Skip to main content
Erschienen in: Calcolo 3/2017

10.01.2017

General conformable fractional derivative and its physical interpretation

verfasst von: Dazhi Zhao, Maokang Luo

Erschienen in: Calcolo | Ausgabe 3/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Fractional calculus is a powerful and effective tool for modelling nonlinear systems. In this paper, we introduce a class of new fractional derivative named general conformable fractional derivative (GCFD) to describe the physical world. The GCFD is generalized from the concept of conformable fractional derivative (CFD) proposed by Khalil. We point out that the term \(t^{1-\alpha }\) in CFD definition is not essential and it is only a kind of “fractional conformable function”. We also give physical and geometrical interpretations of GCFD which thus indicate potential applications in physics and engineering. It is easy to demonstrate that CFD is a special case of GCFD, then to the authors’ knowledge, so far we first give the physical and geometrical interpretations of CFD. The above work is done by a new framework named Extended Gâteaux derivative and Linear Extended Gâteaux derivative which are natural extensions of Gâteaux derivative. As an application, we discuss a scheme for solving fractional differential equations of GCFD.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Valério, D., Machado, J., Kiryakova, V.: Some pioneers of the applications of fractional calculus. Fract. Calc. Appl. Anal. 17(2), 552–578 (2014)MathSciNetCrossRefMATH Valério, D., Machado, J., Kiryakova, V.: Some pioneers of the applications of fractional calculus. Fract. Calc. Appl. Anal. 17(2), 552–578 (2014)MathSciNetCrossRefMATH
2.
Zurück zum Zitat Agarwal, R.P., Lakshmikantham, V., Nieto, J.J.: On the concept of solution for fractional differential equations with uncertainty. Nonlinear Anal. Theory Methods Appl. 72(6), 2859–2862 (2010)MathSciNetCrossRefMATH Agarwal, R.P., Lakshmikantham, V., Nieto, J.J.: On the concept of solution for fractional differential equations with uncertainty. Nonlinear Anal. Theory Methods Appl. 72(6), 2859–2862 (2010)MathSciNetCrossRefMATH
3.
Zurück zum Zitat Diethelm, K.: The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type. Springer, Berlin (2010)CrossRefMATH Diethelm, K.: The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type. Springer, Berlin (2010)CrossRefMATH
4.
Zurück zum Zitat Herrmann, R.: Fractional Calculus: An Introduction for Physicists. World Scientific, Singapore (2014)CrossRefMATH Herrmann, R.: Fractional Calculus: An Introduction for Physicists. World Scientific, Singapore (2014)CrossRefMATH
5.
Zurück zum Zitat Kilbas, A. A., Srivastava, H.M., Trujillo, J.J.: Theory and applications of fractional differential equations. Elsevier, Amsterdam (2006) Kilbas, A. A., Srivastava, H.M., Trujillo, J.J.: Theory and applications of fractional differential equations. Elsevier, Amsterdam (2006)
6.
Zurück zum Zitat Luchko, Y.: Operational method in fractional calculus. Fract. Calc. Appl. Anal 2(4), 463–488 (1999)MathSciNetMATH Luchko, Y.: Operational method in fractional calculus. Fract. Calc. Appl. Anal 2(4), 463–488 (1999)MathSciNetMATH
7.
Zurück zum Zitat Petras, I.: Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation. Springer Science & Business Media, Berlin (2011)CrossRefMATH Petras, I.: Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation. Springer Science & Business Media, Berlin (2011)CrossRefMATH
8.
Zurück zum Zitat Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, vol. 198. Academic press, London (1998)MATH Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, vol. 198. Academic press, London (1998)MATH
9.
Zurück zum Zitat Shah, S.M., Samar, R., Khan, N.M., Raja, M.A.Z.: Fractional-order adaptive signal processing strategies for active noise control systems. Nonlinear Dyn. 85, 1363–1376 (2016)MathSciNetCrossRef Shah, S.M., Samar, R., Khan, N.M., Raja, M.A.Z.: Fractional-order adaptive signal processing strategies for active noise control systems. Nonlinear Dyn. 85, 1363–1376 (2016)MathSciNetCrossRef
10.
Zurück zum Zitat del Castillo-Negrete, D., Carreras, B.A., Lynch, V.E.: Fractional diffusion in plasma turbulence. Phys. Plasmas 11(8), 3854–3864 (2004)CrossRef del Castillo-Negrete, D., Carreras, B.A., Lynch, V.E.: Fractional diffusion in plasma turbulence. Phys. Plasmas 11(8), 3854–3864 (2004)CrossRef
