Skip to main content

2024 | OriginalPaper | Buchkapitel

Genetic Algorithm Driven by Translational Mutation Operator for the Scheduling Optimization in the Steelmaking-Continuous Casting Production

verfasst von : Lin Guan, Yalin Wang, Xujie Tan, Chenliang Liu

Erschienen in: Intelligent Information Processing XII

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The scheduling optimization of industrial processes is crucial for enhancing production capacity and minimizing energy consumption. In the realm of continuous casting, the expansion of the scheduling scale and the increasing number of scheduling objects pose challenges for genetic algorithms in swiftly generating optimal solutions that adhere to constraints. Prolonged scheduling decision times and difficulties in ensuring constant pouring constraints are critical issues that require urgent resolution in the continuous casting scheduling problem within steelmaking. This paper proposes a genetic algorithm driven by translational mutation operator for the scheduling optimization in the steelmaking-continuous casting production named TMGA. Incorporating continuous pouring information in the encoding process guarantees uninterrupted pouring during the casting stage. Furthermore, applying the translational mutation operator is instrumental in elevating the search efficiency for the global optimal solution, consequently diminishing scheduling decision times. To validate the effectiveness of the proposed approach, this study conducts a rigorous examination involving a numerical simulation case and two ablation experiments. The experimental results demonstrate the superior performance of TMGA compared to other methods.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Rouf, S., et al.: Additive manufacturing technologies: industrial and medical applications. Sustain. Oper. Comput. 3, 258–274 (2022)CrossRef Rouf, S., et al.: Additive manufacturing technologies: industrial and medical applications. Sustain. Oper. Comput. 3, 258–274 (2022)CrossRef
2.
Zurück zum Zitat Siengchin, S.: A review on lightweight materials for defence applications: present and future developments. Defence Technol. 24, 1–17 (2023)CrossRef Siengchin, S.: A review on lightweight materials for defence applications: present and future developments. Defence Technol. 24, 1–17 (2023)CrossRef
3.
Zurück zum Zitat Tan, X., et al.: Unlocking operational excellence: a deep dive into a communication-driven multi-strategy state transition algorithm for industrial process optimization. Chemom. Intell. Lab. Syst. 240, 104934 (2023)CrossRef Tan, X., et al.: Unlocking operational excellence: a deep dive into a communication-driven multi-strategy state transition algorithm for industrial process optimization. Chemom. Intell. Lab. Syst. 240, 104934 (2023)CrossRef
4.
Zurück zum Zitat Li, F.: Towards a computational intelligence framework in steel product quality and cost control. 2021 Li, F.: Towards a computational intelligence framework in steel product quality and cost control. 2021
5.
Zurück zum Zitat Lee, M., et al.: A critical review of planning and scheduling in steel-making and continuous casting in the steel industry. J. Oper. Res. Soc. 2023: p. 1–35 Lee, M., et al.: A critical review of planning and scheduling in steel-making and continuous casting in the steel industry. J. Oper. Res. Soc. 2023: p. 1–35
6.
Zurück zum Zitat Carlucci, D., Renna, P., Materi, S.: A job-shop scheduling decision-making model for sustainable production planning with power constraint. IEEE Trans. Eng. Manage. 70(5), 1923–1932 (2023)CrossRef Carlucci, D., Renna, P., Materi, S.: A job-shop scheduling decision-making model for sustainable production planning with power constraint. IEEE Trans. Eng. Manage. 70(5), 1923–1932 (2023)CrossRef
7.
Zurück zum Zitat He, K., Wang, L.: A review of energy use and energy-efficient technologies for the iron and steel industry. Renew. Sustain. Energy Rev. 70, 1022–1039 (2017)CrossRef He, K., Wang, L.: A review of energy use and energy-efficient technologies for the iron and steel industry. Renew. Sustain. Energy Rev. 70, 1022–1039 (2017)CrossRef
8.
