Skip to main content
Erschienen in: Cognitive Neurodynamics 2/2011

01.06.2011

Generalization of learning by synchronous waves: from perceptual organization to invariant organization

verfasst von: David M. Alexander, Chris Trengove, Phillip E. Sheridan, Cees van Leeuwen

Erschienen in: Cognitive Neurodynamics | Ausgabe 2/2011

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

From a few presentations of an object, perceptual systems are able to extract invariant properties such that novel presentations are immediately recognized. This may be enabled by inferring the set of all representations equivalent under certain transformations. We implemented this principle in a neurodynamic model that stores activity patterns representing transformed versions of the same object in a distributed fashion within maps, such that translation across the map corresponds to the relevant transformation. When a pattern on the map is activated, this causes activity to spread out as a wave across the map, activating all the transformed versions represented. Computational studies illustrate the efficacy of the proposed mechanism. The model rapidly learns and successfully recognizes rotated and scaled versions of a visual representation from a few prior presentations. For topographical maps such as primary visual cortex, the mechanism simultaneously represents identity and variation of visual percepts whose features change through time.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Consideration of Eq. 7 indicates that the system will have more difficulty discriminating the target representation, \( T_{\lambda } (R) \), from the presence of additional noise compared to discriminating \( T_{\lambda } (R) \) from another representation which is a deformed version of \( T_{\lambda } (R) \). This is because \( v_{j} (p) \) will tend to be larger for \( j \in N \) in the case when \( M \cup N \), \( M \in D(R) \) is presented, compared to when \( j \in O \), \( O \in Q(R)\backslash D(R) \). More specifically, v j (p) will tend to be higher for noise points (jN compared to jO\MO) and higher for points in the representation (jM compared to jMO). This is true even when M and O differ by one point only, that is, one point is displaced within the target representation. In short, adding noise increases activation levels compared to displacing points within the target representation. For this reason we used additional noise rather than deformations of the target to assess recognition performance.
 
2
The 2nd order synapses, as implemented in the present network, bring about two pseudo-problems which, however, do not reflect upon the properties of the generalization mechanism presently of interest. First, 2nd order synapses are not able to distinguish between representations that are rotated by π in relation to each other. Every correctly reinforced 2nd order synapse will also contribute to the ‘recognition’ of a pi-rotated version of the representation. If 3rd order synapses were used in the network, these spurious generalizations would not occur. The second pseudo-problem concerns the implementation of additional noise points in the representation. The generalization mechanism treats pairs of points with the same vector length and direction as identical, since they are translations of each other. That is, any representation that contains points a and b, gives rise a set of connections (with updated gains) of the form B(T λ{a,b}), each element of which corresponds to the connection vector, ab. For this reason, the noise points, c, added to each representation, while otherwise random, were chosen such that they did not create connection vectors that were translations of the set of the existing set of connection vectors within the pattern. That is, ab  ≠ ca and ab  ≠ ac for each a and b in the n-point representation and for each noise point, c. Use of higher order synapses, while computationally more intensive, greatly reduces this effect, allowing for arbitrary noise points.
 
Literatur
Zurück zum Zitat Abbott LF, Nelson SB (2000) Synaptic plasticity: taming the beast. Nat Neurosci 3 Suppl:1178–1183 Abbott LF, Nelson SB (2000) Synaptic plasticity: taming the beast. Nat Neurosci 3 Suppl:1178–1183
Zurück zum Zitat Adams DL, Horton JC (2003) The representation of retinal blood vessels in primate striate cortex. J Neurosci 23(14):5984–5997PubMed Adams DL, Horton JC (2003) The representation of retinal blood vessels in primate striate cortex. J Neurosci 23(14):5984–5997PubMed
Zurück zum Zitat Agu M (1988) Field theory of pattern identification. Physics Review A 37(11):4415–4418CrossRef Agu M (1988) Field theory of pattern identification. Physics Review A 37(11):4415–4418CrossRef
Zurück zum Zitat Alexander DM, Van Leeuwen C (2010) Mapping of contextual modulation in the population response of primary visual cortex. Cogn Neurodyn 4(1):1–24CrossRef Alexander DM, Van Leeuwen C (2010) Mapping of contextual modulation in the population response of primary visual cortex. Cogn Neurodyn 4(1):1–24CrossRef
Zurück zum Zitat Alexander DM, Bourke PD, Sheridan P, Konstandatos O, Wright JJ (2004a) Intrinsic connections in tree shrew V1 imply a global to local mapping. Vis Res 44(9):857–876PubMedCrossRef Alexander DM, Bourke PD, Sheridan P, Konstandatos O, Wright JJ (2004a) Intrinsic connections in tree shrew V1 imply a global to local mapping. Vis Res 44(9):857–876PubMedCrossRef
Zurück zum Zitat Alexander DM, Sheridan P, Hintz T, Wright JJ (2004b) Specification of cortical anatomy within the spiral harmonic mosaic algebra, Proceedings of the 2004 International Conference on Imaging Science, Systems and Technology (CISST’04), pp 50–56 Alexander DM, Sheridan P, Hintz T, Wright JJ (2004b) Specification of cortical anatomy within the spiral harmonic mosaic algebra, Proceedings of the 2004 International Conference on Imaging Science, Systems and Technology (CISST’04), pp 50–56
Zurück zum Zitat Alexander DM, Arns MW, Paul RH, Rowe DL, Cooper N, Esser AH, Fallahpour K, Stephan BC, Heesen E, Breteler R, Williams LM, Gordon E (2006a) EEG markers for cognitive decline in elderly subjects with subjective memory complaints. Journal of Integrative Neuroscience 5(1):49–74PubMedCrossRef Alexander DM, Arns MW, Paul RH, Rowe DL, Cooper N, Esser AH, Fallahpour K, Stephan BC, Heesen E, Breteler R, Williams LM, Gordon E (2006a) EEG markers for cognitive decline in elderly subjects with subjective memory complaints. Journal of Integrative Neuroscience 5(1):49–74PubMedCrossRef
