Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

05.04.2019

Generalized Regression Neural Network Optimized by Genetic Algorithm for Solving Out-of-Sample Extension Problem in Supervised Manifold Learning

Zeitschrift:
Neural Processing Letters
Autoren:
Hong-Bing Huang, Zhi-Hong Xie
Wichtige Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Abstract

With the advent of big data, massive amounts of high-dimensional data have been accumulated in many fields. The assimilation and processing of such high-dimensional data can be particularly challenging. Manifold learning offers a means for effectively dealing with this challenge. However, the results of applying manifold learning to supervised classification have remained unsatisfactory. The out-of-sample extension problem is a critical issue that must be properly solved in this regard. Genetic algorithms (GAs) have excellent global search capabilities. This paper proposes a generalized regression neural network (GRNN) optimized by a GA for the solution of the out-of-sample extension problem. The prediction performance of a GRNN mainly depends on the appropriateness of the chosen smoothing factor. The essence of the GA optimization is the determination of the optimal smoothing factor of the GRNN, the optimized form of which is subsequently used to forecast the low-dimensional embeddings of the test samples. A GA can be used to obtain a better smoothing factor in a larger search space, resulting in enhanced prediction performance. Experiments were performed to enable a detailed analysis of the important parameters that affect the performance of the proposed algorithm. The results confirmed the effectiveness of the algorithm.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel