Skip to main content
Erschienen in: Computational Mechanics 4/2019

23.08.2018 | Original Paper

Generalized modal element method: part II—application to eight-node asymmetric and symmetric solid-shell elements in linear analysis

verfasst von: P. Q. He, Q. Sun, K. Liang

Erschienen in: Computational Mechanics | Ausgabe 4/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, two eight-node asymmetric solid-shell elements are firstly presented to illustrate the use of traditional finite element technique in GMEM for constructing new finite element formulations. In these two elements, the analytical method is utilized to derive the displacement functions of the basic in-plane modes, which makes the resulted elements free of mesh distortions for these modes. For out-of-plane modes, the Mindlin plate elements CQUAD4 and QTS4 are integrated to calculate the corresponding modal displacement vectors and modal force vectors of solid-shell elements. As a result, the displacement functions of the plate-bending element range up to three orders of magnitude. On the other hand, since the asymmetric elements cannot be applied to frequency analysis, two symmetric solid-shell elements are proposed by using a modal transformation method, in which the in-plane modes are derived from the previous proposed symmetric solid element S-MEM8S and the out-of-plane modes are constructed by plate elements CQUAD4 and QTS4, respectively. Various benchmarks including linear static and frequency analysis are presented to demonstrate the accuracy and efficiency of the presented elements.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ahmad S, Irons BM, Zienkiewicz OC (1970) Analysis of thick and thin shell structures by curved finite elements. Int J Numer Meth Eng 2:419–451CrossRef Ahmad S, Irons BM, Zienkiewicz OC (1970) Analysis of thick and thin shell structures by curved finite elements. Int J Numer Meth Eng 2:419–451CrossRef
2.
Zurück zum Zitat Ziyaeifar M, Elwi AE (1996) Degenerated plate-shell elements with refined transverse shear strains. Comput Struct 60:1079–1091CrossRefMATH Ziyaeifar M, Elwi AE (1996) Degenerated plate-shell elements with refined transverse shear strains. Comput Struct 60:1079–1091CrossRefMATH
3.
Zurück zum Zitat Bathe KJ, Dvorkin EN (1986) A formulation of general shell elements-the use of mixed interpolation of tensorial components. Int J Numer Meth Eng 22:697–722CrossRefMATH Bathe KJ, Dvorkin EN (1986) A formulation of general shell elements-the use of mixed interpolation of tensorial components. Int J Numer Meth Eng 22:697–722CrossRefMATH
4.
Zurück zum Zitat Liu WK, Law ES, Lam D et al (2016) Resultant-stress degenerated-shell element. Comput Methods Appl Mech Eng 55(3):259–300CrossRefMATH Liu WK, Law ES, Lam D et al (2016) Resultant-stress degenerated-shell element. Comput Methods Appl Mech Eng 55(3):259–300CrossRefMATH
5.
Zurück zum Zitat Cheung YK, Chen W (1990) Generalized hybrid degenerated elements for plates and shells. Comput Struct 36:279–290CrossRef Cheung YK, Chen W (1990) Generalized hybrid degenerated elements for plates and shells. Comput Struct 36:279–290CrossRef
6.
Zurück zum Zitat Parisch H (1995) A continuum-based shell theory for non-linear applications. Int J Numer Meth Eng 38:1855–1883CrossRefMATH Parisch H (1995) A continuum-based shell theory for non-linear applications. Int J Numer Meth Eng 38:1855–1883CrossRefMATH
7.
Zurück zum Zitat Wriggers P, Eberlein R, Reese S (1996) A comparison of three-dimensional continuum and shell elements for finite plasticity. Int J Solids Struct 33:3309–3326CrossRefMATH Wriggers P, Eberlein R, Reese S (1996) A comparison of three-dimensional continuum and shell elements for finite plasticity. Int J Solids Struct 33:3309–3326CrossRefMATH
8.
Zurück zum Zitat Miehe C (1998) A theoretical and computational model for isotropic elastoplastic stress analysis in shells at large strains. Comput Meth Appl Mech Eng 155:193–233MathSciNetCrossRefMATH Miehe C (1998) A theoretical and computational model for isotropic elastoplastic stress analysis in shells at large strains. Comput Meth Appl Mech Eng 155:193–233MathSciNetCrossRefMATH
9.