Zurück zum Zitat Alexander DM, Trengove C, Wright JJ, Boord PR, Gordon E (2006b) Measurement of phase gradients in the EEG. J Neurosci Methods 156(1–2):111–128PubMedCrossRef Alexander DM, Trengove C, Wright JJ, Boord PR, Gordon E (2006b) Measurement of phase gradients in the EEG. J Neurosci Methods 156(1–2):111–128PubMedCrossRef
Zurück zum Zitat Alexander DM, Williams LM, Gatt JM, Dobson-Stone C, Kuan SA, Todd EG, Schofield PR, Cooper NJ, Gordon E (2007) The contribution of apolipoprotein E alleles on cognitive performance and dynamic neural activity over six decades. Biol Psychol 75(3):229–238PubMedCrossRef Alexander DM, Williams LM, Gatt JM, Dobson-Stone C, Kuan SA, Todd EG, Schofield PR, Cooper NJ, Gordon E (2007) The contribution of apolipoprotein E alleles on cognitive performance and dynamic neural activity over six decades. Biol Psychol 75(3):229–238PubMedCrossRef
Zurück zum Zitat Allman J, Miezin F, McGuinness E (1985) Stimulus specific responses from beyond the classical receptive field: neurophysiological mechanisms for local–global comparisons in visual neurons. Annu Rev Neurosci 8:407–430PubMedCrossRef Allman J, Miezin F, McGuinness E (1985) Stimulus specific responses from beyond the classical receptive field: neurophysiological mechanisms for local–global comparisons in visual neurons. Annu Rev Neurosci 8:407–430PubMedCrossRef
Zurück zum Zitat Angelucci A, Bullier J (2003) Reaching beyond the classical receptive field of V1 neurons: horizontal or feedback axons? Journal of Physiology, Paris 97(2–3):141–154PubMedCrossRef Angelucci A, Bullier J (2003) Reaching beyond the classical receptive field of V1 neurons: horizontal or feedback axons? Journal of Physiology, Paris 97(2–3):141–154PubMedCrossRef
Zurück zum Zitat Arieli A, Shoham D, Hildesheim R, Grinvald A (1995) Coherent spatiotemporal patterns of ongoing activity revealed by real-time optical imaging coupled with single-unit recording in the cat visual-cortex. J Neurophysiol 73(5):2072–2093PubMed Arieli A, Shoham D, Hildesheim R, Grinvald A (1995) Coherent spatiotemporal patterns of ongoing activity revealed by real-time optical imaging coupled with single-unit recording in the cat visual-cortex. J Neurophysiol 73(5):2072–2093PubMed
Zurück zum Zitat Balasubramanian M, Polimeni J, Schwartz EL (2002) The V1–V2-V3 complex: quasiconformal dipole maps in primate striate and extra-striate cortex. Neural Network 15(10):1157–1163CrossRef Balasubramanian M, Polimeni J, Schwartz EL (2002) The V1–V2-V3 complex: quasiconformal dipole maps in primate striate and extra-striate cortex. Neural Network 15(10):1157–1163CrossRef
Zurück zum Zitat Bartfeld E, Grinvald A (1992) Relationships between orientation-preference pinwheels, cytochrome oxidase blobs, and ocular-dominance columns in primate striate cortex. Proc Natl Acad Sci USA 89(24):11905–11909PubMedCrossRef Bartfeld E, Grinvald A (1992) Relationships between orientation-preference pinwheels, cytochrome oxidase blobs, and ocular-dominance columns in primate striate cortex. Proc Natl Acad Sci USA 89(24):11905–11909PubMedCrossRef
Zurück zum Zitat Benucci A, Frazor RA, Carandini M (2007) Standing waves and traveling waves distinguish two circuits in visual cortex. Neuron 55(1):103–117PubMedCrossRef Benucci A, Frazor RA, Carandini M (2007) Standing waves and traveling waves distinguish two circuits in visual cortex. Neuron 55(1):103–117PubMedCrossRef
Zurück zum Zitat Bishop CM (1995) Neural networks for pattern recognition. Oxford University Press, Oxford Bishop CM (1995) Neural networks for pattern recognition. Oxford University Press, Oxford
Zurück zum Zitat Bizzarri AR (1991) Convergence properties of a modified Hopfield-Tank model. Biol Cybern 64(4):293–300PubMedCrossRef Bizzarri AR (1991) Convergence properties of a modified Hopfield-Tank model. Biol Cybern 64(4):293–300PubMedCrossRef
Zurück zum Zitat Blakemore C, Tobin EA (1972) Lateral inhibition between orientation detectors in the cat’s visual cortex. Exp Brain Res 15(4):439–440PubMedCrossRef Blakemore C, Tobin EA (1972) Lateral inhibition between orientation detectors in the cat’s visual cortex. Exp Brain Res 15(4):439–440PubMedCrossRef
Zurück zum Zitat Blasdel GG, Lund JS, Fitzpatrick D (1985) Intrinsic connections of macaque striate cortex: axonal projections of cells outside lamina 4C. J Neurosci 5(12):3350–3369PubMed Blasdel GG, Lund JS, Fitzpatrick D (1985) Intrinsic connections of macaque striate cortex: axonal projections of cells outside lamina 4C. J Neurosci 5(12):3350–3369PubMed
Zurück zum Zitat Booth MC, Rolls ET (1998) View-invariant representations of familiar objects by neurons in the inferior temporal visual cortex. Cereb Cortex 8(6):510–523PubMedCrossRef Booth MC, Rolls ET (1998) View-invariant representations of familiar objects by neurons in the inferior temporal visual cortex. Cereb Cortex 8(6):510–523PubMedCrossRef
Zurück zum Zitat Bosking WH, Zhang Y, Schofield B, Fitzpatrick D (1997) Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex. J Neurosci 17(6):2112–2127PubMed Bosking WH, Zhang Y, Schofield B, Fitzpatrick D (1997) Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex. J Neurosci 17(6):2112–2127PubMed
Zurück zum Zitat Bradski G, Grossberg S (1995) Fast learning VIEWNET architectures for recognizing 3-D objects from multiple 2-D views. Neural Networks 8:1053–1080 Bradski G, Grossberg S (1995) Fast learning VIEWNET architectures for recognizing 3-D objects from multiple 2-D views. Neural Networks 8:1053–1080
Zurück zum Zitat Bush D, Philippides A, Husbands P, O’Shea M (2010) Dual coding with STDP in a spiking recurrent neural network model of the hippocampus. Plos Comput Biol 6(7):e1000839. doi:10.1371/journal.pcbi.1000839 Bush D, Philippides A, Husbands P, O’Shea M (2010) Dual coding with STDP in a spiking recurrent neural network model of the hippocampus. Plos Comput Biol 6(7):e1000839. doi:10.​1371/​journal.​pcbi.​1000839
Zurück zum Zitat Catania KC (2002) Barrels, stripes, and fingerprints in the brain—implications for theories of cortical organization. J Neurocytol 31(3–5):347–358PubMedCrossRef Catania KC (2002) Barrels, stripes, and fingerprints in the brain—implications for theories of cortical organization. J Neurocytol 31(3–5):347–358PubMedCrossRef
