Skip to main content

2018 | OriginalPaper | Buchkapitel

Genetic Mapping Populations for Conducting High-Resolution Trait Mapping in Plants

verfasst von : James Cockram, Ian Mackay

Erschienen in: Plant Genetics and Molecular Biology

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Fine mapping of quantitative trait loci (QTL) is the route to more detailed molecular characterization and functional studies of the relationship between polymorphism and trait variation. It is also of direct relevance to breeding since it makes QTL more easily integrated into marker-assisted breeding and into genomic selection. Fine mapping requires that marker-trait associations are tested in populations in which large numbers of recombinations have occurred. This can be achieved by increasing the size of mapping populations or by increasing the number of generations of crossing required to create the population. We review the factors affecting the precision and power of fine mapping experiments and describe some contemporary experimental approaches, focusing on the use of multi-parental or multi-founder populations such as the multi-parent advanced generation intercross (MAGIC) and nested association mapping (NAM). We favor approaches such as MAGIC since these focus explicitly on increasing the amount of recombination that occurs within the population. Whatever approaches are used, we believe the days of mapping QTL in small populations must come to an end. In our own work in MAGIC wheat populations, we started with a target of developing 1,000 lines per population: that number now looks to be on the low side.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Glossar
Advanced inter-cross (AIC)
A bi-parental population, in which founders have been intercrossed for two or more generations prior to the production of inbred lines.
Doubled haploid (DH)
A genotype formed when haploid cells undergo chromosome doubling.
Genomic selection (GS)
A form of marker-assisted selection in which genetic markers are combined with phenotypic data to estimate breeding values in the absence of precise knowledge of where specific genes are located.
Genome wide association scan (GWAS)
Method for genetic mapping using a collection of varieties or landraces with phenotypic and genome-wide genotypic datasets.
Linkage disequilibrium (LD)
The non-random association of alleles at separate loci located on the same chromosome.
Multiparent advanced generation inter cross (MAGIC) population
A multi-founder population created by intercrossing the founders over multiple generations in a balanced crossing scheme, prior to the production of inbred lines.
Nested association mapping (NAM) population
A multi-founder population created by generating multiple bi-parental inbred populations, each of which contains a common founder.
Quantitative trait locus (QTL)
A polymorphic site contributing to the genetic variability of a quantitative trait.
Recombinant inbred line (RIL)
A population developed by single seed descent from the F2 generation.
Literatur
1.
Zurück zum Zitat Sax K (1923) The association of size differences with seed-coat pattern and pigmentation in Phaseolus vulgaris. Genetics 8:552PubMedPubMedCentral Sax K (1923) The association of size differences with seed-coat pattern and pigmentation in Phaseolus vulgaris. Genetics 8:552PubMedPubMedCentral
2.
Zurück zum Zitat Beckmann JS, Soller M (1983) Restriction fragment length polymorphisms in genetic improvement: methodologies, mapping and costs. Theor Appl Genet 67:35–43CrossRefPubMed Beckmann JS, Soller M (1983) Restriction fragment length polymorphisms in genetic improvement: methodologies, mapping and costs. Theor Appl Genet 67:35–43CrossRefPubMed
3.
Zurück zum Zitat Paterson AH, Lander ES, Hewitt JD, Peterson S, Lincoln SE, Tanksley SD (1988) Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335:721–726CrossRefPubMed Paterson AH, Lander ES, Hewitt JD, Peterson S, Lincoln SE, Tanksley SD (1988) Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335:721–726CrossRefPubMed
4.
Zurück zum Zitat Paux E, Sourdille P, Mackay I, Feuillet C (2012) Sequence-based marker development in wheat: advances and applications to breeding. Biotechnol Adv 30:1071–1088CrossRefPubMed Paux E, Sourdille P, Mackay I, Feuillet C (2012) Sequence-based marker development in wheat: advances and applications to breeding. Biotechnol Adv 30:1071–1088CrossRefPubMed
5.
Zurück zum Zitat Broman KW, Wu H, Sen Ś, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890CrossRefPubMed Broman KW, Wu H, Sen Ś, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890CrossRefPubMed
6.
Zurück zum Zitat Collard BC, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc Lond B Biol Sci 363:557–572CrossRefPubMed Collard BC, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc Lond B Biol Sci 363:557–572CrossRefPubMed
7.
Zurück zum Zitat Beavis WD (1998) QTL analysis: power, precision, and accuracy. In: Paterson AH (ed) Molecular dissection of complex traits. CRC Press, Boca Raton, pp 145–173 Beavis WD (1998) QTL analysis: power, precision, and accuracy. In: Paterson AH (ed) Molecular dissection of complex traits. CRC Press, Boca Raton, pp 145–173
8.
Zurück zum Zitat Kearsey MJ, Farquhar AG (1998) QTL analysis in plants; where are we now? Heredity 80:137–142CrossRefPubMed Kearsey MJ, Farquhar AG (1998) QTL analysis in plants; where are we now? Heredity 80:137–142CrossRefPubMed
9.
Zurück zum Zitat Bernardo R (2008) Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci 48:1649–1664CrossRef Bernardo R (2008) Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci 48:1649–1664CrossRef
10.
