Skip to main content

2017 | OriginalPaper | Buchkapitel

Genomics and Genetic Engineering in Phytoremediation of Arsenic

verfasst von : Sarma Rajeev Kumar, Gowtham Iyappan, Hema Jagadeesan, Sathishkumar Ramalingam

Erschienen in: Arsenic Contamination in the Environment

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Arsenic (As) is one the extremely toxic metalloids that adversely affects health and hence it is categorized under group A human carcinogen. Generally, As-contaminated sites are not remediated due to high cost. Phytoremediation is the process of using plants to treat or clean up contaminated sites and it relies on natural ability of plants to extract, accumulate, or detoxify chemicals from water, soil, and air using energy from sunlight. Over the past several years, significant progress has been made to improve the effectiveness and efficiency of phytoremediation for removal of many hazardous metals from environment. Recent progress in understanding and identification of several genes involved in As uptake, transport, and metabolism in plants led to use of transgenic plants for remediation. Initial experiments of using transgenic plants as a tool to remove As were not promising; however the last decade witnessed a dramatic increase in the reports on the ability of plants to remove/detoxify As. Transgenic plants exploit the natural ability of plants, which rely on uptake of As by roots, transport through vascular system and leaf as a sink to concentrate. An array of genes from different sources including microbes, plants, and animals were successfully used to improve the ability of plants to tolerate, detoxify, and accumulate As. Transgenic plants containing specific genes converted toxic As to other forms that are less harmful. This review examines the recent advances in enhancing phytoremediation through transgenic approach for phytoremediation of As.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Ali W, Isner JC, Isayenkov SV, Liu W, Zhao FJ, Maathuis FJM (2012) Heterologous expression of the yeast arsenite efflux system ACR3 improves Arabidopsis thaliana tolerance to arsenic stress. New Phytol 194:716–723CrossRef Ali W, Isner JC, Isayenkov SV, Liu W, Zhao FJ, Maathuis FJM (2012) Heterologous expression of the yeast arsenite efflux system ACR3 improves Arabidopsis thaliana tolerance to arsenic stress. New Phytol 194:716–723CrossRef
Zurück zum Zitat Andres J, Bertin PN (2016) The microbial genomics of arsenic. FEMS Microbiol Rev 40:299–322CrossRef Andres J, Bertin PN (2016) The microbial genomics of arsenic. FEMS Microbiol Rev 40:299–322CrossRef
Zurück zum Zitat Andres J, Arsène-Ploetze F, Barbe V, Brochier-Armanet C, Cleiss-Arnold J, Coppée JY, Dillies MA, Geist L, Joublin A, Koechler S, Lassalle F, Marchal M, Médigue C, Muller D, Nesme X, Plewniak F, Proux C, Ramírez-Bahena MH, Schenowitz C, Sismeiro O, Vallenet D, Santini JM, Bertin PN (2013) Life in an arsenic-containing gold mine: genome and physiology of the autotrophic arsenite-oxidizing bacterium rhizobium sp. NT-26. Genome Biol Evol 5:934–953CrossRef Andres J, Arsène-Ploetze F, Barbe V, Brochier-Armanet C, Cleiss-Arnold J, Coppée JY, Dillies MA, Geist L, Joublin A, Koechler S, Lassalle F, Marchal M, Médigue C, Muller D, Nesme X, Plewniak F, Proux C, Ramírez-Bahena MH, Schenowitz C, Sismeiro O, Vallenet D, Santini JM, Bertin PN (2013) Life in an arsenic-containing gold mine: genome and physiology of the autotrophic arsenite-oxidizing bacterium rhizobium sp. NT-26. Genome Biol Evol 5:934–953CrossRef