Zurück zum Zitat Hauptmann R, Schweizerhof K (1998) A systematic development of ‘solid-shell’ element formulations for linear and non-linear analyses employing only displacement degrees of freedom. Int J Numer Meth Eng 42:49–69CrossRefMATH Hauptmann R, Schweizerhof K (1998) A systematic development of ‘solid-shell’ element formulations for linear and non-linear analyses employing only displacement degrees of freedom. Int J Numer Meth Eng 42:49–69CrossRefMATH
10.
Zurück zum Zitat Hauptmann R, Schweizerhof K, Doll S (2000) Extension of the ‘solid-shell’ concept for application to large elastic and large elastoplastic deformations. Int J Numer Meth Eng 49:1121–1141CrossRefMATH Hauptmann R, Schweizerhof K, Doll S (2000) Extension of the ‘solid-shell’ concept for application to large elastic and large elastoplastic deformations. Int J Numer Meth Eng 49:1121–1141CrossRefMATH
11.
Zurück zum Zitat Alves De Sousa RJ, Cardoso RPR, Fontes VRA et al (2005) A new one-point quadrature enhanced assumed strain (EAS) solid-shell element with multiple integration points along thickness: Part I—geometrically linear applications. Int J Numer Meth Eng 62:952–977CrossRefMATH Alves De Sousa RJ, Cardoso RPR, Fontes VRA et al (2005) A new one-point quadrature enhanced assumed strain (EAS) solid-shell element with multiple integration points along thickness: Part I—geometrically linear applications. Int J Numer Meth Eng 62:952–977CrossRefMATH
12.
Zurück zum Zitat Kulikov GM, Plotnikova SV (2006) Geometrically exact assumed stress–strain multilayered solid-shell elements based on the 3D analytical integration. Comput Struct 84:1275–1287CrossRef Kulikov GM, Plotnikova SV (2006) Geometrically exact assumed stress–strain multilayered solid-shell elements based on the 3D analytical integration. Comput Struct 84:1275–1287CrossRef
13.
Zurück zum Zitat Cardoso RPR, Yoon JW, Mahardika M, Choudhry S, Alves de Sousa RJ, Fontes Valente RA (2008) Enhanced assumed strain (EAS) and assumed natural strain (ANS) methods for one-point quadrature solid-shell elements. Int J Numer Meth Eng 75:156–187MathSciNetCrossRefMATH Cardoso RPR, Yoon JW, Mahardika M, Choudhry S, Alves de Sousa RJ, Fontes Valente RA (2008) Enhanced assumed strain (EAS) and assumed natural strain (ANS) methods for one-point quadrature solid-shell elements. Int J Numer Meth Eng 75:156–187MathSciNetCrossRefMATH
14.
Zurück zum Zitat Andelfinger U, Ramm E (1993) EAS-elements for two-dimensional, three-dimensional, plate and shell structures and their equivalence to HR-elements. Int J Numer Meth Eng 36:1311–1337CrossRefMATH Andelfinger U, Ramm E (1993) EAS-elements for two-dimensional, three-dimensional, plate and shell structures and their equivalence to HR-elements. Int J Numer Meth Eng 36:1311–1337CrossRefMATH
15.
Zurück zum Zitat Areias PMA, Cesar de Sá JMA, Conceicão António CA, Fernandes AA (2003) Analysis of 3D problems using a new enhanced strain hexahedral element. Int J Numer Meth Eng 58:1637–1682CrossRefMATH Areias PMA, Cesar de Sá JMA, Conceicão António CA, Fernandes AA (2003) Analysis of 3D problems using a new enhanced strain hexahedral element. Int J Numer Meth Eng 58:1637–1682CrossRefMATH
16.
Zurück zum Zitat Sze KY, Yao LQ (2000) A hybrid stress ANS solid-shell element and its generalization for smart structure modelling, Part I—solid-shell element formulation. Int J Numer Meth Eng 48:545–564CrossRefMATH Sze KY, Yao LQ (2000) A hybrid stress ANS solid-shell element and its generalization for smart structure modelling, Part I—solid-shell element formulation. Int J Numer Meth Eng 48:545–564CrossRefMATH
17.
Zurück zum Zitat Sze KY, Yao LQ, Pian T (2002) An eighteen-node hybrid-stress solid-shell element for homogenous and laminated structures. Finite Elem Anal Des 38:353–374CrossRefMATH Sze KY, Yao LQ, Pian T (2002) An eighteen-node hybrid-stress solid-shell element for homogenous and laminated structures. Finite Elem Anal Des 38:353–374CrossRefMATH
18.