Zurück zum Zitat Monna L, Lin HX, Kojima S, Sasaki T, Yano M (2002) Genetic dissection of a genomic region for a quantitative trait locus, Hd3, into two loci, Hd3a and Hd3b, controlling heading date in rice. Theor Appl Genet 104:722–778 Monna L, Lin HX, Kojima S, Sasaki T, Yano M (2002) Genetic dissection of a genomic region for a quantitative trait locus, Hd3, into two loci, Hd3a and Hd3b, controlling heading date in rice. Theor Appl Genet 104:722–778
11.
Zurück zum Zitat Heslot N, Jannink J-L, Sorrells ME (2015) Perspectives for genomic selection applications and research in plants. Crop Sci 55(1):12CrossRef Heslot N, Jannink J-L, Sorrells ME (2015) Perspectives for genomic selection applications and research in plants. Crop Sci 55(1):12CrossRef
12.
Zurück zum Zitat Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829PubMedPubMedCentral Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829PubMedPubMedCentral
14.
Zurück zum Zitat Bortesi L, Fischer R (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 33:41–52CrossRefPubMed Bortesi L, Fischer R (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 33:41–52CrossRefPubMed
15.
Zurück zum Zitat Hickey JM, Bruce C, Whitelaw A, Gorjanc G (2016) Promotion of alleles by genome editing in livestock breeding programmes. J Anim Breed Genet 133:83–84CrossRefPubMed Hickey JM, Bruce C, Whitelaw A, Gorjanc G (2016) Promotion of alleles by genome editing in livestock breeding programmes. J Anim Breed Genet 133:83–84CrossRefPubMed
16.
Zurück zum Zitat Law CN, Worland AJ, Giorgi B (1976) The genetic control of ear-emergence time by chromosome 5A and 5D of wheat. Heredity 36:49–58CrossRef Law CN, Worland AJ, Giorgi B (1976) The genetic control of ear-emergence time by chromosome 5A and 5D of wheat. Heredity 36:49–58CrossRef
17.
18.
Zurück zum Zitat Button KS, Ioannidis JP, Mokrysz C, Nosek BA, Flint J, Robinson ES, Munafò MR (2013) Power failure: why small sample size undermines the reliability of neuroscience. Nat Rev Neurosci 14:365–376CrossRefPubMed Button KS, Ioannidis JP, Mokrysz C, Nosek BA, Flint J, Robinson ES, Munafò MR (2013) Power failure: why small sample size undermines the reliability of neuroscience. Nat Rev Neurosci 14:365–376CrossRefPubMed
19.
Zurück zum Zitat Nature Genetics Editorial Board (2005) Framework for a fully powered risk engine. Nat Genet 37:1153CrossRef Nature Genetics Editorial Board (2005) Framework for a fully powered risk engine. Nat Genet 37:1153CrossRef
20.
Zurück zum Zitat McCarthy MI, Abecasis GR, Cardon LR, Goldstein DB, Little J, Ioannidis JP, Hirschhorn JN (2008) Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat Rev Genet 9:356–369CrossRefPubMed McCarthy MI, Abecasis GR, Cardon LR, Goldstein DB, Little J, Ioannidis JP, Hirschhorn JN (2008) Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat Rev Genet 9:356–369CrossRefPubMed
21.
Zurück zum Zitat Hall D, Tegström C, Ingvarsson PK (2010) Using association mapping to dissect the genetic basis of complex traits in plants. Brief Funct Genomics 9:157–165CrossRefPubMed Hall D, Tegström C, Ingvarsson PK (2010) Using association mapping to dissect the genetic basis of complex traits in plants. Brief Funct Genomics 9:157–165CrossRefPubMed
22.
Zurück zum Zitat Bentley AR, Scutari M, Gosman N, Faure S, Bedford F, Howell P, Cockram J, Rose GA, Barber T, Irigoyen J, Horsnell R, Pumfrey C, Winnie E, Schacht J, Beauchêne K, Praud S, Greenland A, Balding D, Mackay IJ (2014) Applying association mapping and genomic selection to the dissection of key traits in elite European wheat. Theor Appl Genet 127:2619–2633CrossRefPubMed Bentley AR, Scutari M, Gosman N, Faure S, Bedford F, Howell P, Cockram J, Rose GA, Barber T, Irigoyen J, Horsnell R, Pumfrey C, Winnie E, Schacht J, Beauchêne K, Praud S, Greenland A, Balding D, Mackay IJ (2014) Applying association mapping and genomic selection to the dissection of key traits in elite European wheat. Theor Appl Genet 127:2619–2633CrossRefPubMed
23.
