Skip to main content
Erschienen in: Journal of Iron and Steel Research International 5/2021

12.10.2020 | Original Paper

General heat balance for oxygen steelmaking

verfasst von: N. Madhavan, G.A. Brooks, M.A. Rhamdhani, B.K. Rout, A. Overbosch

Erschienen in: Journal of Iron and Steel Research International | Ausgabe 5/2021

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Energy balances are a general fundamental approach for analyzing the heat requirements for metallurgical processes. The formulation of heat balance equations was involved by computing the various components of heat going in and coming out of the oxygen steelmaking furnace. The developed model was validated against the calculations of Healy and McBride. The overall heat losses that have not been analyzed in previous studies were quantified by back-calculating heat loss from 35 industrial data provided by Tata Steel. The results from the model infer that the heat losses range from 1.3% to 5.9% of the total heat input and it can be controlled by optimizing the silicon in hot metal, the amount of scrap added and the post-combustion ratio. The model prediction shows that sensible heat available from the hot metal accounts for around 66% of total heat input and the rest from the exothermic oxidation reactions. Out of 34% of the heat from exothermic reactions, between 20% and 25% of heat is evolved from the oxidation of carbon to carbon monoxide and carbon dioxide. This model can be applied to predict the heat balance of any top blown oxygen steelmaking technology but needs further validation for a range of oxygen steelmaking operations and conditions.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
[1]
Zurück zum Zitat The State–of-the-Art Clean Technologies (SOACT) for Steelmaking Handbook (2nd Edition), Raw materials through Steelmaking, including Recycling Technologies, Common Systems, and General Energy Saving Measures, Asia-Pacific Partnership on Clean Development and Climate, United States Department of State, and United States Department of Energy, Washington DC, USA, 2010. The State–of-the-Art Clean Technologies (SOACT) for Steelmaking Handbook (2nd Edition), Raw materials through Steelmaking, including Recycling Technologies, Common Systems, and General Energy Saving Measures, Asia-Pacific Partnership on Clean Development and Climate, United States Department of State, and United States Department of Energy, Washington DC, USA, 2010.
[2]
Zurück zum Zitat World Steel Association, Energy Use in the Iron and Steel Industry, 2019. World Steel Association, Energy Use in the Iron and Steel Industry, 2019.
[3]
Zurück zum Zitat R. Fruehan, O. Fortini, H. Paxton, R, Brindle, Theoretical minimum energies to produce steel for selected conditions, U.S. Department of Energy Office of Industrial Technologies, Washington DC, USA, 2000. R. Fruehan, O. Fortini, H. Paxton, R, Brindle, Theoretical minimum energies to produce steel for selected conditions, U.S. Department of Energy Office of Industrial Technologies, Washington DC, USA, 2000.
[4]
Zurück zum Zitat T.W. Miller, B. Steel, J. Jimenez, A. Sharan, D.A. Goldstein, in: Making Shaping and Treating of Steel, 11th Ed., AISE, Pittsburgh, USA, 1998, pp. 475–524. T.W. Miller, B. Steel, J. Jimenez, A. Sharan, D.A. Goldstein, in: Making Shaping and Treating of Steel, 11th Ed., AISE, Pittsburgh, USA, 1998, pp. 475–524.
