Skip to main content
Erschienen in: Neural Processing Letters 2/2020

07.01.2020

General and Improved Five-Step Discrete-Time Zeroing Neural Dynamics Solving Linear Time-Varying Matrix Equation with Unknown Transpose

verfasst von: Chaowei Hu, Yunong Zhang, Xiangui Kang

Erschienen in: Neural Processing Letters | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, a general five-step discrete-time zeroing neural dynamics (DTZND) model is proposed to solve linear time-varying matrix equation with unknown transpose. Specifically, the explicit continuous-time zeroing neural dynamics (CTZND) model is derived from the time-varying matrix equation with unknown transpose via Kronecker product and vectorization technique. Furthermore, a general five-step discretization formula is designed to approximate the first-order derivative of the target point, and the convergence condition is given. Thus, the general five-step DTZND model is obtained by using the general five-step discretization formula to discretize the CTZND model. Theoretical analyses present the stability and convergence of the proposed general five-step DTZND model. Numerical experiment results substantiate that the proposed DTZND model for solving linear time-varying matrix equation is stable and convergent with the theoretically analyzed errors. In addition, the improved DTZND models are provided in terms of accuracy and computational complexity, and verified by numerical experiments.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Cichocki A, Unbehauen R (1992) Neural networks for solving systems of linear equations and related problems. IEEE Trans Circuits Syst 39:124–138MATH Cichocki A, Unbehauen R (1992) Neural networks for solving systems of linear equations and related problems. IEEE Trans Circuits Syst 39:124–138MATH
2.
Zurück zum Zitat Pazos FA, Bhaya A (2009) Control Liapunov function design of neural networks that solve convex optimization and variational inequality problems. Neurocomputing 72:3863–3872 Pazos FA, Bhaya A (2009) Control Liapunov function design of neural networks that solve convex optimization and variational inequality problems. Neurocomputing 72:3863–3872
3.
Zurück zum Zitat Hajarian M (2013) Matrix iterative methods for solving the Sylvester-transpose and periodic Sylvester matrix equations. J Frankl Inst 350:3328–3341MathSciNetMATH Hajarian M (2013) Matrix iterative methods for solving the Sylvester-transpose and periodic Sylvester matrix equations. J Frankl Inst 350:3328–3341MathSciNetMATH
4.
Zurück zum Zitat Damm T, Hinrichsen D (2001) Newton’s method for a rational matrix equation occurring in stochastic control. Linear Algebra Appl 332–334:81–109MathSciNetMATH Damm T, Hinrichsen D (2001) Newton’s method for a rational matrix equation occurring in stochastic control. Linear Algebra Appl 332–334:81–109MathSciNetMATH
5.
Zurück zum Zitat Golub GH, Van Loan CF (1996) Matrix computations, 3rd edn. Johns Hopkins University Press, BaltimoreMATH Golub GH, Van Loan CF (1996) Matrix computations, 3rd edn. Johns Hopkins University Press, BaltimoreMATH
6.
Zurück zum Zitat Ding F, Liu PX, Ding J (2008) Iterative solutions of the generalized Sylvester matrix equations by using the hierarchical identification principle. Appl Math Comput 197:41–50MathSciNetMATH Ding F, Liu PX, Ding J (2008) Iterative solutions of the generalized Sylvester matrix equations by using the hierarchical identification principle. Appl Math Comput 197:41–50MathSciNetMATH
7.
Zurück zum Zitat Peng ZY (2010) New matrix iterative methods for constraint solutions of the matrix equation \(AXB=C\). J Comput Appl Math 235:726–735MathSciNetMATH Peng ZY (2010) New matrix iterative methods for constraint solutions of the matrix equation \(AXB=C\). J Comput Appl Math 235:726–735MathSciNetMATH
8.
Zurück zum Zitat Li SK, Huang TZ (2012) LSQR iterative method for generalized coupled Sylvester matrix equations. Appl Math Model 36:3545–3554MathSciNetMATH Li SK, Huang TZ (2012) LSQR iterative method for generalized coupled Sylvester matrix equations. Appl Math Model 36:3545–3554MathSciNetMATH
