Skip to main content
Erschienen in: Computational Mechanics 5/2019

15.05.2019 | Original Paper

General solutions for nonlinear differential equations: a rule-based self-learning approach using deep reinforcement learning

verfasst von: Shiyin Wei, Xiaowei Jin, Hui Li

Erschienen in: Computational Mechanics | Ausgabe 5/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A universal rule-based self-learning approach using deep reinforcement learning (DRL) is proposed for the first time to solve nonlinear ordinary differential equations and partial differential equations. The solver consists of a deep neural network-structured actor that outputs candidate solutions, and a critic derived only from physical rules (governing equations and boundary and initial conditions). Solutions in discretized time are treated as multiple tasks sharing the same governing equation, and the current step parameters provide an ideal initialization for the next owing to the temporal continuity of the solutions, which shows a transfer learning characteristic and indicates that the DRL solver has captured the intrinsic nature of the equation. The approach is verified through solving the Schrödinger, Navier–Stokes, Burgers’, Van der Pol, and Lorenz equations and an equation of motion. The results indicate that the approach gives solutions with high accuracy, and the solution process promises to get faster.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
2.
Zurück zum Zitat Soliman AA (2006) The modified extended tanh-function method for solving Burgers-type equations. Physica A 361(2):394–404MathSciNetCrossRef Soliman AA (2006) The modified extended tanh-function method for solving Burgers-type equations. Physica A 361(2):394–404MathSciNetCrossRef
3.
Zurück zum Zitat Feit M, Fleck J Jr, Steiger A (1982) Solution of the Schrödinger equation by a spectral method. J Comput Phys 47(3):412–433MathSciNetCrossRef Feit M, Fleck J Jr, Steiger A (1982) Solution of the Schrödinger equation by a spectral method. J Comput Phys 47(3):412–433MathSciNetCrossRef
4.
Zurück zum Zitat Wang J X, Kurth-Nelson Z, Tirumala D, Soyer H, Leibo J Z, Munos R, Blundell C, Kumaran D, Botvinick M (2016) Learning to reinforcement learn. arXiv preprint arXiv:1611.05763 Wang J X, Kurth-Nelson Z, Tirumala D, Soyer H, Leibo J Z, Munos R, Blundell C, Kumaran D, Botvinick M (2016) Learning to reinforcement learn. arXiv preprint arXiv:​1611.​05763
5.
Zurück zum Zitat Finn C, Abbeel P, Levine S (2017) Model-agnostic meta-learning for fast adaptation of deep networks. arXiv preprint arXiv:1703.03400 Finn C, Abbeel P, Levine S (2017) Model-agnostic meta-learning for fast adaptation of deep networks. arXiv preprint arXiv:​1703.​03400
6.
Zurück zum Zitat LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444CrossRef LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444CrossRef
7.
Zurück zum Zitat Sutton RS, Barto AG (1998) Introduction to reinforcement learning, vol 135. MIT press, CambridgeMATH Sutton RS, Barto AG (1998) Introduction to reinforcement learning, vol 135. MIT press, CambridgeMATH
8.
Zurück zum Zitat Raissi M, Yazdani A, Karniadakis G E (2018) Hidden fluid mechanics: a Navier–Stokes informed deep learning framework for assimilating flow visualization data. arXiv preprint arXiv:1808.04327 Raissi M, Yazdani A, Karniadakis G E (2018) Hidden fluid mechanics: a Navier–Stokes informed deep learning framework for assimilating flow visualization data. arXiv preprint arXiv:​1808.​04327
9.
Zurück zum Zitat Raissi M, Wang Z, Triantafyllou MS, Karniadakis GE (2019) Deep learning of vortex-induced vibrations. J Fluid Mech 861:119–137MathSciNetCrossRef Raissi M, Wang Z, Triantafyllou MS, Karniadakis GE (2019) Deep learning of vortex-induced vibrations. J Fluid Mech 861:119–137MathSciNetCrossRef
10.
Zurück zum Zitat Lagaris IE, Likas A, Fotiadis DI (1998) Artificial neural networks for solving ordinary and partial differential equations. IEEE Trans Neural Netw 9(5):987–1000CrossRef Lagaris IE, Likas A, Fotiadis DI (1998) Artificial neural networks for solving ordinary and partial differential equations. IEEE Trans Neural Netw 9(5):987–1000CrossRef
11.
