Skip to main content
Erschienen in: Archive of Applied Mechanics 9/2019

16.03.2019 | Original

General solution for inhomogeneous line inclusion with non-uniform eigenstrain

verfasst von: Lifeng Ma, Yike Qiu, Yumei Zhang, Guang Li

Erschienen in: Archive of Applied Mechanics | Ausgabe 9/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The inhomogeneous line inclusion problem has various backgrounds in practical application such as graphene sheet-reinforced composites, and hydrogen embrittlement, grain boundary segregation in metallic materials. Due to the long-standing mathematical difficulty, there is no explicit analytical solution obtained except for the thin ellipsoidal inhomogeneity and rigid line inhomogeneity. In this paper, to find the deformation state due to the presence of such kind of elastic inhomogeneities, the inhomogeneous line inclusion problem is tackled in the framework of plane deformation. Firstly, the fundamental solution for a point-wise residual strain is presented and its deformation strain field is derived. By using Green’s function method, the homogeneous line inclusion problem with non-uniform eigenstrain is formulated and an Eshelby tensor-like line inclusion tensor is derived. From the line inclusion concept, the classical edge dislocation is revisited. Also, by virtue of this model, some elementary line homogenous inclusion problems are explored. Secondly, based on the homogeneous line inclusion solution, the inhomogeneous line inclusion problem is formulated using the equivalent eigenstrain principle, and its general solution is derived. Then, an inhomogeneous edge dislocation model is proposed and its analytical solution is presented. Furthermore, to demonstrate the application of the proposed inhomogeneous line inclusion model, a typical thin inclusion under remote load is studied. This study provides a general solution for inhomogeneous thin inclusion problems. The models and their solutions introduced here will also find application in the mechanics of composites analysis, heterogeneous material modeling, etc.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Aguilar, S., Tabares, R., Serna, C.: Microstructural transformations of dissimilar austenite–ferrite stainless steels welded joints. J. Mater. Phys. Chem. 1, 65–68 (2013) Aguilar, S., Tabares, R., Serna, C.: Microstructural transformations of dissimilar austenite–ferrite stainless steels welded joints. J. Mater. Phys. Chem. 1, 65–68 (2013)
2.
Zurück zum Zitat Atkinson, C.: Some ribbon-like inclusion problems. Int. J. Eng. Sci. 11, 243–266 (1973)CrossRefMATH Atkinson, C.: Some ribbon-like inclusion problems. Int. J. Eng. Sci. 11, 243–266 (1973)CrossRefMATH
3.
Zurück zum Zitat Bakshi, S.R., Lahiri, D., Agarwal, A.: Carbon nanotube reinforced metal matrix composites—a review. Int. Mater. Rev. 55, 41–64 (2010)CrossRef Bakshi, S.R., Lahiri, D., Agarwal, A.: Carbon nanotube reinforced metal matrix composites—a review. Int. Mater. Rev. 55, 41–64 (2010)CrossRef
4.
Zurück zum Zitat Ballarini, R.: An integral-equation approach for rigid line inhomogeneity problems. Int. J. Fract. 33, R23–R26 (1987) Ballarini, R.: An integral-equation approach for rigid line inhomogeneity problems. Int. J. Fract. 33, R23–R26 (1987)
5.
Zurück zum Zitat Ballarini, R.: A rigid line inclusion at a bimaterial interface. Eng. Fract. Mech. 37, 1–5 (1990)CrossRef Ballarini, R.: A rigid line inclusion at a bimaterial interface. Eng. Fract. Mech. 37, 1–5 (1990)CrossRef
6.
Zurück zum Zitat Brussat, T.R., Westmann, R.A.: A Westergaard-type stress function for line inclusion problems. Int. J. Solids Struct. 11, 665–677 (1975)CrossRefMATH Brussat, T.R., Westmann, R.A.: A Westergaard-type stress function for line inclusion problems. Int. J. Solids Struct. 11, 665–677 (1975)CrossRefMATH
7.
Zurück zum Zitat Cantwell, P.R., Tang, M., Dillon, S.J., Luo, J., Rohrer, G.S., Harmer, M.P.: Grain boundary complexions. Acta Mater. 62, 1–48 (2014)CrossRef Cantwell, P.R., Tang, M., Dillon, S.J., Luo, J., Rohrer, G.S., Harmer, M.P.: Grain boundary complexions. Acta Mater. 62, 1–48 (2014)CrossRef
8.
Zurück zum Zitat Christensen, R.M.: Mechanics of Composite Materials. Wiley, New York (1979) Christensen, R.M.: Mechanics of Composite Materials. Wiley, New York (1979)
9.