11.
Zurück zum Zitat Ervin, V.J., Roop, J.P.: Variational solution of fractional advection dispersion equations on bounded domains in d. Numer. Methods Partial Differ. Equ. 23(2), 256–281 (2007)MathSciNetCrossRefMATH Ervin, V.J., Roop, J.P.: Variational solution of fractional advection dispersion equations on bounded domains in d. Numer. Methods Partial Differ. Equ. 23(2), 256–281 (2007)MathSciNetCrossRefMATH
12.
Zurück zum Zitat El-Wakil, S.A., Abulwafa, E.M.: Formulation and solution of space-time fractional boussinesq equation. Nonlinear Dyn. 80(1–2), 167–175 (2015)MathSciNetCrossRef El-Wakil, S.A., Abulwafa, E.M.: Formulation and solution of space-time fractional boussinesq equation. Nonlinear Dyn. 80(1–2), 167–175 (2015)MathSciNetCrossRef
13.
Zurück zum Zitat Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339(1), 1–77 (2000)MathSciNetCrossRefMATH Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339(1), 1–77 (2000)MathSciNetCrossRefMATH
14.
Zurück zum Zitat Yang, X.-J., Tenreiro Machado, J.A., Hristov, J.: Nonlinear dynamics for local fractional burgers equation arising in fractal flow. Nonlinear Dyn. 84(1), 3–7 (2016)MathSciNetCrossRefMATH Yang, X.-J., Tenreiro Machado, J.A., Hristov, J.: Nonlinear dynamics for local fractional burgers equation arising in fractal flow. Nonlinear Dyn. 84(1), 3–7 (2016)MathSciNetCrossRefMATH
16.
Zurück zum Zitat Pourmahmood Aghababa, M.: No-chatter variable structure control for fractional nonlinear complex systems. Nonlinear Dyn. 73(4), 2329–2342 (2013)MathSciNetCrossRefMATH Pourmahmood Aghababa, M.: No-chatter variable structure control for fractional nonlinear complex systems. Nonlinear Dyn. 73(4), 2329–2342 (2013)MathSciNetCrossRefMATH
17.
Zurück zum Zitat Kovincic, N.I., Spasic, D.T.: Dynamics of a middle ear with fractional type of dissipation. Nonlinear Dyn. 85, 2369–2388 (2016)CrossRef Kovincic, N.I., Spasic, D.T.: Dynamics of a middle ear with fractional type of dissipation. Nonlinear Dyn. 85, 2369–2388 (2016)CrossRef
18.
Zurück zum Zitat Uchaikin, V.V.: Fractional Derivatives for Physicists and Engineers. Springer, Berlin (2013)CrossRefMATH Uchaikin, V.V.: Fractional Derivatives for Physicists and Engineers. Springer, Berlin (2013)CrossRefMATH
19.
Zurück zum Zitat Khalil, R., Horani, M.A., Yousef, A., Sababheh, M.: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014)MathSciNetCrossRefMATH Khalil, R., Horani, M.A., Yousef, A., Sababheh, M.: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014)MathSciNetCrossRefMATH
20.
21.
Zurück zum Zitat Kolwankar, K.M., Gangal, A.D.: Fractional differentiability of nowhere differentiable functions and dimensions. Chaos: an interdisciplinary. J. Nonlinear Sci. 6(4), 505–513 (1996)MATH Kolwankar, K.M., Gangal, A.D.: Fractional differentiability of nowhere differentiable functions and dimensions. Chaos: an interdisciplinary. J. Nonlinear Sci. 6(4), 505–513 (1996)MATH
23.
26.
Zurück zum Zitat Xiaojun, Y., Baleanu, D.: Fractal heat conduction problem solved by local fractional variation iteration method. Therm. Sci. 17(2), 625 (2013)CrossRef Xiaojun, Y., Baleanu, D.: Fractal heat conduction problem solved by local fractional variation iteration method. Therm. Sci. 17(2), 625 (2013)CrossRef
28.
Zurück zum Zitat Chung, W.S.: Fractional newton mechanics with conformable fractional derivative. J. Comput. Appl. Math. 290, 150–158 (2015)MathSciNetCrossRefMATH Chung, W.S.: Fractional newton mechanics with conformable fractional derivative. J. Comput. Appl. Math. 290, 150–158 (2015)MathSciNetCrossRefMATH
29.
Zurück zum Zitat Anderson, D.R., Ulness, D.J.: Properties of the katugampola fractional derivative with potential application in quantum mechanics. J. Math. Phys. 56(6), 063502 (2015)MathSciNetCrossRefMATH Anderson, D.R., Ulness, D.J.: Properties of the katugampola fractional derivative with potential application in quantum mechanics. J. Math. Phys. 56(6), 063502 (2015)MathSciNetCrossRefMATH
Metadaten
Titel
General conformable fractional derivative and its physical interpretation
verfasst von
Dazhi Zhao
Maokang Luo
Publikationsdatum
10.01.2017
Verlag
Springer Milan
Erschienen in
Calcolo / Ausgabe 3/2017
Print ISSN: 0008-0624
Elektronische ISSN: 1126-5434
DOI
https://doi.org/10.1007/s10092-017-0213-8

Weitere Artikel der Ausgabe 3/2017

Calcolo 3/2017 Zur Ausgabe