefPubMed
35.
Zurück zum Zitat Guyon I, Weston J, Barnhill S, Vapnik V (2002) Gene selection for cancer classification using support vector machines. Mach Learn 46(1):389–422CrossRef Guyon I, Weston J, Barnhill S, Vapnik V (2002) Gene selection for cancer classification using support vector machines. Mach Learn 46(1):389–422CrossRef
36.
37.
Zurück zum Zitat Wang YX, Liu JX, Gao YL, Zheng CH, Shang JL (2016) Differentially expressed genes selection via laplacian regularized low-rank representation method. Comput Biol Chem 65(1):185–192CrossRefPubMed Wang YX, Liu JX, Gao YL, Zheng CH, Shang JL (2016) Differentially expressed genes selection via laplacian regularized low-rank representation method. Comput Biol Chem 65(1):185–192CrossRefPubMed
38.
Zurück zum Zitat Wang D, Liu JX, Gao YL, Yu J, Zheng CH, Xu Y (2016) An nmf-l2,1-norm constraint method for characteristic gene selection. Plos One 11(7):e0158494CrossRefPubMedPubMedCentral Wang D, Liu JX, Gao YL, Yu J, Zheng CH, Xu Y (2016) An nmf-l2,1-norm constraint method for characteristic gene selection. Plos One 11(7):e0158494CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Zheng CH, Ng TY, Zhang D, Shiu CK (2011) Tumor classification based on non-negative matrix factorization using gene expression data. IEEE Trans Nanobioscience 10(2):86–93CrossRefPubMed Zheng CH, Ng TY, Zhang D, Shiu CK (2011) Tumor classification based on non-negative matrix factorization using gene expression data. IEEE Trans Nanobioscience 10(2):86–93CrossRefPubMed
40.
Zurück zum Zitat Du S, Ma Y, Li S, Ma Y (2017) Robust unsupervised feature selection via matrix factorization. Neurocomputing 241:115–127CrossRef Du S, Ma Y, Li S, Ma Y (2017) Robust unsupervised feature selection via matrix factorization. Neurocomputing 241:115–127CrossRef
41.
Zurück zum Zitat Zhu P, Zuo W, Zhang L, Hu Q, Shiu SCK (2015) Unsupervised feature selection by regularized self-representation. Pattern Recogn 48(2):438–446CrossRef Zhu P, Zuo W, Zhang L, Hu Q, Shiu SCK (2015) Unsupervised feature selection by regularized self-representation. Pattern Recogn 48(2):438–446CrossRef
42.
Zurück zum Zitat Shang R, Zhang Z, Jiao L, Liu C, Li Y (2016) Self-representation based dual-graph regularized feature selection clustering. Neurocomputing 171(1):1242–1253CrossRef Shang R, Zhang Z, Jiao L, Liu C, Li Y (2016) Self-representation based dual-graph regularized feature selection clustering. Neurocomputing 171(1):1242–1253CrossRef
43.
Zurück zum Zitat Zhu P, Zhu W, Wang W, Zuo W, Hu Q (2017) Non-convex regularized self-representation for unsupervised feature selection. Image Vis Comput 60(1):22–29CrossRef Zhu P, Zhu W, Wang W, Zuo W, Hu Q (2017) Non-convex regularized self-representation for unsupervised feature selection. Image Vis Comput 60(1):22–29CrossRef
44.
Zurück zum Zitat Liu Y, Liu K, Zhang C, Wang J, Wang X (2017) Unsupervised feature selection via diversity-induced self-representation. Neurocomputing 219:350–363CrossRef Liu Y, Liu K, Zhang C, Wang J, Wang X (2017) Unsupervised feature selection via diversity-induced self-representation. Neurocomputing 219:350–363CrossRef
45.
Zurück zum Zitat Zhu X, Li X, Zhang S, Ju C, Wu X (2017) Robust joint graph sparse coding for unsupervised spectral feature selection. IEEE Trans Neural Netw Learn Syst 28(6):1263–1275CrossRefPubMed Zhu X, Li X, Zhang S, Ju C, Wu X (2017) Robust joint graph sparse coding for unsupervised spectral feature selection. IEEE Trans Neural Netw Learn Syst 28(6):1263–1275CrossRefPubMed
46.
Zurück zum Zitat Lee DD, Seung HS (1999) Learning the parts of objects by non-negativ matrix factorization. Nature 401 (6755):788CrossRefPubMed Lee DD, Seung HS (1999) Learning the parts of objects by non-negativ matrix factorization. Nature 401 (6755):788CrossRefPubMed
47.