Zurück zum Zitat Zienkiewicz OC, Taylor RL, Too JM (1971) Reduced integration technique in general analysis of plates and shells. Int J Numer Methods Eng 3:275–290CrossRefMATH Zienkiewicz OC, Taylor RL, Too JM (1971) Reduced integration technique in general analysis of plates and shells. Int J Numer Methods Eng 3:275–290CrossRefMATH
19.
Zurück zum Zitat Hughes TJR, Cohen M, Haroun M (1978) Reduced and selective integration techniques in finite element analysis of plates. Nuclear Eng Des 46:203–222CrossRef Hughes TJR, Cohen M, Haroun M (1978) Reduced and selective integration techniques in finite element analysis of plates. Nuclear Eng Des 46:203–222CrossRef
20.
Zurück zum Zitat Caseiro JF, De Sousa RJA, Valente RAF (2013) A systematic development of EAS three-dimensional finite elements for the alleviation of locking phenomena. Finite Elem Anal Des 73:30–41CrossRef Caseiro JF, De Sousa RJA, Valente RAF (2013) A systematic development of EAS three-dimensional finite elements for the alleviation of locking phenomena. Finite Elem Anal Des 73:30–41CrossRef
21.
Zurück zum Zitat Belytschko T, Ong SJ, Liu WK et al (1984) Hourglass control in linear and nonlinear problems. Comput Methods Appl Mech Eng 43(3):251–276CrossRefMATH Belytschko T, Ong SJ, Liu WK et al (1984) Hourglass control in linear and nonlinear problems. Comput Methods Appl Mech Eng 43(3):251–276CrossRefMATH
22.
Zurück zum Zitat Liu WK, Hu Y, Belytschko T (2010) Multiple quadrature underintegrated finite elements. Int J Numer Meth Eng 37(19):3263–3289MathSciNetCrossRefMATH Liu WK, Hu Y, Belytschko T (2010) Multiple quadrature underintegrated finite elements. Int J Numer Meth Eng 37(19):3263–3289MathSciNetCrossRefMATH
23.
Zurück zum Zitat Flanagan DP, Belytschko T (2010) A uniform strain hexahedron and quadrilateral with orthogonal hourglass control. Int J Numer Meth Eng 17(5):679–706CrossRefMATH Flanagan DP, Belytschko T (2010) A uniform strain hexahedron and quadrilateral with orthogonal hourglass control. Int J Numer Meth Eng 17(5):679–706CrossRefMATH
24.
Zurück zum Zitat Alves de Sousa RJ, Natal Jorge RM, Fontes Valente RA, Cesar de Sá JMA (2003) A new volumetric and shear locking-free 3D enhanced strain element. Eng Comput 48:896–925CrossRefMATH Alves de Sousa RJ, Natal Jorge RM, Fontes Valente RA, Cesar de Sá JMA (2003) A new volumetric and shear locking-free 3D enhanced strain element. Eng Comput 48:896–925CrossRefMATH
25.
Zurück zum Zitat Korelc J, Wriggers P (1996) An efficient 3D enhanced strain element with Taylor expansion of the shape functions. Comput Mech 19:30–40CrossRefMATH Korelc J, Wriggers P (1996) An efficient 3D enhanced strain element with Taylor expansion of the shape functions. Comput Mech 19:30–40CrossRefMATH
26.
Zurück zum Zitat de Souza Neto EA, Peric D, Huang GC, Owen DRJ (1995) Remarks on the stability of enhanced strain elements in finite elasticity and elastoplasticity. Commun Numer Meth Eng 11:951–961CrossRefMATH de Souza Neto EA, Peric D, Huang GC, Owen DRJ (1995) Remarks on the stability of enhanced strain elements in finite elasticity and elastoplasticity. Commun Numer Meth Eng 11:951–961CrossRefMATH
27.
Zurück zum Zitat Fontes Valente RA, Alves de Sousa RJ, Natal Jorge RM (2004) An enhanced strain 3D element for large deformation elastoplastic thin-shell applications. Comput Mech 34:38–52MATH Fontes Valente RA, Alves de Sousa RJ, Natal Jorge RM (2004) An enhanced strain 3D element for large deformation elastoplastic thin-shell applications. Comput Mech 34:38–52MATH
28.