Zurück zum Zitat Claussen, N., Ruehle, M., Heuer, A. H. (eds.): Advances in ceramics, Vol. 12, p. 352. Science and technology of zirconia II. The American Ceramic Society, Columbus, OH (1984) Claussen, N., Ruehle, M., Heuer, A. H. (eds.): Advances in ceramics, Vol. 12, p. 352. Science and technology of zirconia II. The American Ceramic Society, Columbus, OH (1984)
10.
Zurück zum Zitat Deng, W., Meguid, S.A.: Analysis of conducting rigid inclusion at the interface of two dissimilar piezoelectric materials. J. Appl. Mech. 65, 76–84 (1998)CrossRef Deng, W., Meguid, S.A.: Analysis of conducting rigid inclusion at the interface of two dissimilar piezoelectric materials. J. Appl. Mech. 65, 76–84 (1998)CrossRef
11.
Zurück zum Zitat Du, Y.A., Ismer, L., Rogal, J., Hickel, T., Neugebauer, J., Drautz, R.: First-principles study on the interaction of H interstitials with grain boundaries in \(\alpha \)- and \(\beta \)-Fe. Phys. Rev. B 84, 667–673 (2011)CrossRef Du, Y.A., Ismer, L., Rogal, J., Hickel, T., Neugebauer, J., Drautz, R.: First-principles study on the interaction of H interstitials with grain boundaries in \(\alpha \)- and \(\beta \)-Fe. Phys. Rev. B 84, 667–673 (2011)CrossRef
12.
Zurück zum Zitat Dundurs, J., Markenscoff, X.: A Green’s function formulation of anticracks and their interaction with load-induced singularities. J. Appl. Mech. 56, 550–555 (1989)CrossRefMATH Dundurs, J., Markenscoff, X.: A Green’s function formulation of anticracks and their interaction with load-induced singularities. J. Appl. Mech. 56, 550–555 (1989)CrossRefMATH
13.
Zurück zum Zitat Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. A 241, 376–396 (1957)MathSciNetCrossRefMATH Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. A 241, 376–396 (1957)MathSciNetCrossRefMATH
15.
Zurück zum Zitat Frolov, T., Olmsted, D.L., Asta, M., Mishin, Y.: Structural phase transformations in metallic grain boundaries. Nat. Commun. 4, 1899 (2012)CrossRef Frolov, T., Olmsted, D.L., Asta, M., Mishin, Y.: Structural phase transformations in metallic grain boundaries. Nat. Commun. 4, 1899 (2012)CrossRef
16.
Zurück zum Zitat Gorbatikh, L., Lomov, S.V., Verpoest, I.: Original mechanism of failure initiation revealed through modelling of naturally occurring microstructures. J. Mech. Phys. Solids 58, 735–750 (2010)CrossRef Gorbatikh, L., Lomov, S.V., Verpoest, I.: Original mechanism of failure initiation revealed through modelling of naturally occurring microstructures. J. Mech. Phys. Solids 58, 735–750 (2010)CrossRef
17.
Zurück zum Zitat Hatano, M., Fujinami, M., Arai, K., Fujii, H., Nagumo, M.: Hydrogen embrittlement of austenitic stainless steels revealed by deformation microstructures and strain-induced creation of vacancies. Acta Mater. 67, 342–353 (2014)CrossRef Hatano, M., Fujinami, M., Arai, K., Fujii, H., Nagumo, M.: Hydrogen embrittlement of austenitic stainless steels revealed by deformation microstructures and strain-induced creation of vacancies. Acta Mater. 67, 342–353 (2014)CrossRef
18.
Zurück zum Zitat Herbig, M., Kuzmina, M., Haase, C., Marceau, R.K.W., Gutierrez-Urrutia, I., Haley, D., Molodov, D.A., Choi, P., Raabe, D.: Grain boundary segregation in Fe–Mn–C twinning-induced plasticity steels studied by correlative electron backscatter diffraction and atom probe tomography. Acta Mater. 83, 37–47 (2015)CrossRef Herbig, M., Kuzmina, M., Haase, C., Marceau, R.K.W., Gutierrez-Urrutia, I., Haley, D., Molodov, D.A., Choi, P., Raabe, D.: Grain boundary segregation in Fe–Mn–C twinning-induced plasticity steels studied by correlative electron backscatter diffraction and atom probe tomography. Acta Mater. 83, 37–47 (2015)CrossRef
19.