Zurück zum Zitat Cai D, He X, Han J, Huang TS (2011) Graph regularized nonnegative matrix factorization for data representation. IEEE Trans Pattern Anal Mach Intell 33(8):1548–1560CrossRefPubMed Cai D, He X, Han J, Huang TS (2011) Graph regularized nonnegative matrix factorization for data representation. IEEE Trans Pattern Anal Mach Intell 33(8):1548–1560CrossRefPubMed
48.
Zurück zum Zitat Belkin M, Niyogi P (2002) Laplacian eigenmaps and spectral techniques for embedding and clustering. Adv Neural Inf Proces Syst 14(6):585–591 Belkin M, Niyogi P (2002) Laplacian eigenmaps and spectral techniques for embedding and clustering. Adv Neural Inf Proces Syst 14(6):585–591
49.
Zurück zum Zitat He X, Niyogi P (2003) Locality preserving projections. In: Advances in Neural Information Processing Systems, pp 186–197 He X, Niyogi P (2003) Locality preserving projections. In: Advances in Neural Information Processing Systems, pp 186–197
50.
Zurück zum Zitat Hestenes MR (1969) Multiplier and gradient methods. J Optim Theory Appl 4(5):303–320CrossRef Hestenes MR (1969) Multiplier and gradient methods. J Optim Theory Appl 4(5):303–320CrossRef
51.
Zurück zum Zitat Ito K, Kunisch K (2010) Lagrange multiplier approach to variational problems and applications. Society for Industrial and Applied Mathematics Ito K, Kunisch K (2010) Lagrange multiplier approach to variational problems and applications. Society for Industrial and Applied Mathematics
52.
Zurück zum Zitat Tang C, Wang P, Zhang C, Li W (2017) Salient object detection via weighted low rank matrix recovery. IEEE Signal Process Lett 24(4):490–494CrossRef Tang C, Wang P, Zhang C, Li W (2017) Salient object detection via weighted low rank matrix recovery. IEEE Signal Process Lett 24(4):490–494CrossRef
53.
Zurück zum Zitat Tang C, Cao L, Chen J, Zheng X (2017) Speckle noise reduction for optical coherence tomography images via non-local weighted group low-rank representation. Laser Phys Lett 14(5):056002CrossRef Tang C, Cao L, Chen J, Zheng X (2017) Speckle noise reduction for optical coherence tomography images via non-local weighted group low-rank representation. Laser Phys Lett 14(5):056002CrossRef
54.
Zurück zum Zitat Boyd S, Vandenberghe L (2004) Convex Optimization. Cambridge University Press, CambridgeCrossRef Boyd S, Vandenberghe L (2004) Convex Optimization. Cambridge University Press, CambridgeCrossRef
55.
Zurück zum Zitat Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297 Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297
56.
Zurück zum Zitat Platt JC (1999) Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Advances in Large Margin Classifiers 10(4):61–74 Platt JC (1999) Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Advances in Large Margin Classifiers 10(4):61–74
57.
Zurück zum Zitat Ho TK (2002) Random decision forests. In: International Conference on Document Analysis and Recognition, p 278 Ho TK (2002) Random decision forests. In: International Conference on Document Analysis and Recognition, p 278
58.
Zurück zum Zitat Ho TK (1998) The random subspace method for constructing decision forests. IEEE Trans Pattern Anal Mach Intell 20(8):832–844CrossRef Ho TK (1998) The random subspace method for constructing decision forests. IEEE Trans Pattern Anal Mach Intell 20(8):832–844CrossRef
59.
Zurück zum Zitat Altman NS (1992) An introduction to kernel and nearest-neighbor nonparametric regression. Am Stat 46 (3):175–185 Altman NS (1992) An introduction to kernel and nearest-neighbor nonparametric regression. Am Stat 46 (3):175–185
60.
Zurück zum Zitat Geisser S (1993) Predictive inference : an introduction. Chapman and Hall, LondonCrossRef Geisser S (1993) Predictive inference : an introduction. Chapman and Hall, LondonCrossRef
61.
Zurück zum Zitat Kohavi R (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection. In: International Joint Conference on Artificial Intelligence, pp 1137–1143 Kohavi R (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection. In: International Joint Conference on Artificial Intelligence, pp 1137–1143
62.
Zurück zum Zitat Devijver PA, Kittler J (1982) Pattern recognition: a statistical approach. Prentice/hall International, New Jersey Devijver PA, Kittler J (1982) Pattern recognition: a statistical approach. Prentice/hall International, New Jersey
63.