Zurück zum Zitat Hughes TJR, Tezduyar TE (1981) Finite elements based upon Mindlin plate theory with particular references to the four node bilinear iso-parametric element. J Appl Mech 48:587–595CrossRefMATH Hughes TJR, Tezduyar TE (1981) Finite elements based upon Mindlin plate theory with particular references to the four node bilinear iso-parametric element. J Appl Mech 48:587–595CrossRefMATH
29.
Zurück zum Zitat Schwarze M, Reese S (2009) A reduced integration solid-shell finite element based on the EAS and the ANS concept-geometrically linear problems. Int J Numer Meth Eng 80:1322–1355MathSciNetCrossRefMATH Schwarze M, Reese S (2009) A reduced integration solid-shell finite element based on the EAS and the ANS concept-geometrically linear problems. Int J Numer Meth Eng 80:1322–1355MathSciNetCrossRefMATH
30.
Zurück zum Zitat Betsch P, Stein E (1995) An assumed strain approach avoiding artificial thickness straining for a non-linear 4-node shell element. Commun Numer Meth Eng 11:899–909CrossRefMATH Betsch P, Stein E (1995) An assumed strain approach avoiding artificial thickness straining for a non-linear 4-node shell element. Commun Numer Meth Eng 11:899–909CrossRefMATH
31.
Zurück zum Zitat Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194(39–41):4135–4195MathSciNetCrossRefMATH Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194(39–41):4135–4195MathSciNetCrossRefMATH
32.
Zurück zum Zitat Zhang G, Khandelwal K (2016) Modeling of nonlocal damage-plasticity in beams using isogeometric analysis. Comput Struct 165:76–95CrossRef Zhang G, Khandelwal K (2016) Modeling of nonlocal damage-plasticity in beams using isogeometric analysis. Comput Struct 165:76–95CrossRef
33.
Zurück zum Zitat Greco F, Rosolen A, Coox L et al (2017) Contact mechanics with maximum-entropy meshfree approximants blended with isogeometric analysis on the boundary. Comput Struct 182:165–175CrossRef Greco F, Rosolen A, Coox L et al (2017) Contact mechanics with maximum-entropy meshfree approximants blended with isogeometric analysis on the boundary. Comput Struct 182:165–175CrossRef
34.
Zurück zum Zitat Hosseini S, Remmers JJC, Verhoosel CV et al (2013) An isogeometric solid-like shell element for nonlinear analysis. Int J Numer Meth Eng 95(3):238–256MathSciNetCrossRefMATH Hosseini S, Remmers JJC, Verhoosel CV et al (2013) An isogeometric solid-like shell element for nonlinear analysis. Int J Numer Meth Eng 95(3):238–256MathSciNetCrossRefMATH
35.
36.
Zurück zum Zitat MacNeal RH (1994) Finite elements: their design and performance. M. Dekker, New York, pp 406–410 MacNeal RH (1994) Finite elements: their design and performance. M. Dekker, New York, pp 406–410
37.
Zurück zum Zitat Zhen Wang (2014) Corotational nonlinear analyses of laminated shell structures using a 4-node quadrilateral flat shell element with drilling stiffness. Acta Mech Sin 30(3):418–429MathSciNetCrossRefMATH Zhen Wang (2014) Corotational nonlinear analyses of laminated shell structures using a 4-node quadrilateral flat shell element with drilling stiffness. Acta Mech Sin 30(3):418–429MathSciNetCrossRefMATH
38.
Zurück zum Zitat Timoshenko S, Goodier JN (1951) Theory of elasticity. McGraw-Hill, New YorkMATH Timoshenko S, Goodier JN (1951) Theory of elasticity. McGraw-Hill, New YorkMATH
39.
Zurück zum Zitat Nastran MSC (2012) Linear Static Analysis User’s Guide. The MacNeal-Schwendler Corporation, Santa Ana, CA Nastran MSC (2012) Linear Static Analysis User’s Guide. The MacNeal-Schwendler Corporation, Santa Ana, CA
40.
Zurück zum Zitat MacNeal RH, Harder RL (1985) A proposed standard set of problems to test finite element accuracy. Finite Elem Anal Des 1:3–20CrossRef MacNeal RH, Harder RL (1985) A proposed standard set of problems to test finite element accuracy. Finite Elem Anal Des 1:3–20CrossRef
41.