Zurück zum Zitat Cockram J, White J, Zuluaga DL, Smith D, Comadran J et al (2010) Genome-wide association mapping to candidate polymorphism resolution in the un-sequenced barley genome. Proc Natl Acad Sci U S A 107:21611–21616CrossRefPubMedPubMedCentral Cockram J, White J, Zuluaga DL, Smith D, Comadran J et al (2010) Genome-wide association mapping to candidate polymorphism resolution in the un-sequenced barley genome. Proc Natl Acad Sci U S A 107:21611–21616CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Waugh R, Marshall D, Thomas B, Comadran J, Russell J, Close T, Stein N, Hayes P, Muehlbauer G, Cockram J, O’Sullivan D, Mackay I, Flavell A, Agoueb A, Barley CAP, Ramsay L (2010) Whole-genome association mapping in elite inbred crop varieties. Genome 53:967–972CrossRefPubMed Waugh R, Marshall D, Thomas B, Comadran J, Russell J, Close T, Stein N, Hayes P, Muehlbauer G, Cockram J, O’Sullivan D, Mackay I, Flavell A, Agoueb A, Barley CAP, Ramsay L (2010) Whole-genome association mapping in elite inbred crop varieties. Genome 53:967–972CrossRefPubMed
25.
Zurück zum Zitat Mackay IJ, Powell W (2007) Methods for linkage disequilibrium mapping in crops. Trends Plant Sci 12:57–63CrossRefPubMed Mackay IJ, Powell W (2007) Methods for linkage disequilibrium mapping in crops. Trends Plant Sci 12:57–63CrossRefPubMed
27.
Zurück zum Zitat Highfill CA, Reeves GA, Macdonald SJ (2016) Genetic analysis of variation in lifespan using a multiparental advanced intercross Drosophila mapping population. BMC Genet 17(1):113CrossRefPubMedPubMedCentral Highfill CA, Reeves GA, Macdonald SJ (2016) Genetic analysis of variation in lifespan using a multiparental advanced intercross Drosophila mapping population. BMC Genet 17(1):113CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Cockram J, White J, Leigh FJ, Lea VJ et al (2008) Association mapping of partitioning loci in barley (Hordeum vulgare ssp. vulgare L.) BMC Genet 9:16CrossRefPubMedPubMedCentral Cockram J, White J, Leigh FJ, Lea VJ et al (2008) Association mapping of partitioning loci in barley (Hordeum vulgare ssp. vulgare L.) BMC Genet 9:16CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Darvasi A, Soller M (1995) Advanced intercross lines, and experimental population for fine genetic mapping. Genetics 141:1199–1207PubMedPubMedCentral Darvasi A, Soller M (1995) Advanced intercross lines, and experimental population for fine genetic mapping. Genetics 141:1199–1207PubMedPubMedCentral
30.
Zurück zum Zitat Ma J, Wingen LU, Orford S, Fenwick P, Wang J, Griffiths S (2015) Using the UK reference population Avalon x Cadenza as a platform to compare breeding strategies in elite Western European bread wheat. Mol Breed 35:70CrossRefPubMedPubMedCentral Ma J, Wingen LU, Orford S, Fenwick P, Wang J, Griffiths S (2015) Using the UK reference population Avalon x Cadenza as a platform to compare breeding strategies in elite Western European bread wheat. Mol Breed 35:70CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Bentley AR, Jensen EF, Mackay IJ, Hönicka H, Fladung M, Hori K, Yano M, Mullet JE, Armstead IP, Hayes C, Thorogood D, Lovatt A, Morris R, Pullen N, Mutasa-Göttgens E, Cockram J (2013) Genomics and breeding for climate-resilient crops (ed Kole C) volume II target traits chapter 1. Flowering time. Springer, Berlin Bentley AR, Jensen EF, Mackay IJ, Hönicka H, Fladung M, Hori K, Yano M, Mullet JE, Armstead IP, Hayes C, Thorogood D, Lovatt A, Morris R, Pullen N, Mutasa-Göttgens E, Cockram J (2013) Genomics and breeding for climate-resilient crops (ed Kole C) volume II target traits chapter 1. Flowering time. Springer, Berlin
32.
Zurück zum Zitat Bentley A, Mackay I (2016) Advances in wheat breeding techniques. In: Langridge P (ed) Achieving sustainable cultivation of wheat. Burleigh Dodds Science Publishing Ltd., Cambridge Bentley A, Mackay I (2016) Advances in wheat breeding techniques. In: Langridge P (ed) Achieving sustainable cultivation of wheat. Burleigh Dodds Science Publishing Ltd., Cambridge
34.
Zurück zum Zitat Routaboul J-M, Dubos C, Beck G, Marquis C, Bidzinski P, Loudet O, Lepiniec L (2012) Metabolite profiling and quantitative genetics of natural variation for flavonoids in Arabidopsis. J Exp Bot 63:3749–3764CrossRefPubMedPubMedCentral Routaboul J-M, Dubos C, Beck G, Marquis C, Bidzinski P, Loudet O, Lepiniec L (2012) Metabolite profiling and quantitative genetics of natural variation for flavonoids in Arabidopsis. J Exp Bot 63:3749–3764CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Ries D, Holtgräwe D, Viehöver P, Weisshaar B (2016) Rapid gene identification in sugar beet using deep sequencing of DNA from phenotypic pools selected from breeding panels. BMC Genomics 17:236CrossRefPubMedPubMedCentral Ries D, Holtgräwe D, Viehöver P, Weisshaar B (2016) Rapid gene identification in sugar beet using deep sequencing of DNA from phenotypic pools selected from breeding panels. BMC Genomics 17:236CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Hill WG (1998) A note on the theory of artificial selection in finite populations and application to QTL detection by bulk segregant analysis. Genet Res 72:55–58CrossRef Hill WG (1998) A note on the theory of artificial selection in finite populations and application to QTL detection by bulk segregant analysis. Genet Res 72:55–58CrossRef
37.