Zurück zum Zitat Hickel, T., Nazarov, R., McEniry, E.J., Leyson, G., Grabowski, B., Neugebauer, J.: Ab Initio based understanding of the segregation and diffusion mechanisms of hydrogen in steels. J. Met. 66, 1399–1405 (2014) Hickel, T., Nazarov, R., McEniry, E.J., Leyson, G., Grabowski, B., Neugebauer, J.: Ab Initio based understanding of the segregation and diffusion mechanisms of hydrogen in steels. J. Met. 66, 1399–1405 (2014)
20.
Zurück zum Zitat Hu, J., Shi, Y.N., Sauvage, X., Sha, G., Lu, K.: Grain boundary stability governs hardening and softening in extremely fine nanograined metals. Science 355, 1292–1296 (2017)CrossRef Hu, J., Shi, Y.N., Sauvage, X., Sha, G., Lu, K.: Grain boundary stability governs hardening and softening in extremely fine nanograined metals. Science 355, 1292–1296 (2017)CrossRef
21.
Zurück zum Zitat Hull, D., Bacon, D.J.: Introduction to Dislocations, 5th edn. Elsevier, Kidlington (2011) Hull, D., Bacon, D.J.: Introduction to Dislocations, 5th edn. Elsevier, Kidlington (2011)
22.
Zurück zum Zitat Hurtado, J.A., Dundurs, J., Mura, T.: Lamellar inhomogeneites in a uniform stress field. J. Mech. Phys. Solids 44, 1–21 (1996)MathSciNetCrossRefMATH Hurtado, J.A., Dundurs, J., Mura, T.: Lamellar inhomogeneites in a uniform stress field. J. Mech. Phys. Solids 44, 1–21 (1996)MathSciNetCrossRefMATH
23.
Zurück zum Zitat Inglis, C.E.: Stresses in a plate due to the presence of cracks and sharp corners. Inst. Naval Archit. Lond. 55, 219–230 (1913) Inglis, C.E.: Stresses in a plate due to the presence of cracks and sharp corners. Inst. Naval Archit. Lond. 55, 219–230 (1913)
24.
Zurück zum Zitat Ioakimidis, N.I., Theocaris, P.S.: The second fundamental crack problem and the rigid line inclusion problem in plane elasticity. Acta Mech. 34, 51–61 (1979)CrossRefMATH Ioakimidis, N.I., Theocaris, P.S.: The second fundamental crack problem and the rigid line inclusion problem in plane elasticity. Acta Mech. 34, 51–61 (1979)CrossRefMATH
25.
Zurück zum Zitat Kaczynski, A., Kozłowski, W.: Thermal stresses in an elastic space with a perfectly rigid flat inclusion under perpendicular heat flow. Int. J. Solids Struct. 46, 1772–1777 (2009)CrossRefMATH Kaczynski, A., Kozłowski, W.: Thermal stresses in an elastic space with a perfectly rigid flat inclusion under perpendicular heat flow. Int. J. Solids Struct. 46, 1772–1777 (2009)CrossRefMATH
26.
Zurück zum Zitat Kitahara, H., Ueji, R., Tsuji, N., Minamino, Y.: Crystallographic features of lath martensite in low-carbon steel. Acta Mater. 54, 1279–1288 (2006)CrossRef Kitahara, H., Ueji, R., Tsuji, N., Minamino, Y.: Crystallographic features of lath martensite in low-carbon steel. Acta Mater. 54, 1279–1288 (2006)CrossRef
27.
Zurück zum Zitat Koyama, M., Akiyama, E., Tsuzaki, K.: Hydrogen embrittlement in a Fe–Mn–C ternary twinning-induced plasticity steel. Corros. Sci. 54, 1–4 (2012)CrossRef Koyama, M., Akiyama, E., Tsuzaki, K.: Hydrogen embrittlement in a Fe–Mn–C ternary twinning-induced plasticity steel. Corros. Sci. 54, 1–4 (2012)CrossRef
28.
Zurück zum Zitat Li, H., Xia, S., Zhou, B., Liu, W.: C–Cr segregation at grain boundary before the carbide nucleation in Alloy 690. Mater. Charact. 66, 68–74 (2012)CrossRef Li, H., Xia, S., Zhou, B., Liu, W.: C–Cr segregation at grain boundary before the carbide nucleation in Alloy 690. Mater. Charact. 66, 68–74 (2012)CrossRef
29.
Zurück zum Zitat Li, Q., Ting, T.C.T.: Line inclusions in anisotropic elastic solids. J. Appl. Mech. 56, 556–563 (1989)CrossRefMATH Li, Q., Ting, T.C.T.: Line inclusions in anisotropic elastic solids. J. Appl. Mech. 56, 556–563 (1989)CrossRefMATH
30.
Zurück zum Zitat Liddicoat, P.V., Liao, X.Z., Zhao, Y., Zhu, Y., Murashkin, M.Y., Lavernia, E.J., Valiev, R.Z., Ringer, S.P.: Nanostructural hierarchy increases the strength of aluminium alloys. Nat. Commun. 1, 63 (2010)CrossRef Liddicoat, P.V., Liao, X.Z., Zhao, Y., Zhu, Y., Murashkin, M.Y., Lavernia, E.J., Valiev, R.Z., Ringer, S.P.: Nanostructural hierarchy increases the strength of aluminium alloys. Nat. Commun. 1, 63 (2010)CrossRef
31.
Zurück zum Zitat Ma, L.F.: Fundamental formulation for transformation toughening. Int. J. Solids Struct. 47, 3214–3220 (2010)CrossRefMATH Ma, L.F.: Fundamental formulation for transformation toughening. Int. J. Solids Struct. 47, 3214–3220 (2010)CrossRefMATH
32.
Zurück zum Zitat Ma, L.F., Korsunsky, A.M.: The principle of equivalent eigenstrain for inhomogeneous inclusion problems. Int. J. Solids Struct. 51, 4477–4484 (2014)CrossRef Ma, L.F., Korsunsky, A.M.: The principle of equivalent eigenstrain for inhomogeneous inclusion problems. Int. J. Solids Struct. 51, 4477–4484 (2014)CrossRef
33.
Zurück zum Zitat Ma, L.F., Wang, B., Korsunsky, A.M.: Plane deformation of circular inhomogeneous inclusion problems with non-uniform symmetrical dilatational eigenstrain. Mater. Des. 86, 809–817 (2015)CrossRef Ma, L.F., Wang, B., Korsunsky, A.M.: Plane deformation of circular inhomogeneous inclusion problems with non-uniform symmetrical dilatational eigenstrain. Mater. Des. 86, 809–817 (2015)CrossRef
34.
Zurück zum Zitat Ma, L.F., Wang, B., Korsunsky, A.M.: Complex variable formulation for a rigid line inclusion interacting with a generalized singularity. Arch. Appl. Mech. 88, 613–627 (2018)CrossRef Ma, L.F., Wang, B., Korsunsky, A.M.: Complex variable formulation for a rigid line inclusion interacting with a generalized singularity. Arch. Appl. Mech. 88, 613–627 (2018)CrossRef
35.
Zurück zum Zitat Miracle, D.B.: Metal matrix composites—from science to technological significance. Compos. Sci. Technol. 65, 2526–2540 (2005)CrossRef Miracle, D.B.: Metal matrix composites—from science to technological significance. Compos. Sci. Technol. 65, 2526–2540 (2005)CrossRef
36.
Zurück zum Zitat Mura, T.: Micromechanics of Defects in Solids, 2nd edn. Martinus Nijhoff, Dordrecht (1987)CrossRefMATH Mura, T.: Micromechanics of Defects in Solids, 2nd edn. Martinus Nijhoff, Dordrecht (1987)CrossRefMATH
37.
38.
Zurück zum Zitat Mura, T., Shodja, H.M., Hirose, Y.: Inclusion problems. Appl. Mech. Rev. 49, S118–S127 (1996)CrossRef Mura, T., Shodja, H.M., Hirose, Y.: Inclusion problems. Appl. Mech. Rev. 49, S118–S127 (1996)CrossRef
39.
Zurück zum Zitat Muskhelishvili, N.I.: Some Problems of Mathematical Theory of Elasticity (English translation from the third Russian edition). Noordhoff Ltd., Groningen (1953) Muskhelishvili, N.I.: Some Problems of Mathematical Theory of Elasticity (English translation from the third Russian edition). Noordhoff Ltd., Groningen (1953)
40.
Zurück zum Zitat Nemat-Nasser, S., Hori, M.: Micromechanics: Overall properties of heterogeneous materials, 2nd edn. Elsevier, Amsterdam (1999)MATH Nemat-Nasser, S., Hori, M.: Micromechanics: Overall properties of heterogeneous materials, 2nd edn. Elsevier, Amsterdam (1999)MATH
41.
Zurück zum Zitat Sakaguchi, N., Watanabe, S., Takahashi, H.: Heterogeneous dislocation formation and solute redistribution near grain boundaries in austenitic stainless steel under electron irradiation. Acta Mater. 49, 1129–1137 (2001)CrossRef Sakaguchi, N., Watanabe, S., Takahashi, H.: Heterogeneous dislocation formation and solute redistribution near grain boundaries in austenitic stainless steel under electron irradiation. Acta Mater. 49, 1129–1137 (2001)CrossRef
42.