Zurück zum Zitat Chapman CL, Wright JJ, Bourke PD (2002) Spatial eigenmodes and synchronous oscillation: co-incidence detection in simulated cerebral cortex. J Math Biol 45(1):57–78PubMedCrossRef Chapman CL, Wright JJ, Bourke PD (2002) Spatial eigenmodes and synchronous oscillation: co-incidence detection in simulated cerebral cortex. J Math Biol 45(1):57–78PubMedCrossRef
Zurück zum Zitat Chklovskii DB, Koulakov AA (2004) Maps in the brain: what can we learn from them? Annu Rev Neurosci 27:369–392PubMedCrossRef Chklovskii DB, Koulakov AA (2004) Maps in the brain: what can we learn from them? Annu Rev Neurosci 27:369–392PubMedCrossRef
Zurück zum Zitat D’Antuono M, Biagini G, Tancredi V, Avoli M (2001) Electrophysiology of regular firing cells in the rat perirhinal cortex. Hippocampus 11(6):662–672PubMedCrossRef D’Antuono M, Biagini G, Tancredi V, Avoli M (2001) Electrophysiology of regular firing cells in the rat perirhinal cortex. Hippocampus 11(6):662–672PubMedCrossRef
Zurück zum Zitat Dale AM, Liu AK, Fischl BR, Buckner RL, Belliveau JW, Lewine JD, Halgren E (2000) Dynamic statistical parametric mapping: combining fMRI and MEG for high-resolution imaging of cortical activity. Neuron 26(1):55–67PubMedCrossRef Dale AM, Liu AK, Fischl BR, Buckner RL, Belliveau JW, Lewine JD, Halgren E (2000) Dynamic statistical parametric mapping: combining fMRI and MEG for high-resolution imaging of cortical activity. Neuron 26(1):55–67PubMedCrossRef
Zurück zum Zitat Deisz RA, Fortin G, Zieglgansberger W (1991) Voltage dependence of excitatory postsynaptic potentials of rat neocortical neurons. J Neurophysiol 65(2):371–382PubMed Deisz RA, Fortin G, Zieglgansberger W (1991) Voltage dependence of excitatory postsynaptic potentials of rat neocortical neurons. J Neurophysiol 65(2):371–382PubMed
Zurück zum Zitat Derdikman D, Hildesheim R, Ahissar E, Arieli A, Grinvald A (2003) Imaging spatiotemporal dynamics of surround inhibition in the barrels somatosensory cortex. J Neurosci 23(8):3100–3105PubMed Derdikman D, Hildesheim R, Ahissar E, Arieli A, Grinvald A (2003) Imaging spatiotemporal dynamics of surround inhibition in the barrels somatosensory cortex. J Neurosci 23(8):3100–3105PubMed
Zurück zum Zitat Duhamel JR, Bremmer F, BenHamed S, Graf W (1997) Spatial invariance of visual receptive fields in parietal cortex neurons. Nature 389(6653):845–848PubMedCrossRef Duhamel JR, Bremmer F, BenHamed S, Graf W (1997) Spatial invariance of visual receptive fields in parietal cortex neurons. Nature 389(6653):845–848PubMedCrossRef
Zurück zum Zitat Eckhorn R, Frien A, Bauer R, Woelbern T, Kehr H (1993) High frequency (60–90 Hz) oscillations in primary visual cortex of awake monkey. Neuroreport 4(3):243–246PubMedCrossRef Eckhorn R, Frien A, Bauer R, Woelbern T, Kehr H (1993) High frequency (60–90 Hz) oscillations in primary visual cortex of awake monkey. Neuroreport 4(3):243–246PubMedCrossRef
Zurück zum Zitat Eckhorn R, Bruns A, Saam M, Gail A, Gabriel A, Brinksmeyer HJ (2001) Flexible cortical gamma-band correlations suggest neural principles of visual processing. Visual Cognition 8(3/4/5):519–530CrossRef Eckhorn R, Bruns A, Saam M, Gail A, Gabriel A, Brinksmeyer HJ (2001) Flexible cortical gamma-band correlations suggest neural principles of visual processing. Visual Cognition 8(3/4/5):519–530CrossRef
Zurück zum Zitat Ermentrout GB, Kleinfeld D (2001) Traveling electrical waves in cortex: insights from phase dynamics and speculation on a computational role. Neuron 29(1):33–44PubMedCrossRef Ermentrout GB, Kleinfeld D (2001) Traveling electrical waves in cortex: insights from phase dynamics and speculation on a computational role. Neuron 29(1):33–44PubMedCrossRef
Zurück zum Zitat Erwin E, Obermayer K, Schulten K (1992) Self-organizing maps: stationary states, metastability and convergence rate. Biol Cybern 67(1):35–45PubMedCrossRef Erwin E, Obermayer K, Schulten K (1992) Self-organizing maps: stationary states, metastability and convergence rate. Biol Cybern 67(1):35–45PubMedCrossRef
Zurück zum Zitat Feldman DE (2000) Timing-based LTP and LTD at vertical inputs to layer II/III pyramidal cells in rat barrel cortex. Neuron 27(1):45–56PubMedCrossRef Feldman DE (2000) Timing-based LTP and LTD at vertical inputs to layer II/III pyramidal cells in rat barrel cortex. Neuron 27(1):45–56PubMedCrossRef
Zurück zum Zitat Ferezou I, Haiss F, Gentet LJ, Aronoff R, Weber B, Petersen CCH (2007) Spatiotemporal dynamics of cortical sensorimotor integration in behaving mice. Neuron 56(5):907–923PubMedCrossRef Ferezou I, Haiss F, Gentet LJ, Aronoff R, Weber B, Petersen CCH (2007) Spatiotemporal dynamics of cortical sensorimotor integration in behaving mice. Neuron 56(5):907–923PubMedCrossRef
Zurück zum Zitat Fine TL, Mukherjee S (1999) Parameter convergence and learning curves for neural networks. Neural Comput 11(3):747–770PubMedCrossRef Fine TL, Mukherjee S (1999) Parameter convergence and learning curves for neural networks. Neural Comput 11(3):747–770PubMedCrossRef
Zurück zum Zitat Földiak P (1991) Learning invariance from transformation sequences. Neural Comput 3:194–200CrossRef Földiak P (1991) Learning invariance from transformation sequences. Neural Comput 3:194–200CrossRef
Zurück zum Zitat Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 102(27):9673–9678PubMedCrossRef Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 102(27):9673–9678PubMedCrossRef
Zurück zum Zitat Freeman WJ (2003) A neurobiological theory of meaning in perception. Part II: spatial patterns of phase in gamma EEGs from primary sensory cortices reveal the dynamics of mesoscopic wave packets. International Journal of Bifurcation and Chaos 13(9):2513–2535CrossRef Freeman WJ (2003) A neurobiological theory of meaning in perception. Part II: spatial patterns of phase in gamma EEGs from primary sensory cortices reveal the dynamics of mesoscopic wave packets. International Journal of Bifurcation and Chaos 13(9):2513–2535CrossRef
Zurück zum Zitat Freeman WJ, Barrie JM (2000) Analysis of spatial patterns of phase in neocortical gamma EEGs in rabbit. J Neurophysiol 84(3):1266–1278PubMed Freeman WJ, Barrie JM (2000) Analysis of spatial patterns of phase in neocortical gamma EEGs in rabbit. J Neurophysiol 84(3):1266–1278PubMed