Zurück zum Zitat Mackay IJ, Caligari PDS (2000) Efficiencies in F2 and backcross generations for bulked segregant analysis using dominant markers. Crop Sci 40:626–630CrossRef Mackay IJ, Caligari PDS (2000) Efficiencies in F2 and backcross generations for bulked segregant analysis using dominant markers. Crop Sci 40:626–630CrossRef
38.
Zurück zum Zitat Fitz Gerald JN, Carlson AL, Smith E, Maloof JN, Weigel D, Chory J, Borevitz JO, Swanson RJ (2014) New Arabidopsis advanced intercross recombinant inbred lines reveal female control of nonrandom mating. Plant Physiol 165:175–185CrossRefPubMedPubMedCentral Fitz Gerald JN, Carlson AL, Smith E, Maloof JN, Weigel D, Chory J, Borevitz JO, Swanson RJ (2014) New Arabidopsis advanced intercross recombinant inbred lines reveal female control of nonrandom mating. Plant Physiol 165:175–185CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Balint-Kurti PJ, Wisser R, Zwonitzer JC (2008) Use of an advanced intercross line population for precise mapping of quantitative trait loci for gray leaf spot resistance in maize. Crop Sci 48:1696–1704CrossRef Balint-Kurti PJ, Wisser R, Zwonitzer JC (2008) Use of an advanced intercross line population for precise mapping of quantitative trait loci for gray leaf spot resistance in maize. Crop Sci 48:1696–1704CrossRef
40.
Zurück zum Zitat Balint-Kurti PJ, Zwonitzer J, Wisser R (2008) Use of an advanced intercross line population for precise mapping of quantitative trait loci for grey leaf spot resistance in maize. Crop Sci 48:1696–1703CrossRef Balint-Kurti PJ, Zwonitzer J, Wisser R (2008) Use of an advanced intercross line population for precise mapping of quantitative trait loci for grey leaf spot resistance in maize. Crop Sci 48:1696–1703CrossRef
41.
Zurück zum Zitat Kooke R, Wijnker E, Keurentjes JJ (2012) Backcross populations and near isogenic lines. Methods Mol Biol 871:3–16CrossRefPubMed Kooke R, Wijnker E, Keurentjes JJ (2012) Backcross populations and near isogenic lines. Methods Mol Biol 871:3–16CrossRefPubMed
42.
Zurück zum Zitat Fletcher RS, Mullen JL, Yoder S, Bauerle WL, Reuning G, Sen S, Meyer E, Juenger TE, McKay JK (2013) Development of a next-generation NIL library in Arabidopsis thaliana for dissecting complex traits. BMC Genomics 14:655CrossRefPubMedPubMedCentral Fletcher RS, Mullen JL, Yoder S, Bauerle WL, Reuning G, Sen S, Meyer E, Juenger TE, McKay JK (2013) Development of a next-generation NIL library in Arabidopsis thaliana for dissecting complex traits. BMC Genomics 14:655CrossRefPubMedPubMedCentral
43.
Zurück zum Zitat Gale JS (1980) Population genetics. Blackie and Son, Glasgow and LondonCrossRef Gale JS (1980) Population genetics. Blackie and Son, Glasgow and LondonCrossRef
44.
Zurück zum Zitat Tuinstra MR, Ejeta G, Goldsbrough PB (1997) Heterogeneous inbred family (HIF) analysis: a method for developing near-isogenic lines that differ at quantitative trait loci. Theor Appl Genet 95:1005–1011CrossRef Tuinstra MR, Ejeta G, Goldsbrough PB (1997) Heterogeneous inbred family (HIF) analysis: a method for developing near-isogenic lines that differ at quantitative trait loci. Theor Appl Genet 95:1005–1011CrossRef
45.
Zurück zum Zitat Yamanaka N, Watanabe S, Toda K, Hayashi M, Fuchigami H, Takahashi R, Harada K (2005) Fine mapping of the FT1 locus for soybean flowering time using a residual heterozygous line derived from a recombinant inbred line. Theor Appl Genet 110:634–639CrossRefPubMed Yamanaka N, Watanabe S, Toda K, Hayashi M, Fuchigami H, Takahashi R, Harada K (2005) Fine mapping of the FT1 locus for soybean flowering time using a residual heterozygous line derived from a recombinant inbred line. Theor Appl Genet 110:634–639CrossRefPubMed
46.
Zurück zum Zitat Yu J, Holland JB, McMullen MD, Buckler ES (2008) Genetic design and statistical power of nested association mapping in maize. Genetics 178:539–551CrossRefPubMedPubMedCentral Yu J, Holland JB, McMullen MD, Buckler ES (2008) Genetic design and statistical power of nested association mapping in maize. Genetics 178:539–551CrossRefPubMedPubMedCentral
47.
