Skip to main content
Erschienen in: Quantum Information Processing 8/2020

01.08.2020

Generation of multiparticle entangled states of nitrogen-vacancy centers with carbon nanotubes

verfasst von: Bo-Long Wang, Bo Li, Xiao-Xiao Li, Fu-Li Li, Peng-Bo Li

Erschienen in: Quantum Information Processing | Ausgabe 8/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We propose an efficient scheme for generating multiparticle entangled states between two arrays of nitrogen-vacancy centers that interact with two magnetically coupled carbon nanotubes, respectively. We show that through adjusting the external driving microwave fields and the dc currents flowing through the nanotube mechanical resonators, the multiparticle entanglement between the separated arrays of NV centers can be engineered and tuned dynamically. The experimental feasibility of this scheme is analyzed, as well as the method to produce the NOON states of phonon modes is presented using the generated multiparticle entangled states. This scheme may have interesting applications for quantum information processing.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Tao, Y., Boss, J.M., Moores, B.A., Degen, C.L.: Single-crystal diamond nanomechanical resonators with quality factors exceeding one million. Nat. Commun. 5, 3638 (2014)ADS Tao, Y., Boss, J.M., Moores, B.A., Degen, C.L.: Single-crystal diamond nanomechanical resonators with quality factors exceeding one million. Nat. Commun. 5, 3638 (2014)ADS
2.
Zurück zum Zitat Burek, M.J., Ramos, D., Patel, P., Frank, I.W., Lončar, M.: Nanomechanical resonant structures in single-crystal diamond. Appl. Phys. Lett. 103(13), 131904 (2013)ADS Burek, M.J., Ramos, D., Patel, P., Frank, I.W., Lončar, M.: Nanomechanical resonant structures in single-crystal diamond. Appl. Phys. Lett. 103(13), 131904 (2013)ADS
3.
Zurück zum Zitat Ovartchaiyapong, P., Pascal, L.M.A., Myers, B.A., Lauria, P., Jayich, A.C.B.: High quality factor single-crystal diamond mechanical resonator. Appl. Phys. Lett. 101(16), 163505 (2012)ADS Ovartchaiyapong, P., Pascal, L.M.A., Myers, B.A., Lauria, P., Jayich, A.C.B.: High quality factor single-crystal diamond mechanical resonator. Appl. Phys. Lett. 101(16), 163505 (2012)ADS
4.
Zurück zum Zitat Sohn, Y.I., Burek, M.J., Kara, V., Kearns, R., Lončar, M.: Dynamic actuation of single-crystal diamond nanobeams. Appl. Phys. Lett. 107(24), 243106 (2015)ADS Sohn, Y.I., Burek, M.J., Kara, V., Kearns, R., Lončar, M.: Dynamic actuation of single-crystal diamond nanobeams. Appl. Phys. Lett. 107(24), 243106 (2015)ADS
5.
Zurück zum Zitat Ovartchaiyapong, P., Lee, K.W., Myers, B.A., Jayich, A.C.B.: Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator. Nat. Commun. 5, 4429 (2014)ADS Ovartchaiyapong, P., Lee, K.W., Myers, B.A., Jayich, A.C.B.: Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator. Nat. Commun. 5, 4429 (2014)ADS
6.
Zurück zum Zitat Sazonova, V., Yaish, Y., Üstünel, H., Roundy, D., Arias, T.A., McEuen, P.L.: A tunable carbon nanotube electromechanical oscillator. Nature 431(7006), 284–287 (2004)ADS Sazonova, V., Yaish, Y., Üstünel, H., Roundy, D., Arias, T.A., McEuen, P.L.: A tunable carbon nanotube electromechanical oscillator. Nature 431(7006), 284–287 (2004)ADS
7.
Zurück zum Zitat Witkamp, B., Poot, M., van der Zant, H.S.J.: Bending-mode vibration of a suspended nanotube resonator. Nano Lett. 6(12), 2904–2908 (2006)ADS Witkamp, B., Poot, M., van der Zant, H.S.J.: Bending-mode vibration of a suspended nanotube resonator. Nano Lett. 6(12), 2904–2908 (2006)ADS
8.
Zurück zum Zitat Moser, J., Eichler, A., Güttinger, J., Dykman, M.I., Bachtold, A.: Nanotube mechanical resonators with quality factors of up to 5 million. Nat. Nanotechnol. 9(12), 1007–1011 (2014)ADS Moser, J., Eichler, A., Güttinger, J., Dykman, M.I., Bachtold, A.: Nanotube mechanical resonators with quality factors of up to 5 million. Nat. Nanotechnol. 9(12), 1007–1011 (2014)ADS
9.
Zurück zum Zitat Aykol, M., Hou, B.Y., Dhall, R., Chang, S.W., Branham, W., Qiu, J., Cronin, S.B.: Clamping instability and van der Waals forces in carbon nanotube mechanical resonators. Nano Lett. 14(5), 2426–2430 (2014)ADS Aykol, M., Hou, B.Y., Dhall, R., Chang, S.W., Branham, W., Qiu, J., Cronin, S.B.: Clamping instability and van der Waals forces in carbon nanotube mechanical resonators. Nano Lett. 14(5), 2426–2430 (2014)ADS
10.
Zurück zum Zitat Wang, X., Miranowicz, A., Li, H.R., Nori, F.: Hybrid quantum device with a carbon nanotube and a flux qubit for dissipative quantum engineering. Phys. Rev. B 95(20), 205415 (2017)ADS Wang, X., Miranowicz, A., Li, H.R., Nori, F.: Hybrid quantum device with a carbon nanotube and a flux qubit for dissipative quantum engineering. Phys. Rev. B 95(20), 205415 (2017)ADS
11.