Zurück zum Zitat Bienert GP, Thorsen M, Schüssler MD, Nilsson HR, Wagner A, Tamás MJ, Jahn TP (2008) A subgroup of plant aquaporins facilitate the bi-directional diffusion of As(OH)3 and Sb(OH)3 across membranes. BMC Biol 6:1–15CrossRef Bienert GP, Thorsen M, Schüssler MD, Nilsson HR, Wagner A, Tamás MJ, Jahn TP (2008) A subgroup of plant aquaporins facilitate the bi-directional diffusion of As(OH)3 and Sb(OH)3 across membranes. BMC Biol 6:1–15CrossRef
Zurück zum Zitat Bleeker PM, Hakvoort HWJ, Bliek M, Souer E, Schat H (2006) Enhanced arsenate reduction by a CDC25-like tyrosine phosphatase explains increased phytochelatin accumulation in arsenate-tolerant Holcus lanatus. Plant J 45:917–929CrossRef Bleeker PM, Hakvoort HWJ, Bliek M, Souer E, Schat H (2006) Enhanced arsenate reduction by a CDC25-like tyrosine phosphatase explains increased phytochelatin accumulation in arsenate-tolerant Holcus lanatus. Plant J 45:917–929CrossRef
Zurück zum Zitat Bundschuh J, Nath B, Bhattacharya P, Liu CW, Armienta MA, Moreno Lopez MV (2012) Arsenic in the human food chain: The Latin American perspective. Sci Total Environ 429:92–106CrossRef Bundschuh J, Nath B, Bhattacharya P, Liu CW, Armienta MA, Moreno Lopez MV (2012) Arsenic in the human food chain: The Latin American perspective. Sci Total Environ 429:92–106CrossRef
Zurück zum Zitat Carey AM, Scheckel KG, Lombi E, Newville M, Choi Y, Norton GJ (2010) Grain unloading of arsenic species in Rice. Plant Physiol 152:309–319CrossRef Carey AM, Scheckel KG, Lombi E, Newville M, Choi Y, Norton GJ (2010) Grain unloading of arsenic species in Rice. Plant Physiol 152:309–319CrossRef
Zurück zum Zitat Cases I, De Lorenzo V (2005) Genetically modified organisms for the environment: stories of success and failure and what we have learned from them. Int Microbiol 8:213–222 Cases I, De Lorenzo V (2005) Genetically modified organisms for the environment: stories of success and failure and what we have learned from them. Int Microbiol 8:213–222
Zurück zum Zitat Castrillo G, Sanchez-Bermejo E, de Lorenzo L, Crevillen P, Fraile-Escanciano A, Tc M (2013) WRKY6 transcription factor restricts arsenate uptake and transposon activation in Arabidopsis. Plant Cell 25:2944–2957CrossRef Castrillo G, Sanchez-Bermejo E, de Lorenzo L, Crevillen P, Fraile-Escanciano A, Tc M (2013) WRKY6 transcription factor restricts arsenate uptake and transposon activation in Arabidopsis. Plant Cell 25:2944–2957CrossRef
Zurück zum Zitat Catarecha P, Segura MD, Franco-Zorrilla JM, Garcia-Ponce B, Lanza M, Solano R (2007) A mutant of the Arabidopsis phosphate transporter PHT1;1 displays enhanced arsenic accumulation. Plant Cell 19:1123–1133CrossRef Catarecha P, Segura MD, Franco-Zorrilla JM, Garcia-Ponce B, Lanza M, Solano R (2007) A mutant of the Arabidopsis phosphate transporter PHT1;1 displays enhanced arsenic accumulation. Plant Cell 19:1123–1133CrossRef
Zurück zum Zitat Chao DY, Chen Y, Chen J, Shi S, Chen Z, Wang C (2014) Genome-wide association mapping identifies a new arsenate reductase enzyme critical for limiting arsenic accumulation in plants. PLoS Biol 12:e1002009CrossRef Chao DY, Chen Y, Chen J, Shi S, Chen Z, Wang C (2014) Genome-wide association mapping identifies a new arsenate reductase enzyme critical for limiting arsenic accumulation in plants. PLoS Biol 12:e1002009CrossRef
Zurück zum Zitat Chaurasia N, Mishra A, Pandey SK (2012) Finger print of arsenic contaminated water in India—a review. J Foren Res 3:1–4 Chaurasia N, Mishra A, Pandey SK (2012) Finger print of arsenic contaminated water in India—a review. J Foren Res 3:1–4