Zurück zum Zitat Fregnac Y, Bringuier V, Chavane F (1996) Synaptic integration fields and associative plasticity of visual cortical cells in vivo. Journal of Physiology, Paris 90(5–6):367–372PubMedCrossRef Fregnac Y, Bringuier V, Chavane F (1996) Synaptic integration fields and associative plasticity of visual cortical cells in vivo. Journal of Physiology, Paris 90(5–6):367–372PubMedCrossRef
Zurück zum Zitat Frohlich F, McCormick DA (2010) Endogenous electric fields may guide neocortical network activity. Neuron 67(1):129–143PubMedCrossRef Frohlich F, McCormick DA (2010) Endogenous electric fields may guide neocortical network activity. Neuron 67(1):129–143PubMedCrossRef
Zurück zum Zitat Fukushima K (1988) Neocognitron: a hierarchical neural network capable of visual pattern recognition. Neural Networks 1(119–130) Fukushima K (1988) Neocognitron: a hierarchical neural network capable of visual pattern recognition. Neural Networks 1(119–130)
Zurück zum Zitat Garner WR (1962) Uncertainty and structure as psychological concepts. Wiley, New York Garner WR (1962) Uncertainty and structure as psychological concepts. Wiley, New York
Zurück zum Zitat Garner WR (1966) To perceive is to know. Am Psychol 21(1):11 Garner WR (1966) To perceive is to know. Am Psychol 21(1):11
Zurück zum Zitat Garner WR, Clement DE (1963) Goodness of pattern and pattern uncertainty. Journal of Verbal Learning and Verbal Behavior 2:446–452CrossRef Garner WR, Clement DE (1963) Goodness of pattern and pattern uncertainty. Journal of Verbal Learning and Verbal Behavior 2:446–452CrossRef
Zurück zum Zitat Gawne TJ, Martin JM (2002) Responses of primate visual cortical neurons to stimuli presented by flash, saccade, blink, and external darkening. J Neurophysiol 88(5):2178–2186PubMedCrossRef Gawne TJ, Martin JM (2002) Responses of primate visual cortical neurons to stimuli presented by flash, saccade, blink, and external darkening. J Neurophysiol 88(5):2178–2186PubMedCrossRef
Zurück zum Zitat Gong PL, van Leeuwen C (2009) Distributed dynamical computation in neural circuits with propagating coherent activity patterns. Plos Comput Biol 5(12) Gong PL, van Leeuwen C (2009) Distributed dynamical computation in neural circuits with propagating coherent activity patterns. Plos Comput Biol 5(12)
Zurück zum Zitat Guyonneau R, Vanrullen R, Thorpe SJ (2004) Temporal codes and sparse representations: a key to understanding rapid processing in the visual system. Journal of Physiology, Paris 98(4–6):487–497PubMedCrossRef Guyonneau R, Vanrullen R, Thorpe SJ (2004) Temporal codes and sparse representations: a key to understanding rapid processing in the visual system. Journal of Physiology, Paris 98(4–6):487–497PubMedCrossRef
Zurück zum Zitat Haider B, Krause MR, Duque A, Yu YG, Touryan J, Mazer JA, McCormick DA (2010) Synaptic and network mechanisms of sparse and reliable visual cortical activity during nonclassical receptive field stimulation. Neuron 65(1):107–121PubMedCrossRef Haider B, Krause MR, Duque A, Yu YG, Touryan J, Mazer JA, McCormick DA (2010) Synaptic and network mechanisms of sparse and reliable visual cortical activity during nonclassical receptive field stimulation. Neuron 65(1):107–121PubMedCrossRef
Zurück zum Zitat Hinds O, Polimeni JR, Rajendran N, Balasubramanian M, Wald LL, Augustinack JC, Wiggins G, Rosas HD, Fischl B, Schwartz EL (2008) The intrinsic shape of human and macaque primary visual cortex. Cereb Cortex 18(11):2586–2595PubMedCrossRef Hinds O, Polimeni JR, Rajendran N, Balasubramanian M, Wald LL, Augustinack JC, Wiggins G, Rosas HD, Fischl B, Schwartz EL (2008) The intrinsic shape of human and macaque primary visual cortex. Cereb Cortex 18(11):2586–2595PubMedCrossRef
Zurück zum Zitat Hoffman WC, Dodwell PC (1985) Geometric psychology generates the visual gestalt. Canadian Journal of Pyschology 39:491–528CrossRef Hoffman WC, Dodwell PC (1985) Geometric psychology generates the visual gestalt. Canadian Journal of Pyschology 39:491–528CrossRef
Zurück zum Zitat Hua TM, Bao PL, Huang CB, Wang ZH, Xu JW, Zhou YF, Lu ZL (2010) Perceptual learning improves contrast sensitivity of V1 neurons in cats. Curr Biol 20(10):887–894PubMedCrossRef Hua TM, Bao PL, Huang CB, Wang ZH, Xu JW, Zhou YF, Lu ZL (2010) Perceptual learning improves contrast sensitivity of V1 neurons in cats. Curr Biol 20(10):887–894PubMedCrossRef
Zurück zum Zitat Hubel DH, Wiesel TN (1974) Uniformity of monkey striate cortex: a parallel relationship between field size, scatter, and magnification factor. J Comp Neurol 158(3):295–305PubMedCrossRef Hubel DH, Wiesel TN (1974) Uniformity of monkey striate cortex: a parallel relationship between field size, scatter, and magnification factor. J Comp Neurol 158(3):295–305PubMedCrossRef
Zurück zum Zitat Hubener M, Shoham D, Grinvald A, Bonhoeffer T (1997) Spatial relationships among three columnar systems in cat area 17. J Neurosci 17(23):9270–9284PubMed Hubener M, Shoham D, Grinvald A, Bonhoeffer T (1997) Spatial relationships among three columnar systems in cat area 17. J Neurosci 17(23):9270–9284PubMed
Zurück zum Zitat Ito M, Tamura H, Fujita I, Tanaka K (1995) Size and position invariance of neuronal responses in monkey inferotemporal cortex. J Neurophysiol 73(1):218–226PubMed Ito M, Tamura H, Fujita I, Tanaka K (1995) Size and position invariance of neuronal responses in monkey inferotemporal cortex. J Neurophysiol 73(1):218–226PubMed
Zurück zum Zitat Ito J, Nikolaev AR, van Leeuwen C (2007) Dynamics of spontaneous transitions between global brain states. Hum Brain Mapp 28(9):904–913PubMedCrossRef Ito J, Nikolaev AR, van Leeuwen C (2007) Dynamics of spontaneous transitions between global brain states. Hum Brain Mapp 28(9):904–913PubMedCrossRef
Zurück zum Zitat Jordanov I, Brown R (2000) Optimal design of connectivity in neural network training. Biomed Sci Instrum 36:27–32PubMed Jordanov I, Brown R (2000) Optimal design of connectivity in neural network training. Biomed Sci Instrum 36:27–32PubMed
Zurück zum Zitat Kenet T, Bibitchkov D, Tsodyks M, Grinvald A, Arieli A (2003) Spontaneously emerging cortical representations of visual attributes. Nature 425(6961):954–956PubMedCrossRef Kenet T, Bibitchkov D, Tsodyks M, Grinvald A, Arieli A (2003) Spontaneously emerging cortical representations of visual attributes. Nature 425(6961):954–956PubMedCrossRef
Zurück zum Zitat Kleinfeld D, Delaney KR (1996) Distributed representation of vibrissa movement in the upper layers of somatosensory cortex revealed with voltage-sensitive dyes. J Comp Neurol 375(1):89–108PubMedCrossRef Kleinfeld D, Delaney KR (1996) Distributed representation of vibrissa movement in the upper layers of somatosensory cortex revealed with voltage-sensitive dyes. J Comp Neurol 375(1):89–108PubMedCrossRef
Zurück zum Zitat Klimesch W, Hanslmayr S, Sauseng P, Gruber WR, Doppelmayr M (2007) P1 and traveling alpha waves: evidence for evoked oscillations. J Neurophysiol 97(2):1311–1318PubMedCrossRef Klimesch W, Hanslmayr S, Sauseng P, Gruber WR, Doppelmayr M (2007) P1 and traveling alpha waves: evidence for evoked oscillations. J Neurophysiol 97(2):1311–1318PubMedCrossRef
Zurück zum Zitat Konen W, von der Malsburg C (1993) Learning to generalize from single examples in the dynamic link architecture. Neural Comput 5(5):719–735CrossRef Konen W, von der Malsburg C (1993) Learning to generalize from single examples in the dynamic link architecture. Neural Comput 5(5):719–735CrossRef
Zurück zum Zitat König P, Engel AK, Roelfsema PR, Singer W (1995) How precise is neuronal synchronization? Neural Comput 7:469–485PubMedCrossRef König P, Engel AK, Roelfsema PR, Singer W (1995) How precise is neuronal synchronization? Neural Comput 7:469–485PubMedCrossRef
Zurück zum Zitat Kording KP, König P (2001) Neurons with two sites of synaptic integration learn invariant representations. Neural Comput 13:2823–2849PubMedCrossRef Kording KP, König P (2001) Neurons with two sites of synaptic integration learn invariant representations. Neural Comput 13:2823–2849PubMedCrossRef
Zurück zum Zitat Kovacs G, Vogels R, Orban GA (1995) Selectivity of macaque inferior temporal neurons for partially occluded shapes. J Neurosci 15(3 Pt 1):1984–1997 Kovacs G, Vogels R, Orban GA (1995) Selectivity of macaque inferior temporal neurons for partially occluded shapes. J Neurosci 15(3 Pt 1):1984–1997
Zurück zum Zitat Lam YW, Cohen LB, Wachowiak M, Zochowski MR (2000) Odors elicit three different oscillations in the turtle olfactory bulb. J Neurosci 20(2):749–762PubMed Lam YW, Cohen LB, Wachowiak M, Zochowski MR (2000) Odors elicit three different oscillations in the turtle olfactory bulb. J Neurosci 20(2):749–762PubMed
Zurück zum Zitat Lashley KS (1950) In search of the engram. Society of experimental biology symposium, no. 4: Psychological mechanisms in animal behavior. Cambridge University Press, Cambridge, pp 454–480 Lashley KS (1950) In search of the engram. Society of experimental biology symposium, no. 4: Psychological mechanisms in animal behavior. Cambridge University Press, Cambridge, pp 454–480
Zurück zum Zitat Liley DT, Alexander DM, Wright JJ, Aldous MD (1999) Alpha rhythm emerges from large-scale networks of realistically coupled multicompartmental model cortical neurons. Network 10(1):79–92PubMedCrossRef Liley DT, Alexander DM, Wright JJ, Aldous MD (1999) Alpha rhythm emerges from large-scale networks of realistically coupled multicompartmental model cortical neurons. Network 10(1):79–92PubMedCrossRef
Zurück zum Zitat Liu LC, Plomp G, van Leeuwen C, Ioannides AA (2006) Neural correlates of priming on occluded figure interpretation in human fusiform cortex. Neuroscience 141(3):1585–1597PubMedCrossRef Liu LC, Plomp G, van Leeuwen C, Ioannides AA (2006) Neural correlates of priming on occluded figure interpretation in human fusiform cortex. Neuroscience 141(3):1585–1597PubMedCrossRef
Zurück zum Zitat Livingstone MS (1996) Oscillatory firing and interneuronal correlations in squirrel monkey striate cortex. J Neurophysiol 75(6):2467–2485PubMed Livingstone MS (1996) Oscillatory firing and interneuronal correlations in squirrel monkey striate cortex. J Neurophysiol 75(6):2467–2485PubMed
Zurück zum Zitat Livingstone MS, Hubel DH (1984) Specificity of intrinsic connections in primate primary visual cortex. J Neurosci 4(11):2830–2835PubMed Livingstone MS, Hubel DH (1984) Specificity of intrinsic connections in primate primary visual cortex. J Neurosci 4(11):2830–2835PubMed
Zurück zum Zitat Logothetis NK, Pauls J, Poggio T (1995) Shape representation in the inferior temporal cortex of monkeys. Curr Biol 5(5):552–563PubMedCrossRef Logothetis NK, Pauls J, Poggio T (1995) Shape representation in the inferior temporal cortex of monkeys. Curr Biol 5(5):552–563PubMedCrossRef
Zurück zum Zitat Lund JS, Wu CQ (1997) Local circuit neurons of macaque monkey striate cortex: IV. Neurons of laminae 1–3A. J Comp Neurol 384(1):109–126PubMedCrossRef Lund JS, Wu CQ (1997) Local circuit neurons of macaque monkey striate cortex: IV. Neurons of laminae 1–3A. J Comp Neurol 384(1):109–126PubMedCrossRef
Zurück zum Zitat Lund JS, Angelucci A, Bressloff PC (2003) Anatomical substrates for functional columns in macaque monkey primary visual cortex. Cereb Cortex 13(1):15–24PubMedCrossRef Lund JS, Angelucci A, Bressloff PC (2003) Anatomical substrates for functional columns in macaque monkey primary visual cortex. Cereb Cortex 13(1):15–24PubMedCrossRef
Zurück zum Zitat MacLennan BJ (1999) Field computation in natural and artificial intelligence. Inf Sci 119(1–2):73–89CrossRef MacLennan BJ (1999) Field computation in natural and artificial intelligence. Inf Sci 119(1–2):73–89CrossRef
Zurück zum Zitat Magee JC, Johnston D (1997) A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science 275(5297):209–213PubMedCrossRef Magee JC, Johnston D (1997) A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science 275(5297):209–213PubMedCrossRef
Zurück zum Zitat Malach R, Levy I, Hasson U (2002) The topography of high-order human object areas. Trends Cognition Science 6(4):176–184CrossRef Malach R, Levy I, Hasson U (2002) The topography of high-order human object areas. Trends Cognition Science 6(4):176–184CrossRef
Zurück zum Zitat Maldonado PE, Friedman-Hill S, Gray CM (2000) Dynamics of striate cortical activity in the alert macaque: II. Fast time scale synchronization. Cereb Cortex 10(11):1117–1131PubMedCrossRef Maldonado PE, Friedman-Hill S, Gray CM (2000) Dynamics of striate cortical activity in the alert macaque: II. Fast time scale synchronization. Cereb Cortex 10(11):1117–1131PubMedCrossRef
Zurück zum Zitat Markram H, Lubke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275(5297):213–215PubMedCrossRef Markram H, Lubke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275(5297):213–215PubMedCrossRef