[7]
Zurück zum Zitat P. Dauby, M. Bach, P. Hoffman, P. Niles, Charge calculation in Steelmaking, CNRM Metallurgical Report No.15, 1968. P. Dauby, M. Bach, P. Hoffman, P. Niles, Charge calculation in Steelmaking, CNRM Metallurgical Report No.15, 1968.
[8]
Zurück zum Zitat R.A. Goel, K.P. Singh, P.C. Kapur, in: I.I.M. Silver Jubilee Symposium, Kanpur, India, 1972, pp. 357. R.A. Goel, K.P. Singh, P.C. Kapur, in: I.I.M. Silver Jubilee Symposium, Kanpur, India, 1972, pp. 357.
[9]
[10]
Zurück zum Zitat J.H. Cox, R.K. Iyengar, in: BOF steelmaking, 4th ed., AIME, New York, USA, 1974, pp. 243–285. J.H. Cox, R.K. Iyengar, in: BOF steelmaking, 4th ed., AIME, New York, USA, 1974, pp. 243–285.
[11]
[12]
Zurück zum Zitat C. Kubat, H. Taşkin, R. Artir, A. Yilmaz, Robot. Auton. Syst. 49 (2004) 193–205.CrossRef C. Kubat, H. Taşkin, R. Artir, A. Yilmaz, Robot. Auton. Syst. 49 (2004) 193–205.CrossRef
[13]
[14]
Zurück zum Zitat A.K. Shukla, B. Deo, D.G.C. Robertson, Metall. Mater. Trans. B 44 (2013) 1407–1427.CrossRef A.K. Shukla, B. Deo, D.G.C. Robertson, Metall. Mater. Trans. B 44 (2013) 1407–1427.CrossRef
[15]
[17]
Zurück zum Zitat G.W. Healy, D.L. McBride, in: BOF steelmaking, 4th ed., AIME, New York, USA, 1974, pp. 101–158. G.W. Healy, D.L. McBride, in: BOF steelmaking, 4th ed., AIME, New York, USA, 1974, pp. 101–158.
[18]
Zurück zum Zitat E.T. Turkdogan, Fundamentals of steelmaking, vol. 1, The Institute of Materials, London, UK, 1996. E.T. Turkdogan, Fundamentals of steelmaking, vol. 1, The Institute of Materials, London, UK, 1996.
[19]
Zurück zum Zitat H. Jalkanen, L. Holappa, in: Treatise on Process Metallurgy, vol. 3, Elsevier Ltd., 2014, pp. 223–270. H. Jalkanen, L. Holappa, in: Treatise on Process Metallurgy, vol. 3, Elsevier Ltd., 2014, pp. 223–270.
[20]
[21]
[22]
Zurück zum Zitat A. Koryttseva, A. Navrotsky, J. Am. Ceram. Soc. 100 (2017) 1172–1177.CrossRef A. Koryttseva, A. Navrotsky, J. Am. Ceram. Soc. 100 (2017) 1172–1177.CrossRef
[25]
Zurück zum Zitat M. Hirai, R. Tsujino, T. Mukai, T. Harada, M. Omori, Trans. ISIJ 27 (1987) 805–813.CrossRef M. Hirai, R. Tsujino, T. Mukai, T. Harada, M. Omori, Trans. ISIJ 27 (1987) 805–813.CrossRef
[27]
[28]
Zurück zum Zitat H. Gou, G.A. Irons, W.K. Lu, Iron Steelmaker 22 (1995) 47–54. H. Gou, G.A. Irons, W.K. Lu, Iron Steelmaker 22 (1995) 47–54.
[29]
Zurück zum Zitat B.L. Farrand, J.E. Wood, F.J. Goetz, in: Steelmaking Conference Proceedings, Dofasco Inc., Hamilton, Canada, 1992, pp. 173–179. B.L. Farrand, J.E. Wood, F.J. Goetz, in: Steelmaking Conference Proceedings, Dofasco Inc., Hamilton, Canada, 1992, pp. 173–179.
[30]
[31]
Zurück zum Zitat R.J. Fruehan, R.J. Matway, Optimization of post combustion in steelmaking, American Iron and Steel Institute, US, 2004.CrossRef R.J. Fruehan, R.J. Matway, Optimization of post combustion in steelmaking, American Iron and Steel Institute, US, 2004.CrossRef
Metadaten
Titel
General heat balance for oxygen steelmaking
verfasst von
N. Madhavan
G.A. Brooks
M.A. Rhamdhani
B.K. Rout
A. Overbosch
Publikationsdatum
12.10.2020
Verlag
Springer Singapore
Erschienen in
Journal of Iron and Steel Research International / Ausgabe 5/2021
Print ISSN: 1006-706X
Elektronische ISSN: 2210-3988
DOI
https://doi.org/10.1007/s42243-020-00491-0

Weitere Artikel der Ausgabe 5/2021

Journal of Iron and Steel Research International 5/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.