Zurück zum Zitat Chen Z, Zhu YG, Liu WJ, Meharg AA (2005) Direct evidence showing the effect of root surface iron plaque on arsenite and arsenate uptake in rice (Oryza sativa) roots. New Phytol 165:91–97CrossRef Chen Z, Zhu YG, Liu WJ, Meharg AA (2005) Direct evidence showing the effect of root surface iron plaque on arsenite and arsenate uptake in rice (Oryza sativa) roots. New Phytol 165:91–97CrossRef
Zurück zum Zitat Chen J, Qin J, Zhu YG, de Lorenzo V, Rosen BP (2013) Engineering the soil bacterium Pseudomonas putida for arsenic methylation. Appl Environ Microbiol 79:4493–4495CrossRef Chen J, Qin J, Zhu YG, de Lorenzo V, Rosen BP (2013) Engineering the soil bacterium Pseudomonas putida for arsenic methylation. Appl Environ Microbiol 79:4493–4495CrossRef
Zurück zum Zitat Chen Y, Xu W, Shen H, Yan H, Xu W, He Z, Ma M (2013) Engineering arsenic tolerance and hyperaccumulation in plants for phytoremediation by a PvACR3 transgenic approach. Environ Sci Technol 47:9355–9362CrossRef Chen Y, Xu W, Shen H, Yan H, Xu W, He Z, Ma M (2013) Engineering arsenic tolerance and hyperaccumulation in plants for phytoremediation by a PvACR3 transgenic approach. Environ Sci Technol 47:9355–9362CrossRef
Zurück zum Zitat Chen J, Sun GX, Wang XX, Lorenzo VD, Rosen BP, Zhu YG (2014) Volatilization of arsenic from polluted soil by Pseudomonas putida engineered for expression of the arsM arsenic(III) S-adenosine methyltransferase gene. Environ Sci Technol 48:10337–10344CrossRef Chen J, Sun GX, Wang XX, Lorenzo VD, Rosen BP, Zhu YG (2014) Volatilization of arsenic from polluted soil by Pseudomonas putida engineered for expression of the arsM arsenic(III) S-adenosine methyltransferase gene. Environ Sci Technol 48:10337–10344CrossRef
Zurück zum Zitat Dhankher OP, Li Y, Rosen BP, Shi J, Salt D, Senecoff JF (2002) Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and gamma-glutamylcysteine synthetase expression. Nat Biotechnol 20:1140–1145CrossRef Dhankher OP, Li Y, Rosen BP, Shi J, Salt D, Senecoff JF (2002) Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and gamma-glutamylcysteine synthetase expression. Nat Biotechnol 20:1140–1145CrossRef
Zurück zum Zitat Dhankher OP, Rosen BP, McKinney EC, Meagher RB (2006) Hyperaccumulation of arsenic in the shoots of Arabidopsis silenced for arsenate reductase (ACR2). Proc Natl Acad Sci U S A 103:5413–5418CrossRef Dhankher OP, Rosen BP, McKinney EC, Meagher RB (2006) Hyperaccumulation of arsenic in the shoots of Arabidopsis silenced for arsenate reductase (ACR2). Proc Natl Acad Sci U S A 103:5413–5418CrossRef
Zurück zum Zitat Doty SL (2008) Enhancing phytoremediation through the use of transgenics and endophytes. New Phytol 179:318–333CrossRef Doty SL (2008) Enhancing phytoremediation through the use of transgenics and endophytes. New Phytol 179:318–333CrossRef
Zurück zum Zitat Doucleff M, Terry N (2002) Pumping out the arsenic. Nat Biotechnol 20:1094–1095CrossRef Doucleff M, Terry N (2002) Pumping out the arsenic. Nat Biotechnol 20:1094–1095CrossRef
Zurück zum Zitat Eapen S, D’Souza SF (2005) Prospects of genetic engineering of plants for phytoremediation of toxic metals. Biotechnol Adv 23:97–114CrossRef Eapen S, D’Souza SF (2005) Prospects of genetic engineering of plants for phytoremediation of toxic metals. Biotechnol Adv 23:97–114CrossRef
Zurück zum Zitat Ellis DR, Gumaelius L, Indriolo E, Pickering IJ, Banks JA, Salt DE (2006) A novel arsenate reductase from the arsenic hyperaccumulating fern Pteris vittata. Plant Physiol 141:1544–1554CrossRef Ellis DR, Gumaelius L, Indriolo E, Pickering IJ, Banks JA, Salt DE (2006) A novel arsenate reductase from the arsenic hyperaccumulating fern Pteris vittata. Plant Physiol 141:1544–1554CrossRef