Zurück zum Zitat Mikolajczyk K, Schmid C (2002) An affine invariant interest point detector. In: Proceedings, European conference on computer vision, pp 128–142 Mikolajczyk K, Schmid C (2002) An affine invariant interest point detector. In: Proceedings, European conference on computer vision, pp 128–142
Zurück zum Zitat Nakatani C, Ueno K, van Leeuwen C, Tanaka K, Cheng K (2005) Successive recruitment of brain areas in a parameterized scene rotation task: an fMRI study. In: 11th Annual organization for human brain mapping meeting Nakatani C, Ueno K, van Leeuwen C, Tanaka K, Cheng K (2005) Successive recruitment of brain areas in a parameterized scene rotation task: an fMRI study. In: 11th Annual organization for human brain mapping meeting
Zurück zum Zitat Nauhaus I, Busse L, Carandini M, Ringach DL (2009) Stimulus contrast modulates functional connectivity in visual cortex. Nat Neurosci 12(1):70–76PubMedCrossRef Nauhaus I, Busse L, Carandini M, Ringach DL (2009) Stimulus contrast modulates functional connectivity in visual cortex. Nat Neurosci 12(1):70–76PubMedCrossRef
Zurück zum Zitat Nelson JI, Frost BJ (1978) Orientation-selective inhibition from beyond the classic visual receptive field. Brain Res 139(2):359–365PubMedCrossRef Nelson JI, Frost BJ (1978) Orientation-selective inhibition from beyond the classic visual receptive field. Brain Res 139(2):359–365PubMedCrossRef
Zurück zum Zitat Nicolelis MAL, Baccala LA, Lin RCS, Chapin JK (1995) Sensorimotor encoding by synchronous neural ensemble activity at multiple levels of the somatosensory system. Science 268(5215):1353–1358PubMedCrossRef Nicolelis MAL, Baccala LA, Lin RCS, Chapin JK (1995) Sensorimotor encoding by synchronous neural ensemble activity at multiple levels of the somatosensory system. Science 268(5215):1353–1358PubMedCrossRef
Zurück zum Zitat Ohno-Shosaku T, Maejima T, Kano M (2001) Endogenous cannabinoids mediate retrograde signals from depolarized postsynaptic neurons to presynaptic terminals. Neuron 29(3):729–738PubMedCrossRef Ohno-Shosaku T, Maejima T, Kano M (2001) Endogenous cannabinoids mediate retrograde signals from depolarized postsynaptic neurons to presynaptic terminals. Neuron 29(3):729–738PubMedCrossRef
Zurück zum Zitat Olivers CNL, Chater N, Watson DG (2004) Holography does not account for goodness: a critique of van der Helm and Leeuwenberg (1996). Psychol Rev 111(1):242–260PubMedCrossRef Olivers CNL, Chater N, Watson DG (2004) Holography does not account for goodness: a critique of van der Helm and Leeuwenberg (1996). Psychol Rev 111(1):242–260PubMedCrossRef
Zurück zum Zitat Pantev C, Lutkenhoner B (2000) Magnetoencephalographic studies of functional organization and plasticity of the human auditory cortex. J Clin Neurophysiol 17(2):130–142PubMedCrossRef Pantev C, Lutkenhoner B (2000) Magnetoencephalographic studies of functional organization and plasticity of the human auditory cortex. J Clin Neurophysiol 17(2):130–142PubMedCrossRef
Zurück zum Zitat Phillips WA, Kay J, Smyth D (1995) The discovery of structure by multistreamnetworks of local processors with contextual guidance. Network: Computing Neural System 6:225–246CrossRef Phillips WA, Kay J, Smyth D (1995) The discovery of structure by multistreamnetworks of local processors with contextual guidance. Network: Computing Neural System 6:225–246CrossRef
Zurück zum Zitat Pitts W, McCulloch WS (1947) How we know universals the perception of auditory and visual forms. Bull Math Biol 9:127–147 Pitts W, McCulloch WS (1947) How we know universals the perception of auditory and visual forms. Bull Math Biol 9:127–147
Zurück zum Zitat Plomp G, van Leeuwen C (2006) Asymmetric priming effects in visual processing of occlusion patterns. Percept Psychophysics 68(6):946–958CrossRef Plomp G, van Leeuwen C (2006) Asymmetric priming effects in visual processing of occlusion patterns. Percept Psychophysics 68(6):946–958CrossRef
Zurück zum Zitat Poggio T, Bizzi E (2004) Generalization in vision and motor control. Nature 431(7010):768–774PubMedCrossRef Poggio T, Bizzi E (2004) Generalization in vision and motor control. Nature 431(7010):768–774PubMedCrossRef
Zurück zum Zitat Prechtl JC, Cohen LB, Pesaran B, Mitra PP, Kleinfeld D (1997) Visual stimuli induce waves of electrical activity in turtle cortex. Proc Natl Acad Sci USA 94(14):7621–7626PubMedCrossRef Prechtl JC, Cohen LB, Pesaran B, Mitra PP, Kleinfeld D (1997) Visual stimuli induce waves of electrical activity in turtle cortex. Proc Natl Acad Sci USA 94(14):7621–7626PubMedCrossRef
Zurück zum Zitat Quiroga RQ, Reddy L, Kreiman G, Koch C, Fried I (2005) Invariant visual representation by single neurons in the human brain. Nature 435(7045):1102–1107PubMedCrossRef Quiroga RQ, Reddy L, Kreiman G, Koch C, Fried I (2005) Invariant visual representation by single neurons in the human brain. Nature 435(7045):1102–1107PubMedCrossRef
Zurück zum Zitat Ribary U, Ioannides AA, Singh KD, Hasson R, Bolton JPR, Lado F, Mogilner A, Llinas R (1991) Magnetic-field tomography of coherent thalamocortical 40-Hz oscillations in humans. Proc Natl Acad Sci USA 88(24):11037–11041PubMedCrossRef Ribary U, Ioannides AA, Singh KD, Hasson R, Bolton JPR, Lado F, Mogilner A, Llinas R (1991) Magnetic-field tomography of coherent thalamocortical 40-Hz oscillations in humans. Proc Natl Acad Sci USA 88(24):11037–11041PubMedCrossRef
Zurück zum Zitat Robinson PA (2006) Gamma oscillations and visual binding. In: 15th Australian society for psychophysiology conference, University of Wollongong, Clinical EEG and Neuroscience Robinson PA (2006) Gamma oscillations and visual binding. In: 15th Australian society for psychophysiology conference, University of Wollongong, Clinical EEG and Neuroscience
Zurück zum Zitat Rockland KS, Knutson T (2001) Axon collaterals of Meynert cells diverge over large portions of area V1 in the macaque monkey. J Comp Neurol 441(2):134–147PubMedCrossRef Rockland KS, Knutson T (2001) Axon collaterals of Meynert cells diverge over large portions of area V1 in the macaque monkey. J Comp Neurol 441(2):134–147PubMedCrossRef
Zurück zum Zitat Roland PE, Hanazawa A, Undeman C, Eriksson D, Tompa T, Nakamura H, Valentiniene S, Ahmed B (2006) Cortical feedback depolarization waves: a mechanism of top-down influence on early visual areas. Proc Natl Acad Sci USA 103(33):12586–12591PubMedCrossRef Roland PE, Hanazawa A, Undeman C, Eriksson D, Tompa T, Nakamura H, Valentiniene S, Ahmed B (2006) Cortical feedback depolarization waves: a mechanism of top-down influence on early visual areas. Proc Natl Acad Sci USA 103(33):12586–12591PubMedCrossRef