Zurück zum Zitat Pályi, A., Struck, P.R., Rudner, M., Flensberg, K., Burkard, G.: Spin-orbit-induced strong coupling of a single spin to a nanomechanical resonator. Phys. Rev. Lett. 108(20), 206811 (2012)ADS Pályi, A., Struck, P.R., Rudner, M., Flensberg, K., Burkard, G.: Spin-orbit-induced strong coupling of a single spin to a nanomechanical resonator. Phys. Rev. Lett. 108(20), 206811 (2012)ADS
12.
Zurück zum Zitat Chang, K., Eichler, A., Rhensius, J., Lorenzelli, L., Degen, C.L.: Nanoscale imaging of current density with a single-spin magnetometer. Nano Lett. 17(4), 2367–2373 (2017)ADS Chang, K., Eichler, A., Rhensius, J., Lorenzelli, L., Degen, C.L.: Nanoscale imaging of current density with a single-spin magnetometer. Nano Lett. 17(4), 2367–2373 (2017)ADS
13.
Zurück zum Zitat Eichler, A., Ruiz, M.D., Plaza, J.A., Bachtold, A.: Strong coupling between mechanical modes in a nanotube resonator. Phys. Rev. Lett. 109(2), 025503 (2012)ADS Eichler, A., Ruiz, M.D., Plaza, J.A., Bachtold, A.: Strong coupling between mechanical modes in a nanotube resonator. Phys. Rev. Lett. 109(2), 025503 (2012)ADS
14.
Zurück zum Zitat Darázs, Z., Kurucz, Z., Kálmán, O., Kiss, T., Fortágh, J., Domokos, P.: Parametric amplification of the mechanical vibrations of a suspended nanowire by magnetic coupling to a Bose–Einstein condensate. Phys. Rev. Lett. 112(13), 133603 (2014)ADS Darázs, Z., Kurucz, Z., Kálmán, O., Kiss, T., Fortágh, J., Domokos, P.: Parametric amplification of the mechanical vibrations of a suspended nanowire by magnetic coupling to a Bose–Einstein condensate. Phys. Rev. Lett. 112(13), 133603 (2014)ADS
15.
Zurück zum Zitat Muschik, C.A., Moulieras, S., Bachtold, A., Koppens, F.H.L., Lewenstein, M., Chang, D.E.: Harnessing vacuum forces for quantum sensing of graphene motion. Phys. Rev. Lett. 112(22), 223601 (2014)ADS Muschik, C.A., Moulieras, S., Bachtold, A., Koppens, F.H.L., Lewenstein, M., Chang, D.E.: Harnessing vacuum forces for quantum sensing of graphene motion. Phys. Rev. Lett. 112(22), 223601 (2014)ADS
16.
Zurück zum Zitat Stadler, P., Belzig, W., Rastelli, G.: Ground-state cooling of a carbon nanomechanical resonator by spin-polarized current. Phys. Rev. Lett. 113(4), 047201 (2014)ADS Stadler, P., Belzig, W., Rastelli, G.: Ground-state cooling of a carbon nanomechanical resonator by spin-polarized current. Phys. Rev. Lett. 113(4), 047201 (2014)ADS
17.
Zurück zum Zitat Li, P.B., Xiang, Z.L., Rabl, P., Nori, F.: Hybrid quantum device with nitrogen-vacancy centers in diamond coupled to carbon nanotubes. Phys. Rev. Lett. 117(1), 015502 (2016)ADS Li, P.B., Xiang, Z.L., Rabl, P., Nori, F.: Hybrid quantum device with nitrogen-vacancy centers in diamond coupled to carbon nanotubes. Phys. Rev. Lett. 117(1), 015502 (2016)ADS
18.
Zurück zum Zitat Kálmán, O., Kiss, T., Fortágh, J., Domokos, P.: Quantum galvanometer by interfacing a vibrating nanowire and cold atoms. Nano Lett. 12(1), 435–439 (2012)ADS Kálmán, O., Kiss, T., Fortágh, J., Domokos, P.: Quantum galvanometer by interfacing a vibrating nanowire and cold atoms. Nano Lett. 12(1), 435–439 (2012)ADS
19.
Zurück zum Zitat Deng, G.W., Zhu, D., Wang, X.H., Zou, C.L., Wang, J.T., Li, H.O., Cao, G., Liu, D., Li, Y., Xiao, M., Guo, G.C., Jiang, K.L., Dai, X.C., Guo, G.P.: Strongly coupled nanotube electromechanical resonators. Nano Lett. 16(9), 5456–5462 (2016)ADS Deng, G.W., Zhu, D., Wang, X.H., Zou, C.L., Wang, J.T., Li, H.O., Cao, G., Liu, D., Li, Y., Xiao, M., Guo, G.C., Jiang, K.L., Dai, X.C., Guo, G.P.: Strongly coupled nanotube electromechanical resonators. Nano Lett. 16(9), 5456–5462 (2016)ADS
20.
Zurück zum Zitat Zhu, D., Wang, X.H., Kong, W.C., Deng, G.W., Wang, J.T., Li, H.O., Cao, G., Xiao, M., Jiang, K.L., Dai, X.C., Guo, G.C., Nori, F., Guo, G.P.: Coherent phonon rabi oscillations with a high-frequency carbon nanotube phonon cavity. Nano Lett. 17(2), 915–921 (2017)ADS Zhu, D., Wang, X.H., Kong, W.C., Deng, G.W., Wang, J.T., Li, H.O., Cao, G., Xiao, M., Jiang, K.L., Dai, X.C., Guo, G.C., Nori, F., Guo, G.P.: Coherent phonon rabi oscillations with a high-frequency carbon nanotube phonon cavity. Nano Lett. 17(2), 915–921 (2017)ADS
21.
Zurück zum Zitat Bunch, J.S., van der Zande, A.M., Verbridge, S.S., Frank, I.W., Tanenbaum, D.M., Parpia, J.M., Craighead, H.G., McEuen, P.L.: Electromechanical resonators from graphene sheets. Science 315(5811), 490–493 (2007)ADS Bunch, J.S., van der Zande, A.M., Verbridge, S.S., Frank, I.W., Tanenbaum, D.M., Parpia, J.M., Craighead, H.G., McEuen, P.L.: Electromechanical resonators from graphene sheets. Science 315(5811), 490–493 (2007)ADS
22.