Zurück zum Zitat Cheng WC, Tsai ML, Chang CW, Huang CL, Chen CR, Shu WY, Lee YS, Wang TH, Hong JH, Li CY (2010) Microarray meta-analysis database (m(2)db): a uniformly pre-processed, quality controlled, and manually curated human clinical microarray database. Bmc Bioinformatics 11(1):421CrossRefPubMedPubMedCentral Cheng WC, Tsai ML, Chang CW, Huang CL, Chen CR, Shu WY, Lee YS, Wang TH, Hong JH, Li CY (2010) Microarray meta-analysis database (m(2)db): a uniformly pre-processed, quality controlled, and manually curated human clinical microarray database. Bmc Bioinformatics 11(1):421CrossRefPubMedPubMedCentral
64.
Zurück zum Zitat Guo S, Guo D, Chen L, Jiang Q (2016) A centroid-based gene selection method for microarray data classification. J Theor Biol 400:32–41CrossRefPubMed Guo S, Guo D, Chen L, Jiang Q (2016) A centroid-based gene selection method for microarray data classification. J Theor Biol 400:32–41CrossRefPubMed
65.
Zurück zum Zitat Chang CC, Lin CJ (2011) Libsvm: A library for support vector machines. ACM Trans Intell Syst Technol 2(27):1–27CrossRef Chang CC, Lin CJ (2011) Libsvm: A library for support vector machines. ACM Trans Intell Syst Technol 2(27):1–27CrossRef
66.
Zurück zum Zitat Zhou X, Tuck DP (2007) Msvm-rfe: extensions of svm-rfe for multiclass gene selection on dna microarray data. Bioinformatics 23(9):1106–1114CrossRefPubMed Zhou X, Tuck DP (2007) Msvm-rfe: extensions of svm-rfe for multiclass gene selection on dna microarray data. Bioinformatics 23(9):1106–1114CrossRefPubMed
67.
Zurück zum Zitat Cao KAL, Bonnet A, Gadat S (2009) Multiclass classification and gene selection with a stochastic algorithm. Comput Stat Data Anal 53(10):3601–3615CrossRef Cao KAL, Bonnet A, Gadat S (2009) Multiclass classification and gene selection with a stochastic algorithm. Comput Stat Data Anal 53(10):3601–3615CrossRef
68.
69.
Zurück zum Zitat Zhao G, Wu Y Feature subset selection for cancer classification using weight local modularity, Scientific Reports 6 Zhao G, Wu Y Feature subset selection for cancer classification using weight local modularity, Scientific Reports 6
70.
Zurück zum Zitat An S, Wang J, Wei J (2017) Local-nearest-neighbors-based feature weighting for gene selection. IEEE/ACM Trans Comput Biol Bioinform PP(99):1–1CrossRef An S, Wang J, Wei J (2017) Local-nearest-neighbors-based feature weighting for gene selection. IEEE/ACM Trans Comput Biol Bioinform PP(99):1–1CrossRef
71.
Zurück zum Zitat Chen KH, Wang KJ, Tsai ML, Wang KM, Adrian AM, Cheng WC, Yang TS, Teng NC, Tan KP, Chang KS (2014) Gene selection for cancer identification: a decision tree model empowered by particle swarm optimization algorithm. Bmc Bioinform 15(1):49CrossRef Chen KH, Wang KJ, Tsai ML, Wang KM, Adrian AM, Cheng WC, Yang TS, Teng NC, Tan KP, Chang KS (2014) Gene selection for cancer identification: a decision tree model empowered by particle swarm optimization algorithm. Bmc Bioinform 15(1):49CrossRef
72.
Zurück zum Zitat Li X, Li M, Yin M (2016) Multiobjective ranking binary artificial bee colony for gene selection problems using microarray datasets. IEEE/CAA J Automatica Sinica PP(99):1–16 Li X, Li M, Yin M (2016) Multiobjective ranking binary artificial bee colony for gene selection problems using microarray datasets. IEEE/CAA J Automatica Sinica PP(99):1–16
73.
Zurück zum Zitat Golub GH, Van Loan CF (1996) Matrix computations (3rd ed.) Johns Hopkins University Press, Baltimore Golub GH, Van Loan CF (1996) Matrix computations (3rd ed.) Johns Hopkins University Press, Baltimore
Metadaten
Titel
Gene selection for microarray data classification via subspace learning and manifold regularization
verfasst von
Chang Tang
Lijuan Cao
Xiao Zheng
Minhui Wang
Publikationsdatum
19.12.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Medical & Biological Engineering & Computing / Ausgabe 7/2018
Print ISSN: 0140-0118
Elektronische ISSN: 1741-0444
DOI
https://doi.org/10.1007/s11517-017-1751-6

Weitere Artikel der Ausgabe 7/2018

Medical & Biological Engineering & Computing 7/2018 Zur Ausgabe