Zurück zum Zitat Rolls ET (1992) Neurophysiological mechanisms underlying face processing within and beyond the temporal cortical visual areas. Philos Trans R Soc Lond B Biol Sci 335(1273):11–20 (discussion 20-1) Rolls ET (1992) Neurophysiological mechanisms underlying face processing within and beyond the temporal cortical visual areas. Philos Trans R Soc Lond B Biol Sci 335(1273):11–20 (discussion 20-1)
Zurück zum Zitat Rolls ET (1995) Learning mechanisms in the temporal lobe visual cortex. Behav Brain Res 66(1–2):177–185PubMedCrossRef Rolls ET (1995) Learning mechanisms in the temporal lobe visual cortex. Behav Brain Res 66(1–2):177–185PubMedCrossRef
Zurück zum Zitat Rubino D, Robbins KA, Hatsopoulos NG (2006) Propagating waves mediate information transfer in the motor cortex. Nat Neurosci 9(12):1549–1557PubMedCrossRef Rubino D, Robbins KA, Hatsopoulos NG (2006) Propagating waves mediate information transfer in the motor cortex. Nat Neurosci 9(12):1549–1557PubMedCrossRef
Zurück zum Zitat Sandberg A, Tegner J, Lansner A (2003) A working memory model based on fast Hebbian learning. Network 14(4):789–802PubMedCrossRef Sandberg A, Tegner J, Lansner A (2003) A working memory model based on fast Hebbian learning. Network 14(4):789–802PubMedCrossRef
Zurück zum Zitat Scarpetta S, Marinaro M (2005) A learning rule for place fields in a cortical model: theta phase precession as a network effect. Hippocampus 15(7):979–989PubMedCrossRef Scarpetta S, Marinaro M (2005) A learning rule for place fields in a cortical model: theta phase precession as a network effect. Hippocampus 15(7):979–989PubMedCrossRef
Zurück zum Zitat Schreiner CE, Read HL, Sutter ML (2000) Modular organization of frequency integration in primary auditory cortex. Annu Rev Neurosci 23:501–529PubMedCrossRef Schreiner CE, Read HL, Sutter ML (2000) Modular organization of frequency integration in primary auditory cortex. Annu Rev Neurosci 23:501–529PubMedCrossRef
Zurück zum Zitat Schwartz EL (1980) Computational anatomy and functional architecture of striate cortex: a spatial mapping approach to perceptual coding. Vis Res 20(8):645–669PubMedCrossRef Schwartz EL (1980) Computational anatomy and functional architecture of striate cortex: a spatial mapping approach to perceptual coding. Vis Res 20(8):645–669PubMedCrossRef
Zurück zum Zitat Senseman DM, Robbins KA (2002) High-speed VSD Imaging of visually evoked cortical waves: decomposition into intra- and intercortical wave motions. J Neurophysiol 87(3):1499–1514PubMed Senseman DM, Robbins KA (2002) High-speed VSD Imaging of visually evoked cortical waves: decomposition into intra- and intercortical wave motions. J Neurophysiol 87(3):1499–1514PubMed
Zurück zum Zitat Sheridan P (1996) Spiral architecture for machine vision. University of Technology, Sydney. Ph.D Sheridan P (1996) Spiral architecture for machine vision. University of Technology, Sydney. Ph.D
Zurück zum Zitat Sheridan P, Hintz T, Alexander DM (2000) Pseudo-invariant image transformations on a hexagonal lattice. Image Vis Comput 18:907–918CrossRef Sheridan P, Hintz T, Alexander DM (2000) Pseudo-invariant image transformations on a hexagonal lattice. Image Vis Comput 18:907–918CrossRef
Zurück zum Zitat Singer W, Gray CM (1995) Visual feature integration and the temporal correlation hypothesis. Annu Rev Neurosci 18:555–586PubMedCrossRef Singer W, Gray CM (1995) Visual feature integration and the temporal correlation hypothesis. Annu Rev Neurosci 18:555–586PubMedCrossRef
Zurück zum Zitat Stettler DD, Das A, Bennett J, Gilbert CD (2002) Lateral connectivity and contextual interactions in macaque primary visual cortex. Neuron 36(4):739–750PubMedCrossRef Stettler DD, Das A, Bennett J, Gilbert CD (2002) Lateral connectivity and contextual interactions in macaque primary visual cortex. Neuron 36(4):739–750PubMedCrossRef
Zurück zum Zitat Stone JV, Bray AJ (1995) A learning rule for extracting spatio-temporal invariances. Network: Computing Neural Syst 6:429–436CrossRef Stone JV, Bray AJ (1995) A learning rule for extracting spatio-temporal invariances. Network: Computing Neural Syst 6:429–436CrossRef
Zurück zum Zitat Sutcliffe JP (1986) Differential ordering of objects and attributes. Psychometrika 51(2):209–240CrossRef Sutcliffe JP (1986) Differential ordering of objects and attributes. Psychometrika 51(2):209–240CrossRef
Zurück zum Zitat Swindale NV (1996) The development of topography in the visual cortex: a review of models. Network 7(2):161–247PubMedCrossRef Swindale NV (1996) The development of topography in the visual cortex: a review of models. Network 7(2):161–247PubMedCrossRef
Zurück zum Zitat Terashima H, Hosoya H (2009) Sparse codes of harmonic natural sounds and their modulatory interactions. Network Computation in Neural Systems 20(4):253–267CrossRef Terashima H, Hosoya H (2009) Sparse codes of harmonic natural sounds and their modulatory interactions. Network Computation in Neural Systems 20(4):253–267CrossRef
Zurück zum Zitat Tootell RB, Hamilton SL, Switkes E (1988a) Functional anatomy of macaque striate cortex. IV. Contrast and magno-parvo streams. J Neurosci 8(5):1594–1609PubMed Tootell RB, Hamilton SL, Switkes E (1988a) Functional anatomy of macaque striate cortex. IV. Contrast and magno-parvo streams. J Neurosci 8(5):1594–1609PubMed
Zurück zum Zitat Tootell RB, Silverman MS, Hamilton SL, Switkes E, De Valois RL (1988b) Functional anatomy of macaque striate cortex. V. Spatial frequency. J Neurosci 8(5):1610–1624PubMed Tootell RB, Silverman MS, Hamilton SL, Switkes E, De Valois RL (1988b) Functional anatomy of macaque striate cortex. V. Spatial frequency. J Neurosci 8(5):1610–1624PubMed
Zurück zum Zitat Tootell RB, Switkes E, Silverman MS, Hamilton SL (1988c) Functional anatomy of macaque striate cortex. II. Retinotopic organization. J Neurosci 8(5):1531–1568PubMed Tootell RB, Switkes E, Silverman MS, Hamilton SL (1988c) Functional anatomy of macaque striate cortex. II. Retinotopic organization. J Neurosci 8(5):1531–1568PubMed