Zurück zum Zitat Weber, P., Güttinger, J., Tsioutsios, I., Chang, D.E., Bachtold, A.: Coupling graphene mechanical resonators to superconducting microwave cavities. Nano Lett. 14(5), 2854–2860 (2014)ADS Weber, P., Güttinger, J., Tsioutsios, I., Chang, D.E., Bachtold, A.: Coupling graphene mechanical resonators to superconducting microwave cavities. Nano Lett. 14(5), 2854–2860 (2014)ADS
23.
Zurück zum Zitat Singh, V., Bosman, S.J., Schneider, B.H., Blanter, Y.M., Castellanos-Gomez, A., Steele, G.A.: Optomechanical coupling between a multilayer graphene mechanical resonator and a superconducting microwave cavity. Nat. Nanotechnol. 9(10), 820–824 (2014)ADS Singh, V., Bosman, S.J., Schneider, B.H., Blanter, Y.M., Castellanos-Gomez, A., Steele, G.A.: Optomechanical coupling between a multilayer graphene mechanical resonator and a superconducting microwave cavity. Nat. Nanotechnol. 9(10), 820–824 (2014)ADS
24.
Zurück zum Zitat Bar-Gill, N., Pham, L.M., Jarmola, A., Budker, D., Walsworth, R.L.: Solid-state electronic spin coherence time approaching one second. Nat. Commun. 4, 1743 (2013)ADS Bar-Gill, N., Pham, L.M., Jarmola, A., Budker, D., Walsworth, R.L.: Solid-state electronic spin coherence time approaching one second. Nat. Commun. 4, 1743 (2013)ADS
25.
Zurück zum Zitat Hong, S.K., Grinolds, M.S., Maletinsky, P., Walsworth, R.L., Lukin, M.D., Yacoby, A.: Coherent, mechanical control of a single electronic spin. Nano Lett. 12(8), 3920–3924 (2012)ADS Hong, S.K., Grinolds, M.S., Maletinsky, P., Walsworth, R.L., Lukin, M.D., Yacoby, A.: Coherent, mechanical control of a single electronic spin. Nano Lett. 12(8), 3920–3924 (2012)ADS
26.
Zurück zum Zitat Doherty, M.W., Manson, N.B., Delaney, P., Jelezko, F., Wrachtrup, J., Hollenberg, L.C.L.: The nitrogen-vacancy colour centre in diamond. Phys. Rep.-Rev. Sect. Phys. Lett. 528(1), 1–45 (2013) Doherty, M.W., Manson, N.B., Delaney, P., Jelezko, F., Wrachtrup, J., Hollenberg, L.C.L.: The nitrogen-vacancy colour centre in diamond. Phys. Rep.-Rev. Sect. Phys. Lett. 528(1), 1–45 (2013)
27.
Zurück zum Zitat Hanson, R., Awschalom, D.D.: Coherent manipulation of single spins in semiconductors. Nature 453(7198), 1043–1049 (2008)ADS Hanson, R., Awschalom, D.D.: Coherent manipulation of single spins in semiconductors. Nature 453(7198), 1043–1049 (2008)ADS
28.
Zurück zum Zitat Brenneis, A., Gaudreau, L., Seifert, M., Karl, H., Brandt, M.S., Huebl, H., Garrido, J.A., Koppens, F.H.L., Holleitner, A.W.: Ultrafast electronic readout of diamond nitrogen-vacancy centres coupled to graphene. Nat. Nanotechnol. 10(2), 135–139 (2015)ADS Brenneis, A., Gaudreau, L., Seifert, M., Karl, H., Brandt, M.S., Huebl, H., Garrido, J.A., Koppens, F.H.L., Holleitner, A.W.: Ultrafast electronic readout of diamond nitrogen-vacancy centres coupled to graphene. Nat. Nanotechnol. 10(2), 135–139 (2015)ADS
29.
Zurück zum Zitat Childress, L., Dutt, M.V.G., Taylor, J.M., Zibrov, A.S., Jelezko, F., Wrachtrup, J., Hemmer, P.R., Lukin, M.D.: Coherent dynamics of coupled electron and nuclear spin qubits in diamond. Science 314(5797), 281–285 (2006)ADS Childress, L., Dutt, M.V.G., Taylor, J.M., Zibrov, A.S., Jelezko, F., Wrachtrup, J., Hemmer, P.R., Lukin, M.D.: Coherent dynamics of coupled electron and nuclear spin qubits in diamond. Science 314(5797), 281–285 (2006)ADS
30.
Zurück zum Zitat Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nat. Commun. 6, 8577 (2015)ADS Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nat. Commun. 6, 8577 (2015)ADS
31.
Zurück zum Zitat Reserbat-Plantey, A., Schädler, K.G., Gaudreau, L., Navickaite, G., Güttinger, J., Chang, D., Toninelli, C., Bachtold, A., Koppens, F.H.L.: Electromechanical control of nitrogen-vacancy defect emission using graphene NEMS. Nat. Commun. 7, 10218 (2016)ADS Reserbat-Plantey, A., Schädler, K.G., Gaudreau, L., Navickaite, G., Güttinger, J., Chang, D., Toninelli, C., Bachtold, A., Koppens, F.H.L.: Electromechanical control of nitrogen-vacancy defect emission using graphene NEMS. Nat. Commun. 7, 10218 (2016)ADS
32.
Zurück zum Zitat Ajoy, A., Bissbort, U., Poletti, D., Cappellaro, P.: Selective decoupling and hamiltonian engineering in dipolar spin networks. Phys. Rev. Lett. 122(1), 013205 (2019)ADS Ajoy, A., Bissbort, U., Poletti, D., Cappellaro, P.: Selective decoupling and hamiltonian engineering in dipolar spin networks. Phys. Rev. Lett. 122(1), 013205 (2019)ADS
33.