Zurück zum Zitat Shodja, H.M., Ojaghnezhad, F.: A general unified treatment of lamellar inhomogeneities. Eng. Fract. Mech. 74, 1499–1510 (2007)CrossRef Shodja, H.M., Ojaghnezhad, F.: A general unified treatment of lamellar inhomogeneities. Eng. Fract. Mech. 74, 1499–1510 (2007)CrossRef
43.
Zurück zum Zitat Song, J., Curtin, W.A.: Atomic mechanism and prediction of hydrogen embrittlement in iron. Nat. Mater. 12, 145–151 (2012)CrossRef Song, J., Curtin, W.A.: Atomic mechanism and prediction of hydrogen embrittlement in iron. Nat. Mater. 12, 145–151 (2012)CrossRef
44.
Zurück zum Zitat Stankovich, S., Dikin, D.A., Dommett, G.H.B., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.T., Ruoff, R.S.: Graphene-based composite materials. Nature 442, 282–286 (2006)CrossRef Stankovich, S., Dikin, D.A., Dommett, G.H.B., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.T., Ruoff, R.S.: Graphene-based composite materials. Nature 442, 282–286 (2006)CrossRef
45.
Zurück zum Zitat Stoller, R.E., Maziasz, P.J., Rowcliffe, A.F., Tanaka, M.P.: Swelling behavior of austenitic stainless steels in a spectrally tailored reactor experiment: implications for near-term fusion machines. J. Nucl. Mater. 155, 1328–1334 (1988)CrossRef Stoller, R.E., Maziasz, P.J., Rowcliffe, A.F., Tanaka, M.P.: Swelling behavior of austenitic stainless steels in a spectrally tailored reactor experiment: implications for near-term fusion machines. J. Nucl. Mater. 155, 1328–1334 (1988)CrossRef
46.
Zurück zum Zitat Tang, M., Carter, W.C., Cannon, R.M.: Diffuse interface model for structural transitions of grain boundaries. Phys. Rev. B 73, 024102 (2006)CrossRef Tang, M., Carter, W.C., Cannon, R.M.: Diffuse interface model for structural transitions of grain boundaries. Phys. Rev. B 73, 024102 (2006)CrossRef
47.
Zurück zum Zitat Wang, J., Li, Z., Fan, G., Pan, H., Chen, Z., Zhang, D.: Reinforcement with graphene nanosheets in aluminum matrix composites. Scr. Mater. 66, 594–597 (2012)CrossRef Wang, J., Li, Z., Fan, G., Pan, H., Chen, Z., Zhang, D.: Reinforcement with graphene nanosheets in aluminum matrix composites. Scr. Mater. 66, 594–597 (2012)CrossRef
48.
Zurück zum Zitat Wang, Z.Y., Zhang, H.T., Chou, Y.T.: Characteristics of the elastic field of a rigid line inhomogeneity. J. Appl. Mech. 52, 818–822 (1985)CrossRef Wang, Z.Y., Zhang, H.T., Chou, Y.T.: Characteristics of the elastic field of a rigid line inhomogeneity. J. Appl. Mech. 52, 818–822 (1985)CrossRef
49.
Zurück zum Zitat Wu, K.C.: Line inclusions at anisotropic bimaterial interface. Mech. Mater. 10, 173–182 (1990)CrossRef Wu, K.C.: Line inclusions at anisotropic bimaterial interface. Mech. Mater. 10, 173–182 (1990)CrossRef
50.
Zurück zum Zitat Zhou, K., Hoh, H.J., Wang, X., Keer, L.M., Pang, J.H.L., Song, B., Wang, Q.J.: A review of recent works on inclusions. Mech. Mater. 60, 144–158 (2013)CrossRef Zhou, K., Hoh, H.J., Wang, X., Keer, L.M., Pang, J.H.L., Song, B., Wang, Q.J.: A review of recent works on inclusions. Mech. Mater. 60, 144–158 (2013)CrossRef
Metadaten
Titel
General solution for inhomogeneous line inclusion with non-uniform eigenstrain
verfasst von
Lifeng Ma
Yike Qiu
Yumei Zhang
Guang Li
Publikationsdatum
16.03.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Archive of Applied Mechanics / Ausgabe 9/2019
Print ISSN: 0939-1533
Elektronische ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-019-01539-8

Weitere Artikel der Ausgabe 9/2019

Archive of Applied Mechanics 9/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.