Zurück zum Zitat Freel KC, Krueger MC, Farasin J, Brochier-Armanet C, Barbe V, Andrès J, Cholley PE, Dillies MA, Jagla B, Koechler S, Leva Y, Magdelenat G, Plewniak F, Proux C, Coppée JY, Bertin PN, Heipieper HJ, Arsène-Ploetze F (2015) Adaptation in toxic environments: arsenic genomic islands in the bacterial genus Thiomonas. PLoS One 10:e0139011CrossRef Freel KC, Krueger MC, Farasin J, Brochier-Armanet C, Barbe V, Andrès J, Cholley PE, Dillies MA, Jagla B, Koechler S, Leva Y, Magdelenat G, Plewniak F, Proux C, Coppée JY, Bertin PN, Heipieper HJ, Arsène-Ploetze F (2015) Adaptation in toxic environments: arsenic genomic islands in the bacterial genus Thiomonas. PLoS One 10:e0139011CrossRef
Zurück zum Zitat Gasic K, Korban SS (2007) Transgenic Indian mustard (Brassica juncea) plants expressing an Arabidopsis phytochelatin synthase (AtPCS1) exhibit enhanced As and Cd tolerance. Plant Mol Biol 64:361–369CrossRef Gasic K, Korban SS (2007) Transgenic Indian mustard (Brassica juncea) plants expressing an Arabidopsis phytochelatin synthase (AtPCS1) exhibit enhanced As and Cd tolerance. Plant Mol Biol 64:361–369CrossRef
Zurück zum Zitat Guo J, Dai X, Xu W, Ma M (2008) Overexpressing GSH1 and AsPCS1 simultaneously increases the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana. Chemosphere 72:1020–1026CrossRef Guo J, Dai X, Xu W, Ma M (2008) Overexpressing GSH1 and AsPCS1 simultaneously increases the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana. Chemosphere 72:1020–1026CrossRef
Zurück zum Zitat Guo J, Xu W, Ma M (2012) The assembly of metals chelation by thiols and vacuolar compartmentalization conferred increased tolerance to and accumulation of cadmium and arsenic in transgenic Arabidopsis thaliana. J Hazard Mater 199–200:309–313CrossRef Guo J, Xu W, Ma M (2012) The assembly of metals chelation by thiols and vacuolar compartmentalization conferred increased tolerance to and accumulation of cadmium and arsenic in transgenic Arabidopsis thaliana. J Hazard Mater 199–200:309–313CrossRef
Zurück zum Zitat Huang K, Chen C, Shen Q, Rosen BP, Zhao FJ (2015) Genetically engineering Bacillus subtilis with a heat-resistant arsenite methyltransferase for bioremediation of arsenic-contaminated organic waste. Appl Environ Microbiol 81:6718–6724CrossRef Huang K, Chen C, Shen Q, Rosen BP, Zhao FJ (2015) Genetically engineering Bacillus subtilis with a heat-resistant arsenite methyltransferase for bioremediation of arsenic-contaminated organic waste. Appl Environ Microbiol 81:6718–6724CrossRef
Zurück zum Zitat Indriolo E, Na G, Ellis D, Salt DE, Banks JA (2010) A vacuolar arsenite transporter necessary for arsenic tolerance in the arsenic hyperaccumulating fern Pteris vittata is missing in flowering plants. Plant Cell 22:2045–2057CrossRef Indriolo E, Na G, Ellis D, Salt DE, Banks JA (2010) A vacuolar arsenite transporter necessary for arsenic tolerance in the arsenic hyperaccumulating fern Pteris vittata is missing in flowering plants. Plant Cell 22:2045–2057CrossRef
Zurück zum Zitat Kamiya T, Islam MR, Duan G, Uraguchi S, Fujiwara T (2013) Phosphate deficiency signaling pathway is a target of arsenate and phosphate transporter OsPT1 is involved in As accumulation in shoots of rice (plant nutrition). Soil Sci Plant Nutr 59:580–590CrossRef Kamiya T, Islam MR, Duan G, Uraguchi S, Fujiwara T (2013) Phosphate deficiency signaling pathway is a target of arsenate and phosphate transporter OsPT1 is involved in As accumulation in shoots of rice (plant nutrition). Soil Sci Plant Nutr 59:580–590CrossRef