Zurück zum Zitat Steinert, S., Dolde, F., Neumann, P., Aird, A., Naydenov, B., Balasubramanian, G., Jelezko, F., Wrachtrup, J.: High sensitivity magnetic imaging using an array of spins in diamond. Rev. Sci. Instrum. 81(4), 043705 (2010)ADS Steinert, S., Dolde, F., Neumann, P., Aird, A., Naydenov, B., Balasubramanian, G., Jelezko, F., Wrachtrup, J.: High sensitivity magnetic imaging using an array of spins in diamond. Rev. Sci. Instrum. 81(4), 043705 (2010)ADS
34.
Zurück zum Zitat Appel, P., Neu, E., Ganzhorn, M., Barfuss, A., Batzer, M., Gratz, M., Tschöpe, A., Maletinsky, P.: Fabrication of all diamond scanning probes for nanoscale magnetometry. Rev. Sci. Instrum. 87(6), 063703 (2016)ADS Appel, P., Neu, E., Ganzhorn, M., Barfuss, A., Batzer, M., Gratz, M., Tschöpe, A., Maletinsky, P.: Fabrication of all diamond scanning probes for nanoscale magnetometry. Rev. Sci. Instrum. 87(6), 063703 (2016)ADS
35.
Zurück zum Zitat Togan, E., Chu, Y., Trifonov, A.S., Jiang, L., Maze, J., Childress, L., Dutt, M.V.G., Sørensen, A.S., Hemmer, P.R., Zibrov, A.S., Lukin, M.D.: Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 466(7307), 730–734 (2010)ADS Togan, E., Chu, Y., Trifonov, A.S., Jiang, L., Maze, J., Childress, L., Dutt, M.V.G., Sørensen, A.S., Hemmer, P.R., Zibrov, A.S., Lukin, M.D.: Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 466(7307), 730–734 (2010)ADS
36.
Zurück zum Zitat Li, P.B., Li, F.L.: Deterministic generation of multiparticle entanglement in a coupled cavity-fiber system. Opt. Express 19(2), 1207–1216 (2011)ADS Li, P.B., Li, F.L.: Deterministic generation of multiparticle entanglement in a coupled cavity-fiber system. Opt. Express 19(2), 1207–1216 (2011)ADS
37.
Zurück zum Zitat Li, P.B., Gao, S.Y., Li, H.R., Ma, S.L., Li, F.L.: Dissipative preparation of entangled states between two spatially separated nitrogen-vacancy centers. Phys. Rev. A 85(4), 042306 (2012)ADS Li, P.B., Gao, S.Y., Li, H.R., Ma, S.L., Li, F.L.: Dissipative preparation of entangled states between two spatially separated nitrogen-vacancy centers. Phys. Rev. A 85(4), 042306 (2012)ADS
38.
Zurück zum Zitat Zhou, Y., Ma, S.L., Li, B., Li, X.X., Li, F.L., Li, P.B.: Simulating the Lipkin–Meshkov–Glick model in a hybrid quantum system. Phys. Rev. A 96(6), 062333 (2017)ADS Zhou, Y., Ma, S.L., Li, B., Li, X.X., Li, F.L., Li, P.B.: Simulating the Lipkin–Meshkov–Glick model in a hybrid quantum system. Phys. Rev. A 96(6), 062333 (2017)ADS
39.
Zurück zum Zitat Chen, Q., Yang, W.L., Feng, M., Du, J.F.: Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators. Phys. Rev. A 83(5), 054305 (2011)ADS Chen, Q., Yang, W.L., Feng, M., Du, J.F.: Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators. Phys. Rev. A 83(5), 054305 (2011)ADS
40.
Zurück zum Zitat Li, X.X., Li, P.B., Ma, S.L., Li, F.L.: Preparing entangled states between two NV centers via the damping of nanomechanical resonators. Sci. Rep.-UK 7(1), 14116 (2017)ADS Li, X.X., Li, P.B., Ma, S.L., Li, F.L.: Preparing entangled states between two NV centers via the damping of nanomechanical resonators. Sci. Rep.-UK 7(1), 14116 (2017)ADS
41.
Zurück zum Zitat Dong, Y., Chen, X.-D., Guo, G.-C., Sun, F.-W.: Robust scalable architecture for a hybrid spin-mechanical quantum entanglement system. Phys. Rev. B 100(21), 214103 (2019)ADS Dong, Y., Chen, X.-D., Guo, G.-C., Sun, F.-W.: Robust scalable architecture for a hybrid spin-mechanical quantum entanglement system. Phys. Rev. B 100(21), 214103 (2019)ADS
42.
Zurück zum Zitat Chen, X.Y., Yin, Z.Q.: Universal quantum gates between nitrogen-vacancy centers in a levitated nanodiamond. Phys. Rev. A 99(2), 022319 (2019)ADSMathSciNet Chen, X.Y., Yin, Z.Q.: Universal quantum gates between nitrogen-vacancy centers in a levitated nanodiamond. Phys. Rev. A 99(2), 022319 (2019)ADSMathSciNet
43.
Zurück zum Zitat Cao, P.H., Betzholz, R., Zhang, S.L., Cai, J.M.: Entangling distant solid-state spins via thermal phonons. Phys. Rev. B 96(24), 245418 (2017)ADS Cao, P.H., Betzholz, R., Zhang, S.L., Cai, J.M.: Entangling distant solid-state spins via thermal phonons. Phys. Rev. B 96(24), 245418 (2017)ADS
44.
Zurück zum Zitat Dong, L.H., Rong, X., Geng, J.P., Shi, F.Z., Li, Z.K., Duan, C.K., Du, J.F.: Scalable quantum computation scheme based on quantum-actuated nuclear-spin decoherence-free qubits. Phys. Rev. B 96(20), 205149 (2017)ADS Dong, L.H., Rong, X., Geng, J.P., Shi, F.Z., Li, Z.K., Duan, C.K., Du, J.F.: Scalable quantum computation scheme based on quantum-actuated nuclear-spin decoherence-free qubits. Phys. Rev. B 96(20), 205149 (2017)ADS
45.