Zurück zum Zitat Abecasis GR, Cardon LR, Cookson WOC (2000) A general test of association for quantitative traits in nuclear families. Am J Hum Genet 66:279–292CrossRefPubMed Abecasis GR, Cardon LR, Cookson WOC (2000) A general test of association for quantitative traits in nuclear families. Am J Hum Genet 66:279–292CrossRefPubMed
49.
Zurück zum Zitat McMullen MD, Kresovich S, Villeda HS, Bradbury P, Lu H et al (2009) Genetic properties of a maize nested association mapping population. Science 178:539–551 McMullen MD, Kresovich S, Villeda HS, Bradbury P, Lu H et al (2009) Genetic properties of a maize nested association mapping population. Science 178:539–551
50.
Zurück zum Zitat Brown PJ, Upadyayula N, Mahone GS, Tian F, Bradbury PJ et al (2011) Distinct genetic architectures for male and female inflorescence traits of maize. PLoS Genet 7:e1002383CrossRefPubMedPubMedCentral Brown PJ, Upadyayula N, Mahone GS, Tian F, Bradbury PJ et al (2011) Distinct genetic architectures for male and female inflorescence traits of maize. PLoS Genet 7:e1002383CrossRefPubMedPubMedCentral
51.
Zurück zum Zitat Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ et al (2009) The genetic architecture of maize flowering time. Science 325:714–718CrossRefPubMed Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ et al (2009) The genetic architecture of maize flowering time. Science 325:714–718CrossRefPubMed
52.
Zurück zum Zitat Hung H-Y, Shannon LM, Tian F, Bradbury PJ, Chen C et al (2012) ZmCCT and the genetic basis of day-length adaptation underlying the postdomestication spread of maize. Proc Natl Acad Sci U S A 109:E1913–E1921CrossRefPubMedPubMedCentral Hung H-Y, Shannon LM, Tian F, Bradbury PJ, Chen C et al (2012) ZmCCT and the genetic basis of day-length adaptation underlying the postdomestication spread of maize. Proc Natl Acad Sci U S A 109:E1913–E1921CrossRefPubMedPubMedCentral
53.
Zurück zum Zitat Kump KL, Bradbury PJ, Wisser RJ, Buckler ES, Belcher AR et al (2011) Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population. Nat Genet 43:163–168CrossRefPubMed Kump KL, Bradbury PJ, Wisser RJ, Buckler ES, Belcher AR et al (2011) Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population. Nat Genet 43:163–168CrossRefPubMed
54.
Zurück zum Zitat Peiffer JA, Flint-Garcia SA, De Leon N, McMullen MD, Kaeppler SM et al (2013) The genetic architecture of maize stalk strength. PLoS One 8:e67066CrossRefPubMedPubMedCentral Peiffer JA, Flint-Garcia SA, De Leon N, McMullen MD, Kaeppler SM et al (2013) The genetic architecture of maize stalk strength. PLoS One 8:e67066CrossRefPubMedPubMedCentral
55.
56.
Zurück zum Zitat Poland JA, Bradbury PJ, Buckler ES, Nelson RJ (2011) Genome-wide nested association mapping of quantitative resistance to northern leaf blight in maize. Proc Natl Acad Sci U S A 108:6893–6898CrossRefPubMedPubMedCentral Poland JA, Bradbury PJ, Buckler ES, Nelson RJ (2011) Genome-wide nested association mapping of quantitative resistance to northern leaf blight in maize. Proc Natl Acad Sci U S A 108:6893–6898CrossRefPubMedPubMedCentral
57.
Zurück zum Zitat Tian F, Bradbury PJ, Brown PJ, Hung H, Sun Q et al (2011) Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat Genet 43:159–162CrossRefPubMed Tian F, Bradbury PJ, Brown PJ, Hung H, Sun Q et al (2011) Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat Genet 43:159–162CrossRefPubMed
58.
Zurück zum Zitat Wallace JG, Bradbury PJ, Zhang N, Gibon Y, Stitt M, Buckler ES (2014) Association mapping across numerous traits reveals patterns of functional variation in maize. PLoS Genet 10:e1004845CrossRefPubMedPubMedCentral Wallace JG, Bradbury PJ, Zhang N, Gibon Y, Stitt M, Buckler ES (2014) Association mapping across numerous traits reveals patterns of functional variation in maize. PLoS Genet 10:e1004845CrossRefPubMedPubMedCentral
59.
Zurück zum Zitat Jordan D, Mace E, Cruickshank A, Hunt C, Henzell R (2011) Exploring and exploiting genetic variation from unadapted sorghum germplasm in a breeding program. Crop Sci 51:1444–1457CrossRef Jordan D, Mace E, Cruickshank A, Hunt C, Henzell R (2011) Exploring and exploiting genetic variation from unadapted sorghum germplasm in a breeding program. Crop Sci 51:1444–1457CrossRef
60.