9.
Zurück zum Zitat Wang M, Cheng X, Wei M (2007) Iterative algorithms for solving the matrix equation \(AXB+CX^{\text{ T }}D=E\). Appl Math Comput 187:622–629MathSciNetMATH Wang M, Cheng X, Wei M (2007) Iterative algorithms for solving the matrix equation \(AXB+CX^{\text{ T }}D=E\). Appl Math Comput 187:622–629MathSciNetMATH
10.
Zurück zum Zitat Xie YJ, Ma CF (2016) The accelerated gradient based iterative algorithm for solving a class of generalized Sylvester-transpose matrix equation. Appl Math Comput 273:1257–1269MathSciNetMATH Xie YJ, Ma CF (2016) The accelerated gradient based iterative algorithm for solving a class of generalized Sylvester-transpose matrix equation. Appl Math Comput 273:1257–1269MathSciNetMATH
11.
Zurück zum Zitat Xie L, Liu Y, Yang H (2010) Gradient based and least squares based iterative algorithms for matrix equations \(AXB + CX^{\text{ T }}D = F\). Appl Math Comput 217:2191–2199MathSciNetMATH Xie L, Liu Y, Yang H (2010) Gradient based and least squares based iterative algorithms for matrix equations \(AXB + CX^{\text{ T }}D = F\). Appl Math Comput 217:2191–2199MathSciNetMATH
12.
Zurück zum Zitat Hu C, Jiang H, Teng Z (2010) Globally exponential stability for delayed neural networks under impulsive control. Neural Process Lett 31:105–127 Hu C, Jiang H, Teng Z (2010) Globally exponential stability for delayed neural networks under impulsive control. Neural Process Lett 31:105–127
13.
Zurück zum Zitat Cheng L, Hou ZG, Tan M (2009) A simplified neural network for linear matrix inequality problems. Neural Process Lett 29:213–230 Cheng L, Hou ZG, Tan M (2009) A simplified neural network for linear matrix inequality problems. Neural Process Lett 29:213–230
14.
Zurück zum Zitat Liu Y, Wang Z, Liu X (2009) On global stability of delayed BAM stochastic neural networks with markovian switching. Neural Process Lett 30:19–35 Liu Y, Wang Z, Liu X (2009) On global stability of delayed BAM stochastic neural networks with markovian switching. Neural Process Lett 30:19–35
15.
Zurück zum Zitat Xiao J, Zeng Z, Shen W (2015) Passivity analysis of delayed neural networks with discontinuous activations. Neural Process Lett 42:215–232 Xiao J, Zeng Z, Shen W (2015) Passivity analysis of delayed neural networks with discontinuous activations. Neural Process Lett 42:215–232
16.
Zurück zum Zitat Chen J, Kang X, Liu Y, Wang ZJ (2015) Median filtering forensics based on convolutional neural networks. IEEE Signal Process Lett 22:1849–1853 Chen J, Kang X, Liu Y, Wang ZJ (2015) Median filtering forensics based on convolutional neural networks. IEEE Signal Process Lett 22:1849–1853
17.
Zurück zum Zitat Le X, Yan Z, Xi J (2017) A collective neurodynamic system for distributed optimization with applications in model predictive control. IEEE Trans Emerg Top Comput Intell 1:305–314 Le X, Yan Z, Xi J (2017) A collective neurodynamic system for distributed optimization with applications in model predictive control. IEEE Trans Emerg Top Comput Intell 1:305–314
18.
Zurück zum Zitat Le X, Wang J (2017) A two-time-scale neurodynamic approach to constrained minimax optimization. IEEE Trans Neural Netw Learn Syst 28:620–629MathSciNet Le X, Wang J (2017) A two-time-scale neurodynamic approach to constrained minimax optimization. IEEE Trans Neural Netw Learn Syst 28:620–629MathSciNet
19.
Zurück zum Zitat Li S, Chen S, Liu B (2013) Accelerating a recurrent neural network to finite-time convergence for solving time-varying Sylvester equation by using a sign-bi-power activation function. Neural Process Lett 37:189–205 Li S, Chen S, Liu B (2013) Accelerating a recurrent neural network to finite-time convergence for solving time-varying Sylvester equation by using a sign-bi-power activation function. Neural Process Lett 37:189–205
20.