Zurück zum Zitat Li, T., Miranowicz, A., Hu, X., Xia, K., Nori, F.: Quantum memory and gates using a \(\Lambda \)-type quantum emitter coupled to a chiral waveguide. Phys. Rev. A 97(6), 062318 (2018)ADS Li, T., Miranowicz, A., Hu, X., Xia, K., Nori, F.: Quantum memory and gates using a \(\Lambda \)-type quantum emitter coupled to a chiral waveguide. Phys. Rev. A 97(6), 062318 (2018)ADS
46.
Zurück zum Zitat Xu, X.K., Wang, Z.X., Duan, C.K., Huang, P., Wang, P.F., Wang, Y., Xu, N.Y., Kong, X., Shi, F.Z., Rong, X., Du, J.F.: Coherence-protected quantum gate by continuous dynamical decoupling in diamond. Phys. Rev. Lett. 109(7), 070502 (2012)ADS Xu, X.K., Wang, Z.X., Duan, C.K., Huang, P., Wang, P.F., Wang, Y., Xu, N.Y., Kong, X., Shi, F.Z., Rong, X., Du, J.F.: Coherence-protected quantum gate by continuous dynamical decoupling in diamond. Phys. Rev. Lett. 109(7), 070502 (2012)ADS
47.
Zurück zum Zitat Zu, C., Wang, W.B., He, L., Zhang, W.G., Dai, C.Y., Wang, F., Duan, L.M.: Experimental realization of universal geometric quantum gates with solid-state spins. Nature 514(7520), 72 (2014)ADS Zu, C., Wang, W.B., He, L., Zhang, W.G., Dai, C.Y., Wang, F., Duan, L.M.: Experimental realization of universal geometric quantum gates with solid-state spins. Nature 514(7520), 72 (2014)ADS
48.
Zurück zum Zitat Yang, W.L., An, J.H., Zhang, C.J., Feng, M., Oh, C.H.: Preservation of quantum correlation between separated nitrogen-vacancy centers embedded in photonic-crystal cavities. Phys. Rev. A 87(2), 022312 (2013)ADS Yang, W.L., An, J.H., Zhang, C.J., Feng, M., Oh, C.H.: Preservation of quantum correlation between separated nitrogen-vacancy centers embedded in photonic-crystal cavities. Phys. Rev. A 87(2), 022312 (2013)ADS
49.
Zurück zum Zitat Lü, X.Y., Xiang, Z.L., Cui, W., You, J.Q., Nori, F.: Quantum memory using a hybrid circuit with flux qubits and nitrogen-vacancy centers. Phys. Rev. A 88(1), 012329 (2013)ADS Lü, X.Y., Xiang, Z.L., Cui, W., You, J.Q., Nori, F.: Quantum memory using a hybrid circuit with flux qubits and nitrogen-vacancy centers. Phys. Rev. A 88(1), 012329 (2013)ADS
50.
Zurück zum Zitat Li, P.-B., Liu, Y.-C., Gao, S.Y., Xiang, Z.-L., Rabl, P., Xiao, Y.-F., Li, F.-L.: Hybrid quantum device based on NV centers in diamond nanomechanical resonators plus superconducting waveguide cavities. Phys. Rev. Appl. 4(4), 044003 (2015)ADS Li, P.-B., Liu, Y.-C., Gao, S.Y., Xiang, Z.-L., Rabl, P., Xiao, Y.-F., Li, F.-L.: Hybrid quantum device based on NV centers in diamond nanomechanical resonators plus superconducting waveguide cavities. Phys. Rev. Appl. 4(4), 044003 (2015)ADS
51.
Zurück zum Zitat Li, B., Li, P.B., Zhou, Y., Liu, J., Li, H.R., Li, F.L.: Interfacing a topological qubit with a spin qubit in a hybrid quantum system. Phys. Rev. Appl. 11(4), 044026 (2019)ADS Li, B., Li, P.B., Zhou, Y., Liu, J., Li, H.R., Li, F.L.: Interfacing a topological qubit with a spin qubit in a hybrid quantum system. Phys. Rev. Appl. 11(4), 044026 (2019)ADS
52.
Zurück zum Zitat Rabl, P., Cappellaro, P., Dutt, M.V.G., Jiang, L., Maze, J.R., Lukin, M.D.: Strong magnetic coupling between an electronic spin qubit and a mechanical resonator. Phys. Rev. B 79(4), 041302 (2009)ADS Rabl, P., Cappellaro, P., Dutt, M.V.G., Jiang, L., Maze, J.R., Lukin, M.D.: Strong magnetic coupling between an electronic spin qubit and a mechanical resonator. Phys. Rev. B 79(4), 041302 (2009)ADS
53.
Zurück zum Zitat Rabl, P., Kolkowitz, S.J., Koppens, F.H.L., Harris, J.G.E., Zoller, P., Lukin, M.D.: A quantum spin transducer based on nanoelectromechanical resonator arrays. Nat. Phys. 6(8), 602–608 (2010) Rabl, P., Kolkowitz, S.J., Koppens, F.H.L., Harris, J.G.E., Zoller, P., Lukin, M.D.: A quantum spin transducer based on nanoelectromechanical resonator arrays. Nat. Phys. 6(8), 602–608 (2010)
54.
Zurück zum Zitat Sørensen, A., Mølmer, K.: Quantum computation with ions in thermal motion. Phys. Rev. Lett. 82(9), 1971–1974 (1999)ADS Sørensen, A., Mølmer, K.: Quantum computation with ions in thermal motion. Phys. Rev. Lett. 82(9), 1971–1974 (1999)ADS
55.
Zurück zum Zitat Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86(22), 5188–5191 (2001)ADS Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86(22), 5188–5191 (2001)ADS
56.