Zurück zum Zitat Maurer A, Draba V, Jiang Y, Schnaithmann F, Sharma R, Schumann E, Killian B, Reif JC, Pillen K (2015) Modelling the genetic architecture of flowering time control in barley through nested association mapping. BMC Genomics 16:290CrossRefPubMedPubMedCentral Maurer A, Draba V, Jiang Y, Schnaithmann F, Sharma R, Schumann E, Killian B, Reif JC, Pillen K (2015) Modelling the genetic architecture of flowering time control in barley through nested association mapping. BMC Genomics 16:290CrossRefPubMedPubMedCentral
61.
Zurück zum Zitat Bajgain P, Rouse MN, Tsilo TJ, Macharia GK, Bhavani S, Jin Y, Anderson JA (2016) Nested association mapping of stem rust resistance in wheat using genotyping by sequencing. PLoS One 11:e0155760CrossRefPubMedPubMedCentral Bajgain P, Rouse MN, Tsilo TJ, Macharia GK, Bhavani S, Jin Y, Anderson JA (2016) Nested association mapping of stem rust resistance in wheat using genotyping by sequencing. PLoS One 11:e0155760CrossRefPubMedPubMedCentral
63.
Zurück zum Zitat Stich B (2009) Comparison of mating designs for establishing nested association mapping populations in maize and Arabidopsis thaliana. Genetics 183:1525–1534CrossRefPubMedPubMedCentral Stich B (2009) Comparison of mating designs for establishing nested association mapping populations in maize and Arabidopsis thaliana. Genetics 183:1525–1534CrossRefPubMedPubMedCentral
64.
Zurück zum Zitat Nice LM, Steffenson BJ, Brown-Guedira GL, Akhunov ED, Liu C, Kono TJY, Morrell PL, Blake TK, Horsley RD, Smith KP, Meuhlbauer GJ (2016) Development and genetic characterization of an advanced backcross-nested association mapping (AB-NAM) population of wild x cultivated barley. Genetics 203:1453–1467CrossRefPubMedPubMedCentral Nice LM, Steffenson BJ, Brown-Guedira GL, Akhunov ED, Liu C, Kono TJY, Morrell PL, Blake TK, Horsley RD, Smith KP, Meuhlbauer GJ (2016) Development and genetic characterization of an advanced backcross-nested association mapping (AB-NAM) population of wild x cultivated barley. Genetics 203:1453–1467CrossRefPubMedPubMedCentral
66.
Zurück zum Zitat Myles S, Peiffer J, Brown PJ, Ersoz ES, Zhang Z, Costich DE, Buckler ES (2009) Association mapping: critical considerations shift from genotyping to experimental design. Plant Cell 21:2194–2202CrossRefPubMedPubMedCentral Myles S, Peiffer J, Brown PJ, Ersoz ES, Zhang Z, Costich DE, Buckler ES (2009) Association mapping: critical considerations shift from genotyping to experimental design. Plant Cell 21:2194–2202CrossRefPubMedPubMedCentral
67.
Zurück zum Zitat Tversky A, Kahneman D (1971) Belief in the law of small numbers. Psychol Bull 76:105CrossRef Tversky A, Kahneman D (1971) Belief in the law of small numbers. Psychol Bull 76:105CrossRef
68.
Zurück zum Zitat 3000 Rice Genomes Project (2014) The 3000 rice genomes project. Gigascience 3:7CrossRef 3000 Rice Genomes Project (2014) The 3000 rice genomes project. Gigascience 3:7CrossRef
69.
Zurück zum Zitat Cao J, Schneeberger K, Ossowski S, Gunther T, Bender S, Fitz J, Koenig D, Lanz C, Stegle O, Lippert C, Wang X, Ott F, Müller J, Alonso-Blanco C, Borgwardt K, Schmid KJ, Weigel D (2011) Whole-genome sequencing of multiple Arabidopsis thaliana populations. Nat Genet 43:956–963CrossRefPubMed Cao J, Schneeberger K, Ossowski S, Gunther T, Bender S, Fitz J, Koenig D, Lanz C, Stegle O, Lippert C, Wang X, Ott F, Müller J, Alonso-Blanco C, Borgwardt K, Schmid KJ, Weigel D (2011) Whole-genome sequencing of multiple Arabidopsis thaliana populations. Nat Genet 43:956–963CrossRefPubMed
70.
Zurück zum Zitat Mott R, Talbot CJ, Turri MG, Collins AC, Flint J (2000) A method for fine mapping quantitative trait loci in outbred animal stocks. Proc Natl Acad Sci U S A 97:12649–12654CrossRefPubMedPubMedCentral Mott R, Talbot CJ, Turri MG, Collins AC, Flint J (2000) A method for fine mapping quantitative trait loci in outbred animal stocks. Proc Natl Acad Sci U S A 97:12649–12654CrossRefPubMedPubMedCentral
71.
Zurück zum Zitat Valdar W, Solberg LC, Gauguier D, Burnett S, Klenerman P, Cookson WO, Taylor MS, Rawlins JNP, Mott R, Flint J (2006) Genome-wide genetic association of complex traits in heterogeneous stock mice. Nat Genet 38:879–887CrossRefPubMed Valdar W, Solberg LC, Gauguier D, Burnett S, Klenerman P, Cookson WO, Taylor MS, Rawlins JNP, Mott R, Flint J (2006) Genome-wide genetic association of complex traits in heterogeneous stock mice. Nat Genet 38:879–887CrossRefPubMed
72.