Zurück zum Zitat Tang, X.L., Scheduling a hybrid flowshop with batch production at the last stage. Comput. Oper. Res. 2007 Tang, X.L., Scheduling a hybrid flowshop with batch production at the last stage. Comput. Oper. Res. 2007
9.
Zurück zum Zitat Aggoune, R.: Minimizing the makespan for the flow shop scheduling problem with availability constraints. Eur. J. Oper. Res. 153(3), 534–543 (2004)MathSciNetCrossRef Aggoune, R.: Minimizing the makespan for the flow shop scheduling problem with availability constraints. Eur. J. Oper. Res. 153(3), 534–543 (2004)MathSciNetCrossRef
10.
Zurück zum Zitat Sun, L.: An efficient and effective approach for the scheduling of steelmaking-continuous casting process with multi different refining routes. IEEE Robot. Autom. Lett. 7(4), 10454–10461 (2022)MathSciNetCrossRef Sun, L.: An efficient and effective approach for the scheduling of steelmaking-continuous casting process with multi different refining routes. IEEE Robot. Autom. Lett. 7(4), 10454–10461 (2022)MathSciNetCrossRef
11.
Zurück zum Zitat Cui, H., X. Luo, and Y. Wang, Scheduling of steelmaking-continuous casting process with different processing routes using effective surrogate Lagrangian relaxation approach and improved concave–convex procedure. Int. J. Prod. Res. 2021 Cui, H., X. Luo, and Y. Wang, Scheduling of steelmaking-continuous casting process with different processing routes using effective surrogate Lagrangian relaxation approach and improved concave–convex procedure. Int. J. Prod. Res. 2021
12.
Zurück zum Zitat Xu, W., Tang, L and Pistikopoulos, E.N.: Modeling and solution for steelmaking scheduling with batching decisions and energy constraints. Comput. Chem. Eng. 116(AUG.4): p. 368–384 (2018) Xu, W., Tang, L and Pistikopoulos, E.N.: Modeling and solution for steelmaking scheduling with batching decisions and energy constraints. Comput. Chem. Eng. 116(AUG.4): p. 368–384 (2018)
13.
Zurück zum Zitat Tang, L., Zhao, Y. and Liu, J.: An improved differential evolution algorithm for practical dynamic scheduling in steelmaking-continuous casting production. IEEE Trans. Evol. Comput. (2014) Tang, L., Zhao, Y. and Liu, J.: An improved differential evolution algorithm for practical dynamic scheduling in steelmaking-continuous casting production. IEEE Trans. Evol. Comput. (2014)
15.
Zurück zum Zitat Peng, K., et al.: An improved artificial bee colony algorithm for Real-world hybrid flowshop rescheduling in steelmaking-refining continuous casting process. Comput. Ind. Eng. 2018. 122(AUG.): p. 235–250 Peng, K., et al.: An improved artificial bee colony algorithm for Real-world hybrid flowshop rescheduling in steelmaking-refining continuous casting process. Comput. Ind. Eng. 2018. 122(AUG.): p. 235–250
16.
Zurück zum Zitat Wei, X., Task scheduling optimization strategy using improved ant colony optimization algorithm in cloud computing. J. Ambient Intell. Humanized Comput. 2020(4) Wei, X., Task scheduling optimization strategy using improved ant colony optimization algorithm in cloud computing. J. Ambient Intell. Humanized Comput. 2020(4)
17.
Zurück zum Zitat Zhou, L. Cui. Y.: Parameter optimization and its application of support vector machines based on improved particle swarm optimization algorithm. In 2022 4th International Conference on Intelligent Information Processing (IIP). 2022 Zhou, L. Cui. Y.: Parameter optimization and its application of support vector machines based on improved particle swarm optimization algorithm. In 2022 4th International Conference on Intelligent Information Processing (IIP). 2022
18.
Zurück zum Zitat Li, Y., et al.: An improved artificial bee colony algorithm for distributed heterogeneous hybrid flowshop scheduling problem with sequence-dependent setup times. Comput. Ind. Eng. 147, 106638 (2020)CrossRef Li, Y., et al.: An improved artificial bee colony algorithm for distributed heterogeneous hybrid flowshop scheduling problem with sequence-dependent setup times. Comput. Ind. Eng. 147, 106638 (2020)CrossRef
19.
Zurück zum Zitat Jia, Z., et al.: Ant colony optimization algorithm for scheduling jobs with fuzzy processing time on parallel batch machines with different capacities. Appl. Soft Comput. 75, 548–561 (2019)CrossRef Jia, Z., et al.: Ant colony optimization algorithm for scheduling jobs with fuzzy processing time on parallel batch machines with different capacities. Appl. Soft Comput. 75, 548–561 (2019)CrossRef