Zurück zum Zitat Simo JC, Rifai MS (1990) A class of mixed assumed strain methods and the method of incompatible modes. Int J Numer Meth Eng 29:1595–1638MathSciNetCrossRefMATH Simo JC, Rifai MS (1990) A class of mixed assumed strain methods and the method of incompatible modes. Int J Numer Meth Eng 29:1595–1638MathSciNetCrossRefMATH
42.
Zurück zum Zitat Fredriksson M, Ottosen NS (2007) Accurate eight-node hexahedral element. Int J Numer Meth Eng 72:631–657CrossRefMATH Fredriksson M, Ottosen NS (2007) Accurate eight-node hexahedral element. Int J Numer Meth Eng 72:631–657CrossRefMATH
43.
Zurück zum Zitat Inc ABAQUS (2004) ABAQUS Documentation Version 6.5. ABAQUS Inc., Pawtucket Inc ABAQUS (2004) ABAQUS Documentation Version 6.5. ABAQUS Inc., Pawtucket
44.
Zurück zum Zitat Wilson EL, Taylor RL, Doherty WP, Ghaboussi J (1973) Incompatible displacement models. Academic Press, New YorkCrossRef Wilson EL, Taylor RL, Doherty WP, Ghaboussi J (1973) Incompatible displacement models. Academic Press, New YorkCrossRef
45.
Zurück zum Zitat Cao C, Qin Q-H, Yu A (2012) A new hybrid finite element approach for three-dimensional elastic problems. Arch Mech 64:261–292MathSciNetMATH Cao C, Qin Q-H, Yu A (2012) A new hybrid finite element approach for three-dimensional elastic problems. Arch Mech 64:261–292MathSciNetMATH
46.
Zurück zum Zitat Gruttmann F, Wagner W (2005) A linear quadrilateral shell element with fast stiffness computation. Comput Meth Appl Mech Eng 194:4279–4300CrossRefMATH Gruttmann F, Wagner W (2005) A linear quadrilateral shell element with fast stiffness computation. Comput Meth Appl Mech Eng 194:4279–4300CrossRefMATH
47.
Zurück zum Zitat Mostafa M, Sivaselvan MV, Felippa CA (2013) A solid-shell corotational element based on ANDES, ANS and EAS for geometrically nonlinear structural analysis. Int J Numer Meth Eng 95:145–180MathSciNetCrossRefMATH Mostafa M, Sivaselvan MV, Felippa CA (2013) A solid-shell corotational element based on ANDES, ANS and EAS for geometrically nonlinear structural analysis. Int J Numer Meth Eng 95:145–180MathSciNetCrossRefMATH
48.
Zurück zum Zitat Mostafa M (2016) An improved solid-shell element based on ANS and EAS concepts. Int J Numer Meth Eng 108(11):1362–1380MathSciNetCrossRef Mostafa M (2016) An improved solid-shell element based on ANS and EAS concepts. Int J Numer Meth Eng 108(11):1362–1380MathSciNetCrossRef
49.
Zurück zum Zitat Simo JC, Fox DD, Rifai MS (1989) On a stress resultant geometrically exact shell model-Part II: the linear theory-computational aspects. Comput Methods Appl Mech Eng 73:53–92CrossRefMATH Simo JC, Fox DD, Rifai MS (1989) On a stress resultant geometrically exact shell model-Part II: the linear theory-computational aspects. Comput Methods Appl Mech Eng 73:53–92CrossRefMATH
50.
Zurück zum Zitat Cardoso RPR, Yoon JW, Grácio JJ, Barlat F, Césarde Sá JMA (2002) Development of one point quadrature shell element for nonlinear application with contact and anistropy locking for one point quadrature shell elements linear formulation. Comput Meth Appl Mech Eng 191:5177–5206CrossRefMATH Cardoso RPR, Yoon JW, Grácio JJ, Barlat F, Césarde Sá JMA (2002) Development of one point quadrature shell element for nonlinear application with contact and anistropy locking for one point quadrature shell elements linear formulation. Comput Meth Appl Mech Eng 191:5177–5206CrossRefMATH
51.
Zurück zum Zitat Valente RAF, NatalJorge RM, Cardoso RPR, Césarde Sá JMA, Grácio JJ (2003) On the use of an enhanced transverse shear strain shell element for problems involving large rotations. Comput Mech 30:286–296CrossRefMATH Valente RAF, NatalJorge RM, Cardoso RPR, Césarde Sá JMA, Grácio JJ (2003) On the use of an enhanced transverse shear strain shell element for problems involving large rotations. Comput Mech 30:286–296CrossRefMATH
52.