Zurück zum Zitat Shen Y, Miao P, Huang Y, Shen Y (2015) Finite-time stability and its application for solving time-varying Sylvester equation by recurrent neural network. Neural Process Lett 42:763–784 Shen Y, Miao P, Huang Y, Shen Y (2015) Finite-time stability and its application for solving time-varying Sylvester equation by recurrent neural network. Neural Process Lett 42:763–784
21.
Zurück zum Zitat Xiao L, Liao B, Li S, Chen K (2018) Nonlinear recurrent neural networks for finite-time solution of general time-varying linear matrix equations. Neural Netw 98:102–113 Xiao L, Liao B, Li S, Chen K (2018) Nonlinear recurrent neural networks for finite-time solution of general time-varying linear matrix equations. Neural Netw 98:102–113
22.
Zurück zum Zitat Zhang Z, Zheng L, Yu J, Li Y, Yu Z (2017) Three recurrent neural networks and three numerical methods for solving a repetitive motion planning scheme of redundant robot manipulators. IEEE/ASME Trans Mechatron 22:1423–1434 Zhang Z, Zheng L, Yu J, Li Y, Yu Z (2017) Three recurrent neural networks and three numerical methods for solving a repetitive motion planning scheme of redundant robot manipulators. IEEE/ASME Trans Mechatron 22:1423–1434
23.
Zurück zum Zitat Jin L, Zhang Y (2016) Continuous and discrete Zhang dynamics for real-time varying nonlinear optimization. Numer Algorithms 73:115–140MathSciNetMATH Jin L, Zhang Y (2016) Continuous and discrete Zhang dynamics for real-time varying nonlinear optimization. Numer Algorithms 73:115–140MathSciNetMATH
24.
Zurück zum Zitat Zhang Y, Zhang Y, Chen D, Xiao Z, Yan X (2017) Division by zero, pseudo-division by zero, Zhang dynamics method and Zhang-gradient method about control singularity conquering. Int J Syst Sci 48:1–12MathSciNetMATH Zhang Y, Zhang Y, Chen D, Xiao Z, Yan X (2017) Division by zero, pseudo-division by zero, Zhang dynamics method and Zhang-gradient method about control singularity conquering. Int J Syst Sci 48:1–12MathSciNetMATH
25.
Zurück zum Zitat Zhang Y, He L, Li S, Chen D, Ding Y (2017) Zeroing dynamics based motion control scheme for parallel manipulators. Electron Lett 53:74–75 Zhang Y, He L, Li S, Chen D, Ding Y (2017) Zeroing dynamics based motion control scheme for parallel manipulators. Electron Lett 53:74–75
26.
Zurück zum Zitat Zhang Y, Jiang D, Wang J (2002) A recurrent neural network for solving Sylvester equation with time-varying coefficients. IEEE Trans Neural Netw 13:1053–1063 Zhang Y, Jiang D, Wang J (2002) A recurrent neural network for solving Sylvester equation with time-varying coefficients. IEEE Trans Neural Netw 13:1053–1063
27.
Zurück zum Zitat Xiao L (2016) A new design formula exploited for accelerating Zhang neural network and its application to time-varying matrix inversion. Theor Comput Sci 647:50–58MathSciNetMATH Xiao L (2016) A new design formula exploited for accelerating Zhang neural network and its application to time-varying matrix inversion. Theor Comput Sci 647:50–58MathSciNetMATH
28.
Zurück zum Zitat Zhang Y, Yi C (2011) Zhang neural networks and neural-dynamic method. Nova Science, New York Zhang Y, Yi C (2011) Zhang neural networks and neural-dynamic method. Nova Science, New York
29.
Zurück zum Zitat Zhang Y, Zhang Y, Chen D, Xiao Z, Yan X (2017) From Davidenko method to Zhang dynamics for nonlinear equation systems solving. IEEE Trans Syst Man Cybern Syst 47:2817–2830 Zhang Y, Zhang Y, Chen D, Xiao Z, Yan X (2017) From Davidenko method to Zhang dynamics for nonlinear equation systems solving. IEEE Trans Syst Man Cybern Syst 47:2817–2830
30.
Zurück zum Zitat Zhang Y, Jin L, Guo D, Yin Y, Chou Y (2014) Taylor-type 1-step-ahead numerical differentiation rule for first-order derivative approximation and ZNN discretization. J Comput Appl Math 273:29–40MathSciNetMATH Zhang Y, Jin L, Guo D, Yin Y, Chou Y (2014) Taylor-type 1-step-ahead numerical differentiation rule for first-order derivative approximation and ZNN discretization. J Comput Appl Math 273:29–40MathSciNetMATH