20.
Zurück zum Zitat Zhang, G., et al.: An improved genetic algorithm for the flexible job shop scheduling problem with multiple time constraints. Swarm Evol. Comput. 54, 100664 (2020)CrossRef Zhang, G., et al.: An improved genetic algorithm for the flexible job shop scheduling problem with multiple time constraints. Swarm Evol. Comput. 54, 100664 (2020)CrossRef
21.
Zurück zum Zitat Zhou, Z., et al.: An improved genetic algorithm using greedy strategy toward task scheduling optimization in cloud environments. Neural Comput. Appl. 32, 1531–1541 (2020)CrossRef Zhou, Z., et al.: An improved genetic algorithm using greedy strategy toward task scheduling optimization in cloud environments. Neural Comput. Appl. 32, 1531–1541 (2020)CrossRef
22.
Zurück zum Zitat Liu, S.C., et al.: Many-objective job-shop scheduling: a multiple populations for multiple objectives-based genetic algorithm approach. IEEE Trans. Cybern. 2021 Liu, S.C., et al.: Many-objective job-shop scheduling: a multiple populations for multiple objectives-based genetic algorithm approach. IEEE Trans. Cybern. 2021
23.
Zurück zum Zitat Yusof, R., et al.: Solving job shop scheduling problem using a hybrid parallel micro genetic algorithm. Appl. Soft Comput. 11(8), 5782–5792 (2011)CrossRef Yusof, R., et al.: Solving job shop scheduling problem using a hybrid parallel micro genetic algorithm. Appl. Soft Comput. 11(8), 5782–5792 (2011)CrossRef
24.
Zurück zum Zitat Rubén, et al., Two new robust genetic algorithms for the flowshop scheduling problem - ScienceDirect. Omega, 2006. 34(5): p. 461–476 Rubén, et al., Two new robust genetic algorithms for the flowshop scheduling problem - ScienceDirect. Omega, 2006. 34(5): p. 461–476
25.
Zurück zum Zitat Long, J., et al.: Scheduling a realistic hybrid flow shop with stage skipping and adjustable processing time in steel plants. Appl. Soft Comput. 64, 536–549 (2017)CrossRef Long, J., et al.: Scheduling a realistic hybrid flow shop with stage skipping and adjustable processing time in steel plants. Appl. Soft Comput. 64, 536–549 (2017)CrossRef
26.
Zurück zum Zitat Lu, H. and Qiao, F.: An efficient adaptive genetic algorithm for energy saving in the hybrid flow shop scheduling with batch production at last stage. Expert Syst. 2021 Lu, H. and Qiao, F.: An efficient adaptive genetic algorithm for energy saving in the hybrid flow shop scheduling with batch production at last stage. Expert Syst. 2021
27.
Zurück zum Zitat Wang, H., Wang, H. and Luo, H. An improved multi-objective optimization algorithm for flexible job shop dynamic scheduling problem. In IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Soc. 2022 Wang, H., Wang, H. and Luo, H. An improved multi-objective optimization algorithm for flexible job shop dynamic scheduling problem. In IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Soc. 2022
28.
Zurück zum Zitat Lu, L., Ng, C.T., Zhang, L.: Optimal algorithms for single-machine scheduling with rejection to minimize the makespan. Int. J. Prod. Econ. 130(2), 153–158 (2011)CrossRef Lu, L., Ng, C.T., Zhang, L.: Optimal algorithms for single-machine scheduling with rejection to minimize the makespan. Int. J. Prod. Econ. 130(2), 153–158 (2011)CrossRef
29.
Zurück zum Zitat Kennedy, J. and Eberhart. R.: Particle swarm optimization. In: Proceedings of ICNN'95-International Conference on Neural Networks. 1995. IEEE Kennedy, J. and Eberhart. R.: Particle swarm optimization. In: Proceedings of ICNN'95-International Conference on Neural Networks. 1995. IEEE
30.
Zurück zum Zitat Holland, J.H.: Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. 1992: MIT press Holland, J.H.: Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. 1992: MIT press
Metadaten
Titel
Genetic Algorithm Driven by Translational Mutation Operator for the Scheduling Optimization in the Steelmaking-Continuous Casting Production
verfasst von
Lin Guan
Yalin Wang
Xujie Tan
Chenliang Liu
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-57808-3_22