Zurück zum Zitat Tucker TR, Katz LC (2003) Spatiotemporal patterns of excitation and inhibition evoked by the horizontal network in layer 2/3 of ferret visual cortex. J Neurophysiol 89(1):488–500PubMedCrossRef Tucker TR, Katz LC (2003) Spatiotemporal patterns of excitation and inhibition evoked by the horizontal network in layer 2/3 of ferret visual cortex. J Neurophysiol 89(1):488–500PubMedCrossRef
Zurück zum Zitat Tuytelaars T, van Gool LV (2000) Wide baseline stereo matching based on local, affinely invariant regions. British machine vision conference Tuytelaars T, van Gool LV (2000) Wide baseline stereo matching based on local, affinely invariant regions. British machine vision conference
Zurück zum Zitat Ullman S, Bart E (2004) Recognition invariance obtained by extended and invariant features. Neural Network 17(5–6):833–848CrossRef Ullman S, Bart E (2004) Recognition invariance obtained by extended and invariant features. Neural Network 17(5–6):833–848CrossRef
Zurück zum Zitat van der Helm PA, Leeuwenberg ELJ (1996) Goodness of visual regularities: a nontransformational approach. Psychol Rev 103(3):429–456PubMedCrossRef van der Helm PA, Leeuwenberg ELJ (1996) Goodness of visual regularities: a nontransformational approach. Psychol Rev 103(3):429–456PubMedCrossRef
Zurück zum Zitat van der Helm PA, Leeuwenberg ELJ (2004) Holographic goodness is not that bad: reply to Olivers, Chater, and Watson (2004). Psychol Rev 111:261–273CrossRef van der Helm PA, Leeuwenberg ELJ (2004) Holographic goodness is not that bad: reply to Olivers, Chater, and Watson (2004). Psychol Rev 111:261–273CrossRef
Zurück zum Zitat Vanduffel W, Tootell RB, Schoups AA, Orban GA (2002) The organization of orientation selectivity throughout macaque visual cortex. Cereb Cortex 12(6):647–662PubMedCrossRef Vanduffel W, Tootell RB, Schoups AA, Orban GA (2002) The organization of orientation selectivity throughout macaque visual cortex. Cereb Cortex 12(6):647–662PubMedCrossRef
Zurück zum Zitat Vincent JL, Patel GH, Fox MD, Snyder AZ, Baker JT, Van Essen DC, Zempel JM, Snyder LH, Corbetta M, Raichle ME (2007) Intrinsic functional architecture in the anaesthetized monkey brain. Nature 447(7140):83–84PubMedCrossRef Vincent JL, Patel GH, Fox MD, Snyder AZ, Baker JT, Van Essen DC, Zempel JM, Snyder LH, Corbetta M, Raichle ME (2007) Intrinsic functional architecture in the anaesthetized monkey brain. Nature 447(7140):83–84PubMedCrossRef
Zurück zum Zitat Vinje WE, Gallant JL (2000) Sparse coding and decorrelation in primary visual cortex during natural vision. Science 287(5456):1273–1276PubMedCrossRef Vinje WE, Gallant JL (2000) Sparse coding and decorrelation in primary visual cortex during natural vision. Science 287(5456):1273–1276PubMedCrossRef
Zurück zum Zitat von der Malsburg C (1994) The correlation theory of brain function. In: Domany E, van Hemmen JL, Schulten K (eds) Models of neural networks, vol 2. Springer, Berlin, pp 95–119 von der Malsburg C (1994) The correlation theory of brain function. In: Domany E, van Hemmen JL, Schulten K (eds) Models of neural networks, vol 2. Springer, Berlin, pp 95–119
Zurück zum Zitat von der Malsburg C, Schneider W (1986) A neural cocktail-party processor. Biol Cybern 54(1):29–40CrossRef von der Malsburg C, Schneider W (1986) A neural cocktail-party processor. Biol Cybern 54(1):29–40CrossRef
Zurück zum Zitat Wagemans J (1999) Toward a better approach to goodness: Comments on Van der Helm and Leeuwenberg (1996). Psychol Rev 106(3):610–621CrossRef Wagemans J (1999) Toward a better approach to goodness: Comments on Van der Helm and Leeuwenberg (1996). Psychol Rev 106(3):610–621CrossRef
Zurück zum Zitat Wilson RI, Nicoll RA (2001) Endogenous cannabinoids mediate retrograde signalling at hippocampal synapses. Nature 410(6828):588–592PubMedCrossRef Wilson RI, Nicoll RA (2001) Endogenous cannabinoids mediate retrograde signalling at hippocampal synapses. Nature 410(6828):588–592PubMedCrossRef
Zurück zum Zitat Wright JJ, Robinson PA, Rennie CJ, Gordon E, Bourke PD, Chapman CL, Hawthorn N, Lees GJ, Alexander D (2001) Toward an integrated continuum model of cerebral dynamics: the cerebral rhythms, synchronous oscillation and cortical stability. Biosystems 63(1–3):71–88PubMedCrossRef Wright JJ, Robinson PA, Rennie CJ, Gordon E, Bourke PD, Chapman CL, Hawthorn N, Lees GJ, Alexander D (2001) Toward an integrated continuum model of cerebral dynamics: the cerebral rhythms, synchronous oscillation and cortical stability. Biosystems 63(1–3):71–88PubMedCrossRef
Zurück zum Zitat Wu Z, Yamaguchi Y (2004) Input-dependent learning rule for the memory of spatiotemporal sequences in hippocampal network with theta phase precession. Biol Cybern 90(2):113–124PubMedCrossRef Wu Z, Yamaguchi Y (2004) Input-dependent learning rule for the memory of spatiotemporal sequences in hippocampal network with theta phase precession. Biol Cybern 90(2):113–124PubMedCrossRef
Zurück zum Zitat Xu W, Huang X, Takagaki K, Wu JY (2007) Compression and reflection of visually evoked cortical waves. Neuron 55(1):119–129PubMedCrossRef Xu W, Huang X, Takagaki K, Wu JY (2007) Compression and reflection of visually evoked cortical waves. Neuron 55(1):119–129PubMedCrossRef
Zurück zum Zitat Yao H, Shi L, Han F, Gao H, Dan Y (2007) Rapid learning in cortical coding of visual scenes. Nat Neurosci 10(6):772–778PubMedCrossRef Yao H, Shi L, Han F, Gao H, Dan Y (2007) Rapid learning in cortical coding of visual scenes. Nat Neurosci 10(6):772–778PubMedCrossRef
Zurück zum Zitat Yoshioka T, Blasdel GG, Levitt JB, Lund JS (1996) Relation between patterns of intrinsic lateral connectivity, ocular dominance, and cytochrome oxidase-reactive regions in macaque monkey striate cortex. Cereb Cortex 6(2):297–310PubMedCrossRef Yoshioka T, Blasdel GG, Levitt JB, Lund JS (1996) Relation between patterns of intrinsic lateral connectivity, ocular dominance, and cytochrome oxidase-reactive regions in macaque monkey striate cortex. Cereb Cortex 6(2):297–310PubMedCrossRef
Metadaten
Titel
Generalization of learning by synchronous waves: from perceptual organization to invariant organization
verfasst von
David M. Alexander
Chris Trengove
Phillip E. Sheridan
Cees van Leeuwen
Publikationsdatum
01.06.2011
Verlag
Springer Netherlands
Erschienen in
Cognitive Neurodynamics / Ausgabe 2/2011
Print ISSN: 1871-4080
Elektronische ISSN: 1871-4099
DOI
https://doi.org/10.1007/s11571-010-9142-9

Weitere Artikel der Ausgabe 2/2011

Cognitive Neurodynamics 2/2011 Zur Ausgabe

Neuer Inhalt