Zurück zum Zitat Goldringer I, Enjalbert J, David J, Paillard S, Pham JL et al (2001) Dynamic management of genetic resources: a 13-year experiment on wheat. In: Cooper HD, Spillane C, Hodgkin T (eds) Broadening the genetic base of crop production. CABI, Wallingford, pp 245–260CrossRef Goldringer I, Enjalbert J, David J, Paillard S, Pham JL et al (2001) Dynamic management of genetic resources: a 13-year experiment on wheat. In: Cooper HD, Spillane C, Hodgkin T (eds) Broadening the genetic base of crop production. CABI, Wallingford, pp 245–260CrossRef
73.
Zurück zum Zitat Thépot S, Restoux G, Goldringer I, Gouache D, Mackay I, Enjalbert J (2015) Efficiently tracking selection in a multiparental population: the case of earliness in wheat. Genetics 199:609–623CrossRefPubMed Thépot S, Restoux G, Goldringer I, Gouache D, Mackay I, Enjalbert J (2015) Efficiently tracking selection in a multiparental population: the case of earliness in wheat. Genetics 199:609–623CrossRefPubMed
74.
Zurück zum Zitat The Complex Trait Consortium (2002) The collaborative cross, a community resource for the genetic analysis of complex traits. Nat Genet 36:1133–1137CrossRef The Complex Trait Consortium (2002) The collaborative cross, a community resource for the genetic analysis of complex traits. Nat Genet 36:1133–1137CrossRef
75.
Zurück zum Zitat Huang BE, Verbyla KL, Verbyla AP, Raghavan C, Singh VK, Gaur P, Leung H, Varshney RK, Cavanagh CR (2015) MAGIC populations in crops: current status and future prospects. Theor Appl Genet 128:999–1017CrossRefPubMed Huang BE, Verbyla KL, Verbyla AP, Raghavan C, Singh VK, Gaur P, Leung H, Varshney RK, Cavanagh CR (2015) MAGIC populations in crops: current status and future prospects. Theor Appl Genet 128:999–1017CrossRefPubMed
76.
Zurück zum Zitat Bandillo N, Raghaven C, Muyca PA, Sevilla MAL, Lobina IT (2013) Multi-parent advanced generation inter-cross (MAGIC) populations in rice: progress and potential for genetic research and breeding. Rice 6:11CrossRefPubMedPubMedCentral Bandillo N, Raghaven C, Muyca PA, Sevilla MAL, Lobina IT (2013) Multi-parent advanced generation inter-cross (MAGIC) populations in rice: progress and potential for genetic research and breeding. Rice 6:11CrossRefPubMedPubMedCentral
77.
Zurück zum Zitat Meng L, Guo L, Ponce K, Zhao X, Ye G (2016) Characterization of three indica rice multiparent advanced generation intercross (MAGIC) populations for quantitative trait loci identification. Plant Genome 9(2). Meng L, Guo L, Ponce K, Zhao X, Ye G (2016) Characterization of three indica rice multiparent advanced generation intercross (MAGIC) populations for quantitative trait loci identification. Plant Genome 9(2).
78.
Zurück zum Zitat Huang BE, George AW, Forrest KL, Kilian A, Hayden MJ, Morell MK, Cavanagh CR (2012) A multiparent advanced generation inter-cross population for genetic analysis of wheat. Plant Biotechnol J 10:826–839CrossRefPubMed Huang BE, George AW, Forrest KL, Kilian A, Hayden MJ, Morell MK, Cavanagh CR (2012) A multiparent advanced generation inter-cross population for genetic analysis of wheat. Plant Biotechnol J 10:826–839CrossRefPubMed
79.
Zurück zum Zitat Mackay I, Bansept-Basler P, Barber T, Bentley AR, Cockram J et al (2014) An eight-parent multiparent advanced generation intercross population for winter-sown wheat: creation, properties and validation. G3 (Bethesda) 4:1603–1610CrossRef Mackay I, Bansept-Basler P, Barber T, Bentley AR, Cockram J et al (2014) An eight-parent multiparent advanced generation intercross population for winter-sown wheat: creation, properties and validation. G3 (Bethesda) 4:1603–1610CrossRef
80.
Zurück zum Zitat Pascual L, Desplat N, Huang BE, Desgroux A, Bruguier L, Bouchet JP, Le QH, Chauchard B, Verschave P, Causse M (2015) Potential of a tomato MAGIC population to decipher the genetic control of quantitative traits and detect causal variants in the resequencing era. Plant Biotechnol J 13:565–577CrossRefPubMed Pascual L, Desplat N, Huang BE, Desgroux A, Bruguier L, Bouchet JP, Le QH, Chauchard B, Verschave P, Causse M (2015) Potential of a tomato MAGIC population to decipher the genetic control of quantitative traits and detect causal variants in the resequencing era. Plant Biotechnol J 13:565–577CrossRefPubMed
81.