Zurück zum Zitat Raissi M, Perdikaris P, Karniadakis GE (2019) Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J Comput Phys 378:686–707MathSciNetCrossRef Raissi M, Perdikaris P, Karniadakis GE (2019) Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J Comput Phys 378:686–707MathSciNetCrossRef
12.
Zurück zum Zitat Han J, Jentzen A, EW (2017) Overcoming the curse of dimensionality: solving high-dimensional partial differential equations using deep learning. arXiv preprint arXiv:1707.02568 Han J, Jentzen A, EW (2017) Overcoming the curse of dimensionality: solving high-dimensional partial differential equations using deep learning. arXiv preprint arXiv:​1707.​02568
13.
Zurück zum Zitat Mills K, Spanner M, Tamblyn I (2017) Deep learning and the Schrödinger equation. Phys Rev A 96(4):042113CrossRef Mills K, Spanner M, Tamblyn I (2017) Deep learning and the Schrödinger equation. Phys Rev A 96(4):042113CrossRef
14.
Zurück zum Zitat Han EW, Jentzen A (2017) Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations. Commun Math Stat 5(4):349–380MathSciNetCrossRef Han EW, Jentzen A (2017) Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations. Commun Math Stat 5(4):349–380MathSciNetCrossRef
15.
16.
Zurück zum Zitat Bostanabad R, Zhang Y, Li X, Kearney T, Brinson LC, Apley DW, Liu WK, Chen W (2018) Computational microstructure characterization and reconstruction: review of the state-of-the-art techniques. Prog Mater Sci 95:1–41CrossRef Bostanabad R, Zhang Y, Li X, Kearney T, Brinson LC, Apley DW, Liu WK, Chen W (2018) Computational microstructure characterization and reconstruction: review of the state-of-the-art techniques. Prog Mater Sci 95:1–41CrossRef
17.
Zurück zum Zitat Li X, Yang Z, Brinson L C, Choudhary A, Agrawal A, Chen W (2018). A deep adversarial learning methodology for designing microstructural material systems. Paper presented at the ASME 2018 international design engineering technical conferences and computers and information in engineering conference Li X, Yang Z, Brinson L C, Choudhary A, Agrawal A, Chen W (2018). A deep adversarial learning methodology for designing microstructural material systems. Paper presented at the ASME 2018 international design engineering technical conferences and computers and information in engineering conference
18.
Zurück zum Zitat Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I, Wierstra D, Riedmiller M (2013) Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602 Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I, Wierstra D, Riedmiller M (2013) Playing atari with deep reinforcement learning. arXiv preprint arXiv:​1312.​5602
19.
Zurück zum Zitat Silver D, Huang A, Maddison CJ, Guez A, Sifre L, Van Den Driessche G, Schrittwieser J, Antonoglou I, Panneershelvam V, Lanctot M (2016) Mastering the game of Go with deep neural networks and tree search. Nature 529(7587):484CrossRef Silver D, Huang A, Maddison CJ, Guez A, Sifre L, Van Den Driessche G, Schrittwieser J, Antonoglou I, Panneershelvam V, Lanctot M (2016) Mastering the game of Go with deep neural networks and tree search. Nature 529(7587):484CrossRef
20.
Zurück zum Zitat Wang K, Sun W (2019) Meta-modeling game for deriving theory-consistent, microstructure-based traction–separation laws via deep reinforcement learning. Comput Methods Appl Mech Eng 346:216–241MathSciNetCrossRef Wang K, Sun W (2019) Meta-modeling game for deriving theory-consistent, microstructure-based traction–separation laws via deep reinforcement learning. Comput Methods Appl Mech Eng 346:216–241MathSciNetCrossRef
21.
Zurück zum Zitat Wang K, Sun W, Du Q (2019) A cooperative game for automated learning of elasto-plasticity knowledge graphs and models with AI-guided experimentation. arXiv preprint arXiv:1903.04307 Wang K, Sun W, Du Q (2019) A cooperative game for automated learning of elasto-plasticity knowledge graphs and models with AI-guided experimentation. arXiv preprint arXiv:​1903.​04307
22.
Zurück zum Zitat Jin X, Cheng P, Chen W-L, Li H (2018) Prediction model of velocity field around circular cylinder over various Reynolds numbers by fusion convolutional neural networks based on pressure on the cylinder. Phys Fluids 30(4):047105CrossRef Jin X, Cheng P, Chen W-L, Li H (2018) Prediction model of velocity field around circular cylinder over various Reynolds numbers by fusion convolutional neural networks based on pressure on the cylinder. Phys Fluids 30(4):047105CrossRef
23.