Zurück zum Zitat Dakić, B., Radonjić, M.: Macroscopic superpositions as quantum ground states. Phys. Rev. Lett. 119(9), 090401 (2017)ADS Dakić, B., Radonjić, M.: Macroscopic superpositions as quantum ground states. Phys. Rev. Lett. 119(9), 090401 (2017)ADS
57.
Zurück zum Zitat Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81(2), 865–942 (2009)ADSMathSciNetMATH Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81(2), 865–942 (2009)ADSMathSciNetMATH
58.
Zurück zum Zitat Vedral, V.: The role of relative entropy in quantum information theory. Rev. Mod. Phys. 74(1), 197–234 (2002)ADSMathSciNetMATH Vedral, V.: The role of relative entropy in quantum information theory. Rev. Mod. Phys. 74(1), 197–234 (2002)ADSMathSciNetMATH
59.
Zurück zum Zitat Zhou, L.G., Wei, L.F., Gao, M., Wang, X.B.: Strong coupling between two distant electronic spins via a nanomechanical resonator. Phys. Rev. A 81(4), 042323 (2010)ADS Zhou, L.G., Wei, L.F., Gao, M., Wang, X.B.: Strong coupling between two distant electronic spins via a nanomechanical resonator. Phys. Rev. A 81(4), 042323 (2010)ADS
60.
Zurück zum Zitat Mølmer, K., Sørensen, A.: Multiparticle entanglement of hot trapped ions. Phys. Rev. Lett. 82(9), 1835–1838 (1999)ADS Mølmer, K., Sørensen, A.: Multiparticle entanglement of hot trapped ions. Phys. Rev. Lett. 82(9), 1835–1838 (1999)ADS
61.
Zurück zum Zitat Møller, D., Madsen, L.B., Mølmer, K.: Quantum gates and multiparticle entanglement by rydberg excitation blockade and adiabatic passage. Phys. Rev. Lett. 100(17), 170504 (2008)ADS Møller, D., Madsen, L.B., Mølmer, K.: Quantum gates and multiparticle entanglement by rydberg excitation blockade and adiabatic passage. Phys. Rev. Lett. 100(17), 170504 (2008)ADS
62.
Zurück zum Zitat Zhang, Z., Duan, L.M.: Generation of massive entanglement through an adiabatic quantum phase transition in a spinor condensate. Phys. Rev. Lett. 111(18), 180401 (2013)ADS Zhang, Z., Duan, L.M.: Generation of massive entanglement through an adiabatic quantum phase transition in a spinor condensate. Phys. Rev. Lett. 111(18), 180401 (2013)ADS
63.
Zurück zum Zitat Duan, L.M., Monroe, C.: Colloquium: quantum networks with trapped ions. Rev. Mod. Phys. 82(2), 1209–1224 (2010)ADS Duan, L.M., Monroe, C.: Colloquium: quantum networks with trapped ions. Rev. Mod. Phys. 82(2), 1209–1224 (2010)ADS
64.
Zurück zum Zitat Reiter, F., Reeb, D., Sørensen, A.S.: Scalable dissipative preparation of many-body entanglement. Phys. Rev. Lett. 117(4), 040501 (2016)ADS Reiter, F., Reeb, D., Sørensen, A.S.: Scalable dissipative preparation of many-body entanglement. Phys. Rev. Lett. 117(4), 040501 (2016)ADS
65.
Zurück zum Zitat Zheng, S.B.: Generation of entangled states for many multilevel atoms in a thermal cavity and ions in thermal motion. Phys. Rev. A 68(3), 035801 (2003)ADS Zheng, S.B.: Generation of entangled states for many multilevel atoms in a thermal cavity and ions in thermal motion. Phys. Rev. A 68(3), 035801 (2003)ADS
66.
Zurück zum Zitat Zheng, S.B.: One-step synthesis of multiatom Greenberger–Horne–Zeilinger states. Phys. Rev. Lett. 87(23), 230404 (2001)ADS Zheng, S.B.: One-step synthesis of multiatom Greenberger–Horne–Zeilinger states. Phys. Rev. Lett. 87(23), 230404 (2001)ADS
67.
Zurück zum Zitat Zhu, S.L., Wang, Z.D., Zanardi, P.: Geometric quantum computation and multiqubit entanglement with superconducting qubits inside a cavity. Phys. Rev. Lett. 94(10), 100502 (2005)ADSMathSciNet Zhu, S.L., Wang, Z.D., Zanardi, P.: Geometric quantum computation and multiqubit entanglement with superconducting qubits inside a cavity. Phys. Rev. Lett. 94(10), 100502 (2005)ADSMathSciNet
68.
Zurück zum Zitat Morrison, S., Parkins, A.S.: Dynamical quantum phase transitions in the dissipative Lipkin–Meshkov–Glick model with proposed realization in optical cavity QED. Phys. Rev. Lett. 100(4), 040403 (2008)ADS Morrison, S., Parkins, A.S.: Dynamical quantum phase transitions in the dissipative Lipkin–Meshkov–Glick model with proposed realization in optical cavity QED. Phys. Rev. Lett. 100(4), 040403 (2008)ADS
69.
Zurück zum Zitat Armata, F., Calajo, G., Jaako, T., Kim, M.S., Rabl, P.: Harvesting multiqubit entanglement from ultrastrong interactions in circuit quantum electrodynamics. Phys. Rev. Lett. 119(18), 183602 (2017)ADS Armata, F., Calajo, G., Jaako, T., Kim, M.S., Rabl, P.: Harvesting multiqubit entanglement from ultrastrong interactions in circuit quantum electrodynamics. Phys. Rev. Lett. 119(18), 183602 (2017)ADS
70.
Zurück zum Zitat Zheng, S.B.: Quantum-information processing and multiatom-entanglement engineering with a thermal cavity. Phys. Rev. A 66(6), 060303 (2002)ADS Zheng, S.B.: Quantum-information processing and multiatom-entanglement engineering with a thermal cavity. Phys. Rev. A 66(6), 060303 (2002)ADS
71.