Zurück zum Zitat Verbyla AP, George AW, Cavanagh CR, Verbyla KL (2014) Whole-genome QTL analysis for MAGIC. Theor Appl Genet 127:1753–1770CrossRefPubMed Verbyla AP, George AW, Cavanagh CR, Verbyla KL (2014) Whole-genome QTL analysis for MAGIC. Theor Appl Genet 127:1753–1770CrossRefPubMed
82.
Zurück zum Zitat Ladejobi O, Elderfield J, Gardner KA, Gaynor RC, Hickey J, Hibberd JM, Mackay IJ, Bentley AR (2016) Maximizing the potential of multi-parental crop populations. App Transl Genom 11:9–17 Ladejobi O, Elderfield J, Gardner KA, Gaynor RC, Hickey J, Hibberd JM, Mackay IJ, Bentley AR (2016) Maximizing the potential of multi-parental crop populations. App Transl Genom 11:9–17
84.
Zurück zum Zitat Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48CrossRef Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48CrossRef
85.
Zurück zum Zitat Huang BE, George AW (2011) R/mpMap: a computational platform for the genetic analysis of multiparent recombinant inbred lines. Bioinformatics 27:727–729CrossRefPubMed Huang BE, George AW (2011) R/mpMap: a computational platform for the genetic analysis of multiparent recombinant inbred lines. Bioinformatics 27:727–729CrossRefPubMed
86.
87.
Zurück zum Zitat Huang X, Paulo MJ, Boer M, Effgen S, Keizer P, Koornneef M, van Eeuwijk FA (2011) Analysis of natural allelic variation in Arabidopsis using a multiparent recombinant inbred line population. Proc Natl Acad Sci U S A 108:4488–4493CrossRefPubMedPubMedCentral Huang X, Paulo MJ, Boer M, Effgen S, Keizer P, Koornneef M, van Eeuwijk FA (2011) Analysis of natural allelic variation in Arabidopsis using a multiparent recombinant inbred line population. Proc Natl Acad Sci U S A 108:4488–4493CrossRefPubMedPubMedCentral
88.
Zurück zum Zitat Rebai A, Goffinet B (1993) Power of tests for QTL detection using replicated progenies derived from a diallel cross. Theor Appl Genet 86:1014–1022CrossRefPubMed Rebai A, Goffinet B (1993) Power of tests for QTL detection using replicated progenies derived from a diallel cross. Theor Appl Genet 86:1014–1022CrossRefPubMed
89.
Zurück zum Zitat Han S, Utz HF, Liu W, Schrag TA, Stange M, Würschum T, Miedaner T, Bauer E, Schön CC, Melchinger AE (2016) Choice of models for QTL mapping with multiple families and design of the training set for prediction of Fusarium resistance traits in maize. Theor Appl Genet 129:431–444CrossRefPubMed Han S, Utz HF, Liu W, Schrag TA, Stange M, Würschum T, Miedaner T, Bauer E, Schön CC, Melchinger AE (2016) Choice of models for QTL mapping with multiple families and design of the training set for prediction of Fusarium resistance traits in maize. Theor Appl Genet 129:431–444CrossRefPubMed
90.
Zurück zum Zitat Sannemann W, Huang BE, Mathew B, Léon J (2015) Multi-parent advanced generation inter-cross in barley: high-resolution quantitative trait locus mapping for flowering time as a proof of concept. Mol Breed 35:86CrossRef Sannemann W, Huang BE, Mathew B, Léon J (2015) Multi-parent advanced generation inter-cross in barley: high-resolution quantitative trait locus mapping for flowering time as a proof of concept. Mol Breed 35:86CrossRef
91.
Zurück zum Zitat Kover PX, Valdar W, Trakalo J, Scarcelli N, Ehrenreich IM, Purugganan MD, Durrant C, Mott R (2009) A multiparent advanced generation inter-cross to fine-map quantitative traits in Arabidopsis thaliana. PLoS Genet 5:e7CrossRef Kover PX, Valdar W, Trakalo J, Scarcelli N, Ehrenreich IM, Purugganan MD, Durrant C, Mott R (2009) A multiparent advanced generation inter-cross to fine-map quantitative traits in Arabidopsis thaliana. PLoS Genet 5:e7CrossRef
92.
Zurück zum Zitat Dell’Acqua M, Gatti DM, Pea G, Cattonaro F, Coppens F, Magris G, Hlaing AL, Aung HH, Nelissen H, Baute J, Frascaroli E, Churchill GA, Inzé D, Morgante M, Pé ME (2015) Genetic properties of the MAGIC maize population: a new platform for high definition QTL mapping in Zea mays. Genome Biol 16:167CrossRefPubMedPubMedCentral Dell’Acqua M, Gatti DM, Pea G, Cattonaro F, Coppens F, Magris G, Hlaing AL, Aung HH, Nelissen H, Baute J, Frascaroli E, Churchill GA, Inzé D, Morgante M, Pé ME (2015) Genetic properties of the MAGIC maize population: a new platform for high definition QTL mapping in Zea mays. Genome Biol 16:167CrossRefPubMedPubMedCentral
Metadaten
Titel
Genetic Mapping Populations for Conducting High-Resolution Trait Mapping in Plants
verfasst von
James Cockram
Ian Mackay
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/10_2017_48

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.