Zurück zum Zitat Li S, Laima S, Li H (2018) Data-driven modeling of vortex-induced vibration of a long-span suspension bridge using decision tree learning and support vector regression. J Wind Eng Ind Aerodyn 172:196–211CrossRef Li S, Laima S, Li H (2018) Data-driven modeling of vortex-induced vibration of a long-span suspension bridge using decision tree learning and support vector regression. J Wind Eng Ind Aerodyn 172:196–211CrossRef
24.
Zurück zum Zitat Silver D, Lever G, Heess N, Degris T, Wierstra D, Riedmiller M (2014) Deterministic policy gradient algorithms. In: ICML Silver D, Lever G, Heess N, Degris T, Wierstra D, Riedmiller M (2014) Deterministic policy gradient algorithms. In: ICML
26.
Zurück zum Zitat Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT press, CambridgeMATH Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT press, CambridgeMATH
27.
Zurück zum Zitat Bergstra J, Bengio Y (2012) Random search for hyper-parameter optimization. J Mach Learn Res 13:281–305MathSciNetMATH Bergstra J, Bengio Y (2012) Random search for hyper-parameter optimization. J Mach Learn Res 13:281–305MathSciNetMATH
28.
Zurück zum Zitat Snoek J, Larochelle H, Adams R P (2012). Practical bayesian optimization of machine learning algorithms. Paper presented at the advances in neural information processing systems Snoek J, Larochelle H, Adams R P (2012). Practical bayesian optimization of machine learning algorithms. Paper presented at the advances in neural information processing systems
29.
Zurück zum Zitat Guckenheimer J, Holmes P (2013) Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, vol 42. Springer, BelrinMATH Guckenheimer J, Holmes P (2013) Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, vol 42. Springer, BelrinMATH
30.
Zurück zum Zitat Tsatsos M (2006) Theoretical and Numerical study of the Van der Pol equation. Doctoral desertation, Aristotle University of Thessaloniki, vol 4, p 6 Tsatsos M (2006) Theoretical and Numerical study of the Van der Pol equation. Doctoral desertation, Aristotle University of Thessaloniki, vol 4, p 6
31.
Zurück zum Zitat Chopra AK (2007) Dynamics of structures: theory and applications to earthquake engineering. Prentice-Hall, Upper Saddle River Chopra AK (2007) Dynamics of structures: theory and applications to earthquake engineering. Prentice-Hall, Upper Saddle River
32.
Zurück zum Zitat Hopf E (1950) The partial differential equation ut + uux = μxx. Commun Pure Appl Math 3(3):201–230CrossRef Hopf E (1950) The partial differential equation ut + uux = μxx. Commun Pure Appl Math 3(3):201–230CrossRef
33.
Zurück zum Zitat Skeel RD, Berzins M (1990) A method for the spatial discretization of parabolic equations in one space variable. SIAM J Sci Stat Comput 11(1):1–32MathSciNetCrossRef Skeel RD, Berzins M (1990) A method for the spatial discretization of parabolic equations in one space variable. SIAM J Sci Stat Comput 11(1):1–32MathSciNetCrossRef
34.
Zurück zum Zitat Schrödinger E (1926) An undulatory theory of the mechanics of atoms and molecules. Phys Rev 28(6):1049CrossRef Schrödinger E (1926) An undulatory theory of the mechanics of atoms and molecules. Phys Rev 28(6):1049CrossRef
35.
36.
Zurück zum Zitat Driscoll TA, Hale N, Trefethen LN (2014) Chebfun guide. Pafnuty Publications, Oxford Driscoll TA, Hale N, Trefethen LN (2014) Chebfun guide. Pafnuty Publications, Oxford
37.
Zurück zum Zitat Bessa M, Bostanabad R, Liu Z, Hu A, Apley DW, Brinson C, Chen W, Liu WK (2017) A framework for data-driven analysis of materials under uncertainty: countering the curse of dimensionality. Comput Methods Appl Mech Eng 320:633–667MathSciNetCrossRef Bessa M, Bostanabad R, Liu Z, Hu A, Apley DW, Brinson C, Chen W, Liu WK (2017) A framework for data-driven analysis of materials under uncertainty: countering the curse of dimensionality. Comput Methods Appl Mech Eng 320:633–667MathSciNetCrossRef
Metadaten
Titel
General solutions for nonlinear differential equations: a rule-based self-learning approach using deep reinforcement learning
verfasst von
Shiyin Wei
Xiaowei Jin
Hui Li
Publikationsdatum
15.05.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 5/2019
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-019-01715-1

Weitere Artikel der Ausgabe 5/2019

Computational Mechanics 5/2019 Zur Ausgabe

Neuer Inhalt