31.
Zurück zum Zitat Hu C, Kang X, Zhang Y (2018) Three-step general discrete-time Zhang neural network design and application to time-variant matrix inversion. Neurocomputing 306:108–118 Hu C, Kang X, Zhang Y (2018) Three-step general discrete-time Zhang neural network design and application to time-variant matrix inversion. Neurocomputing 306:108–118
32.
Zurück zum Zitat Li J, Zhang Y, Li S, Mao M (2018) New discretization formula based zeroing dynamics for real-time tracking control of serial and parallel manipulators. IEEE Trans Ind Inform 14:3416–3425 Li J, Zhang Y, Li S, Mao M (2018) New discretization formula based zeroing dynamics for real-time tracking control of serial and parallel manipulators. IEEE Trans Ind Inform 14:3416–3425
33.
Zurück zum Zitat Guo D, Nie Z, Yan L (2017) Novel discrete-time Zhang neural network for time-varying matrix inversion. IEEE Trans Syst Man Cybern Syst 47:2301–2310 Guo D, Nie Z, Yan L (2017) Novel discrete-time Zhang neural network for time-varying matrix inversion. IEEE Trans Syst Man Cybern Syst 47:2301–2310
34.
Zurück zum Zitat Qiu B, Zhang Y (2019) Two new discrete-time neurodynamic algorithms applied to online future matrix inversion with nonsingular or sometimes-singular coefficient. IEEE Trans Cybern 49:2032–2045 Qiu B, Zhang Y (2019) Two new discrete-time neurodynamic algorithms applied to online future matrix inversion with nonsingular or sometimes-singular coefficient. IEEE Trans Cybern 49:2032–2045
35.
Zurück zum Zitat Petković MD, Stanimirović PS, Katsikis VN (2018) Modified discrete iterations for computing the inverse and pseudoinverse of the time-varying matrix. Neurocomputing 289:155–165 Petković MD, Stanimirović PS, Katsikis VN (2018) Modified discrete iterations for computing the inverse and pseudoinverse of the time-varying matrix. Neurocomputing 289:155–165
36.
Zurück zum Zitat Brewer JW (1978) Kronecker products and matrix calculus in system theory. IEEE Trans Circuits Syst 25:772–781MathSciNetMATH Brewer JW (1978) Kronecker products and matrix calculus in system theory. IEEE Trans Circuits Syst 25:772–781MathSciNetMATH
37.
Zurück zum Zitat Griffiths DF, Higham DJ (2010) Numerical methods for ordinary differential equations: initial value problems. Springer, BerlinMATH Griffiths DF, Higham DJ (2010) Numerical methods for ordinary differential equations: initial value problems. Springer, BerlinMATH
38.
Zurück zum Zitat Suli E, Mayers DF (2003) An introduction to numerical analysis. Cambridge University Press, OxfordMATH Suli E, Mayers DF (2003) An introduction to numerical analysis. Cambridge University Press, OxfordMATH
39.
Zurück zum Zitat Mathews JH, Fink KD (2004) Numerical methods using MATLAB, 4th edn. Prentice Hall, Upper Saddle River Mathews JH, Fink KD (2004) Numerical methods using MATLAB, 4th edn. Prentice Hall, Upper Saddle River
40.
Zurück zum Zitat Ogata K (2001) Modern control engineering, 4th edn. Prentice Hall, Upper Saddle RiverMATH Ogata K (2001) Modern control engineering, 4th edn. Prentice Hall, Upper Saddle RiverMATH
41.
Zurück zum Zitat Jin L, Zhang Y, Li S, Zhang Y (2017) Noise-tolerant ZNN models for solving time-varying zero-finding problems: a control-theoretic approach. IEEE Trans Autom Control 62:992–997MathSciNetMATH Jin L, Zhang Y, Li S, Zhang Y (2017) Noise-tolerant ZNN models for solving time-varying zero-finding problems: a control-theoretic approach. IEEE Trans Autom Control 62:992–997MathSciNetMATH
Metadaten
Titel
General and Improved Five-Step Discrete-Time Zeroing Neural Dynamics Solving Linear Time-Varying Matrix Equation with Unknown Transpose
verfasst von
Chaowei Hu
Yunong Zhang
Xiangui Kang
Publikationsdatum
07.01.2020
Verlag
Springer US
Erschienen in
Neural Processing Letters / Ausgabe 2/2020
Print ISSN: 1370-4621
Elektronische ISSN: 1573-773X
DOI
https://doi.org/10.1007/s11063-019-10181-y

Weitere Artikel der Ausgabe 2/2020

Neural Processing Letters 2/2020 Zur Ausgabe

Neuer Inhalt