Zurück zum Zitat Yang, C.P., Su, Q.P., Zheng, S.B., Han, S.Y.: Generating entanglement between microwave photons and qubits in multiple cavities coupled by a superconducting qutrit. Phys. Rev. A 87(2), 022320 (2013)ADS Yang, C.P., Su, Q.P., Zheng, S.B., Han, S.Y.: Generating entanglement between microwave photons and qubits in multiple cavities coupled by a superconducting qutrit. Phys. Rev. A 87(2), 022320 (2013)ADS
72.
Zurück zum Zitat Xia, K.Y., Twamley, J.: Generating spin squeezing states and Greenberger–Horne–Zeilinger entanglement using a hybrid phonon-spin ensemble in diamond. Phys. Rev. B 94(20), 205118 (2016)ADS Xia, K.Y., Twamley, J.: Generating spin squeezing states and Greenberger–Horne–Zeilinger entanglement using a hybrid phonon-spin ensemble in diamond. Phys. Rev. B 94(20), 205118 (2016)ADS
73.
Zurück zum Zitat Ashhab, S., Niskanen, A.O., Harrabi, K., Nakamura, Y., Picot, T., de Groot, P.C., Harmans, C.J.P.M., Mooij, J.E., Nori, F.: Interqubit coupling mediated by a high-excitation-energy quantum object. Phys. Rev. B 77(1), 014510 (2008)ADS Ashhab, S., Niskanen, A.O., Harrabi, K., Nakamura, Y., Picot, T., de Groot, P.C., Harmans, C.J.P.M., Mooij, J.E., Nori, F.: Interqubit coupling mediated by a high-excitation-energy quantum object. Phys. Rev. B 77(1), 014510 (2008)ADS
74.
Zurück zum Zitat Zhou, Y., Li, B., Li, X.X., Li, F.L., Li, P.B.: Preparing multiparticle entangled states of nitrogen-vacancy centers via adiabatic ground-state transitions. Phys. Rev. A 98(5), 052346 (2018)ADS Zhou, Y., Li, B., Li, X.X., Li, F.L., Li, P.B.: Preparing multiparticle entangled states of nitrogen-vacancy centers via adiabatic ground-state transitions. Phys. Rev. A 98(5), 052346 (2018)ADS
75.
Zurück zum Zitat Balasubramanian, G., Neumann, P., Twitchen, D., Markham, M., Kolesov, R., Mizuochi, N., Isoya, J., Achard, J., Beck, J., Tissler, J., Jacques, V., Hemmer, P.R., Jelezko, F., Wrachtrup, J.: Ultralong spin coherence time in isotopically engineered diamond. Nat. Mater. 8(5), 383–387 (2009)ADS Balasubramanian, G., Neumann, P., Twitchen, D., Markham, M., Kolesov, R., Mizuochi, N., Isoya, J., Achard, J., Beck, J., Tissler, J., Jacques, V., Hemmer, P.R., Jelezko, F., Wrachtrup, J.: Ultralong spin coherence time in isotopically engineered diamond. Nat. Mater. 8(5), 383–387 (2009)ADS
76.
Zurück zum Zitat Kapale, K.T., Dowling, J.P.: Bootstrapping approach for generating maximally path-entangled photon states. Phys. Rev. Lett. 99(5), 053602 (2007)ADS Kapale, K.T., Dowling, J.P.: Bootstrapping approach for generating maximally path-entangled photon states. Phys. Rev. Lett. 99(5), 053602 (2007)ADS
77.
Zurück zum Zitat Qin, W., Miranowicz, A., Long, G., You, J.Q., Nori, F.: Proposal to test quantum wave-particle superposition on massive mechanical resonators. NPJ Quantum Inf. 5(1), 58 (2019)ADS Qin, W., Miranowicz, A., Long, G., You, J.Q., Nori, F.: Proposal to test quantum wave-particle superposition on massive mechanical resonators. NPJ Quantum Inf. 5(1), 58 (2019)ADS
78.
Zurück zum Zitat Sørensen, A., Mølmer, K.: Entanglement and quantum computation with ions in thermal motion. Phys. Rev. A 62(2), 022311 (2000)ADS Sørensen, A., Mølmer, K.: Entanglement and quantum computation with ions in thermal motion. Phys. Rev. A 62(2), 022311 (2000)ADS
79.
Zurück zum Zitat Sapmaz, S., Blanter, Y.M., Gurevich, L., van der Zant, H.S.J.: Carbon nanotubes as nanoelectromechanical systems. Phys. Rev. B 67(23), 235414 (2003)ADS Sapmaz, S., Blanter, Y.M., Gurevich, L., van der Zant, H.S.J.: Carbon nanotubes as nanoelectromechanical systems. Phys. Rev. B 67(23), 235414 (2003)ADS
80.
Zurück zum Zitat Poot, M., van der Zant, H.S.J.: Mechanical systems in the quantum regime. Phys. Rep.-Rev. Sect. Phys. Lett. 511(5), 273–335 (2012) Poot, M., van der Zant, H.S.J.: Mechanical systems in the quantum regime. Phys. Rep.-Rev. Sect. Phys. Lett. 511(5), 273–335 (2012)
81.
Zurück zum Zitat Frank, S., Poncharal, P., Wang, Z.L., de Heer, W.A.: Carbon nanotube quantum resistors. Science 280(5370), 1744–1746 (1998)ADS Frank, S., Poncharal, P., Wang, Z.L., de Heer, W.A.: Carbon nanotube quantum resistors. Science 280(5370), 1744–1746 (1998)ADS
82.
Zurück zum Zitat Tsutsui, M., Taninouchi, Y., Kurokawa, S., Sakai, A.: Electrical breakdown of short multiwalled carbon nanotubes. J. Appl. Phys. 100(9), 094302 (2006)ADS Tsutsui, M., Taninouchi, Y., Kurokawa, S., Sakai, A.: Electrical breakdown of short multiwalled carbon nanotubes. J. Appl. Phys. 100(9), 094302 (2006)ADS
83.