Zurück zum Zitat Korelc J (1996) Symbolic approach in computational mechanics and its application to the enhanced strain method. Ph.D. Thesis, University of Darmstadt, Germany Korelc J (1996) Symbolic approach in computational mechanics and its application to the enhanced strain method. Ph.D. Thesis, University of Darmstadt, Germany
53.
Zurück zum Zitat Edem IB, Gosling PD (2012) One-point quadrature ANS solid-shell element based on a displacement variational formulation Part I-Geometrically linear assessment. Comput Meth Appl Mech Eng 237:177–191MathSciNetCrossRefMATH Edem IB, Gosling PD (2012) One-point quadrature ANS solid-shell element based on a displacement variational formulation Part I-Geometrically linear assessment. Comput Meth Appl Mech Eng 237:177–191MathSciNetCrossRefMATH
54.
55.
Zurück zum Zitat Liu WK, Guo Y, Tang S, Belytschko T (1998) A multiple-quadrature eight-node hexahedral finite element for large deformation elastoplastic analysis. Comput Meth Appl Mech Eng 154:69–132MathSciNetCrossRefMATH Liu WK, Guo Y, Tang S, Belytschko T (1998) A multiple-quadrature eight-node hexahedral finite element for large deformation elastoplastic analysis. Comput Meth Appl Mech Eng 154:69–132MathSciNetCrossRefMATH
56.
Zurück zum Zitat Li Q, Liu Y, Zhang Z et al (2015) A new reduced integration solid-shell element based on EAS and ANS with hourglass stabilization. Int J Numer Meth Eng 104:805–826MathSciNetCrossRefMATH Li Q, Liu Y, Zhang Z et al (2015) A new reduced integration solid-shell element based on EAS and ANS with hourglass stabilization. Int J Numer Meth Eng 104:805–826MathSciNetCrossRefMATH
57.
Zurück zum Zitat Alves de Sousa RJ, Natal Jorge RM, Fontes Valente RA, Cesar de Sá JMA (2003) A new volumetric and shear locking-free 3D enhanced strain element. Eng Comput 20:896–925CrossRefMATH Alves de Sousa RJ, Natal Jorge RM, Fontes Valente RA, Cesar de Sá JMA (2003) A new volumetric and shear locking-free 3D enhanced strain element. Eng Comput 20:896–925CrossRefMATH
58.
Zurück zum Zitat Reese S (2007) A large deformation solid-shell concept based on reduced integration with hourglass stabilization. Int J Numer Meth Eng 69:1671–1716MathSciNetCrossRefMATH Reese S (2007) A large deformation solid-shell concept based on reduced integration with hourglass stabilization. Int J Numer Meth Eng 69:1671–1716MathSciNetCrossRefMATH
59.
Zurück zum Zitat Norachan P, Suthasupradit S, Kim K (2012) A co-rotational 8-node degenerated thin-walled element with assumed natural strain and enhanced assumed strain. Finite Elem Anal Des 50:70–85MathSciNetCrossRef Norachan P, Suthasupradit S, Kim K (2012) A co-rotational 8-node degenerated thin-walled element with assumed natural strain and enhanced assumed strain. Finite Elem Anal Des 50:70–85MathSciNetCrossRef
60.
Zurück zum Zitat Li HG, Cen S, Cen ZZ (2008) Hexahedral volume coordinate method (HVCM) and improvements on 3D Wilson hexahedral element. Comput Methods Appl Mech Eng 197(51):4531–4548CrossRefMATH Li HG, Cen S, Cen ZZ (2008) Hexahedral volume coordinate method (HVCM) and improvements on 3D Wilson hexahedral element. Comput Methods Appl Mech Eng 197(51):4531–4548CrossRefMATH
Metadaten
Titel
Generalized modal element method: part II—application to eight-node asymmetric and symmetric solid-shell elements in linear analysis
verfasst von
P. Q. He
Q. Sun
K. Liang
Publikationsdatum
23.08.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 4/2019
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-018-1622-5

Weitere Artikel der Ausgabe 4/2019

Computational Mechanics 4/2019 Zur Ausgabe

Neuer Inhalt