Zurück zum Zitat Yao, Z., Kane, C.L., Dekker, C.: High-field electrical transport in single-wall carbon nanotubes. Phys. Rev. Lett. 84(13), 2941–2944 (2000)ADS Yao, Z., Kane, C.L., Dekker, C.: High-field electrical transport in single-wall carbon nanotubes. Phys. Rev. Lett. 84(13), 2941–2944 (2000)ADS
84.
Zurück zum Zitat Collins, P.G., Hersam, M., Arnold, M., Martel, R., Avouris, P.: Current saturation and electrical breakdown in multiwalled carbon nanotubes. Phys. Rev. Lett. 86(14), 3128–3131 (2001)ADS Collins, P.G., Hersam, M., Arnold, M., Martel, R., Avouris, P.: Current saturation and electrical breakdown in multiwalled carbon nanotubes. Phys. Rev. Lett. 86(14), 3128–3131 (2001)ADS
85.
Zurück zum Zitat Johansson, J.R., Nation, P.D., Nori, F.: QuTiP: an open-source Python framework for the dynamics of open quantum systems. Comput. Phys. Commun. 183(8), 1760–1772 (2012)ADS Johansson, J.R., Nation, P.D., Nori, F.: QuTiP: an open-source Python framework for the dynamics of open quantum systems. Comput. Phys. Commun. 183(8), 1760–1772 (2012)ADS
86.
Zurück zum Zitat Johansson, J.R., Nation, P.D., Nori, F.: QuTiP 2: a Python framework for the dynamics of open quantum systems. Comput. Phys. Commun. 184(4), 1234–1240 (2013)ADS Johansson, J.R., Nation, P.D., Nori, F.: QuTiP 2: a Python framework for the dynamics of open quantum systems. Comput. Phys. Commun. 184(4), 1234–1240 (2013)ADS
87.
Zurück zum Zitat Ma, Y., Ding, Q., Wu, E.: Entanglement of two nitrogen-vacancy ensembles via a nanotube. Phys. Rev. A 101(2), 022311 (2020)ADS Ma, Y., Ding, Q., Wu, E.: Entanglement of two nitrogen-vacancy ensembles via a nanotube. Phys. Rev. A 101(2), 022311 (2020)ADS
88.
Zurück zum Zitat Ohashi, K., Rosskopf, T., Watanabe, H., Loretz, M., Tao, Y., Hauert, R., Tomizawa, S., Ishikawa, T., Ishi-Hayase, J., Shikata, S., Degen, C.L., Itoh, K.M.: Negatively charged nitrogen-vacancy centers in a 5 nm thin 12C diamond film. Nano Lett. 13(10), 4733–4738 (2013)ADS Ohashi, K., Rosskopf, T., Watanabe, H., Loretz, M., Tao, Y., Hauert, R., Tomizawa, S., Ishikawa, T., Ishi-Hayase, J., Shikata, S., Degen, C.L., Itoh, K.M.: Negatively charged nitrogen-vacancy centers in a 5 nm thin 12C diamond film. Nano Lett. 13(10), 4733–4738 (2013)ADS
89.
Zurück zum Zitat Luo, G., Zhang, Z.Z., Deng, G.W., li, H.O., Cao, G., Xiao, M., Guo, G.C., Tian, L., Guo, G.P.: Strong indirect coupling between graphene-based mechanical resonators via a phonon cavity. Nat. Commun. 9, 383 (2018) Luo, G., Zhang, Z.Z., Deng, G.W., li, H.O., Cao, G., Xiao, M., Guo, G.C., Tian, L., Guo, G.P.: Strong indirect coupling between graphene-based mechanical resonators via a phonon cavity. Nat. Commun. 9, 383 (2018)
90.
Zurück zum Zitat Zhang, Z.Z., Song, X.X., Luo, G., Su, Z.J., Wang, K.L., Cao, G., Li, H.O., Xiao, M., Guo, G.C., Tian, L., Deng, G.W., Guo, G.P.: Coherent phonon dynamics in spatially separated graphene mechanical resonators. PNAS 117(11), 5582–5587 (2020)ADS Zhang, Z.Z., Song, X.X., Luo, G., Su, Z.J., Wang, K.L., Cao, G., Li, H.O., Xiao, M., Guo, G.C., Tian, L., Deng, G.W., Guo, G.P.: Coherent phonon dynamics in spatially separated graphene mechanical resonators. PNAS 117(11), 5582–5587 (2020)ADS
91.
Zurück zum Zitat Hong, S.W., Banks, T., Rogers, J.A.: Improved density in aligned arrays of single-walled carbon nanotubes by sequential chemical vapor deposition on quartz. Adv. Mater. 22(16), 1826–1830 (2010) Hong, S.W., Banks, T., Rogers, J.A.: Improved density in aligned arrays of single-walled carbon nanotubes by sequential chemical vapor deposition on quartz. Adv. Mater. 22(16), 1826–1830 (2010)
92.
Zurück zum Zitat Farrokhabadi, A., Abadian, N., Rach, R., Abadyan, M.: Theoretical modeling of the Casimir force-induced instability in freestanding nanowires with circular cross-section. Physica E 63, 67–80 (2014)ADS Farrokhabadi, A., Abadian, N., Rach, R., Abadyan, M.: Theoretical modeling of the Casimir force-induced instability in freestanding nanowires with circular cross-section. Physica E 63, 67–80 (2014)ADS
Metadaten
Titel
Generation of multiparticle entangled states of nitrogen-vacancy centers with carbon nanotubes
verfasst von
Bo-Long Wang
Bo Li
Xiao-Xiao Li
Fu-Li Li
Peng-Bo Li
Publikationsdatum
01.08.2020
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 8/2020
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-020-02714-5

Weitere Artikel der Ausgabe 8/2020

Quantum Information Processing 8/2020 Zur Ausgabe

Neuer Inhalt