Zurück zum Zitat Kim YJ, Chang KS, Lee MR, Kim JH, Lee CE, Jeon YJ (2005) Expression of tobacco cDNA encoding phytochelatin synthase promotes tolerance to and accumulation of Cd and As in Saccharomyces cerevisiae. J Plant Biol 48:440–447CrossRef Kim YJ, Chang KS, Lee MR, Kim JH, Lee CE, Jeon YJ (2005) Expression of tobacco cDNA encoding phytochelatin synthase promotes tolerance to and accumulation of Cd and As in Saccharomyces cerevisiae. J Plant Biol 48:440–447CrossRef
Zurück zum Zitat Kotrba P, Najmanova J, Macek T, Ruml T, Mackova M (2009) Genetically modified plants in phytoremediation of heavy metal and metalloid soil and sediment pollution. Biotechnol Adv 27:799–810CrossRef Kotrba P, Najmanova J, Macek T, Ruml T, Mackova M (2009) Genetically modified plants in phytoremediation of heavy metal and metalloid soil and sediment pollution. Biotechnol Adv 27:799–810CrossRef
Zurück zum Zitat Kruger MC, Bertin PN, Heipieper HJ, Arsène-Ploetze F (2013) Bacterial metabolism of environmental arsenic—mechanisms and biotechnological applications. Appl Microbiol Biotechnol 97:3827–3841CrossRef Kruger MC, Bertin PN, Heipieper HJ, Arsène-Ploetze F (2013) Bacterial metabolism of environmental arsenic—mechanisms and biotechnological applications. Appl Microbiol Biotechnol 97:3827–3841CrossRef
Zurück zum Zitat LeBlanc MS, McKinney EC, Meagher RB, Smith AP (2013) Hijacking membrane transporters for arsenic phytoextraction. J Biotechnol 163:1–9CrossRef LeBlanc MS, McKinney EC, Meagher RB, Smith AP (2013) Hijacking membrane transporters for arsenic phytoextraction. J Biotechnol 163:1–9CrossRef
Zurück zum Zitat Lee BD, Hwang S (2015) Tobacco phytochelatin synthase (NtPCS1) plays important roles in cadmium and arsenic tolerance and in early plant development in tobacco. Plant Biotechnol Rep 9:107–114CrossRef Lee BD, Hwang S (2015) Tobacco phytochelatin synthase (NtPCS1) plays important roles in cadmium and arsenic tolerance and in early plant development in tobacco. Plant Biotechnol Rep 9:107–114CrossRef
Zurück zum Zitat Li Y (2004) Overexpression of phytochelatin synthase in Arabidopsis leads to enhanced arsenic tolerance and cadmium hypersensitivity. Plant Cell Physiol 45:1787–1797CrossRef Li Y (2004) Overexpression of phytochelatin synthase in Arabidopsis leads to enhanced arsenic tolerance and cadmium hypersensitivity. Plant Cell Physiol 45:1787–1797CrossRef
Zurück zum Zitat Li Y, Dankher OP, Carreira L, Smith AP, Meagher RB (2006) The shoot-specific expression of γ-glutamylcysteine synthetase directs the long-distance transport of thiol-peptides to roots conferring tolerance to mercury and arsenic. Plant Physiol 141:288–298CrossRef Li Y, Dankher OP, Carreira L, Smith AP, Meagher RB (2006) The shoot-specific expression of γ-glutamylcysteine synthetase directs the long-distance transport of thiol-peptides to roots conferring tolerance to mercury and arsenic. Plant Physiol 141:288–298CrossRef
Zurück zum Zitat Li RY, Ago Y, Liu WJ, Mitani N, Feldmann J, McGrath SP (2009) The rice aquaporin Lsi1 mediates uptake of methylated arsenic species. Plant Physiol 150:2071–2080CrossRef Li RY, Ago Y, Liu WJ, Mitani N, Feldmann J, McGrath SP (2009) The rice aquaporin Lsi1 mediates uptake of methylated arsenic species. Plant Physiol 150:2071–2080CrossRef
Zurück zum Zitat Li X, Hu Y, Gong J, Lin Y, Johnstone L, Rensing C, Wang G (2011) Genome sequence of the highly efficient arsenite-oxidizing bacterium Achromobacter arsenitoxydans SY8. J Bacteriol 194:1243–1244CrossRef Li X, Hu Y, Gong J, Lin Y, Johnstone L, Rensing C, Wang G (2011) Genome sequence of the highly efficient arsenite-oxidizing bacterium Achromobacter arsenitoxydans SY8. J Bacteriol 194:1243–1244CrossRef
Zurück zum Zitat Li G, Santoni V, Maurel C (2014) Plant aquaporins: roles in plant physiology. Biochim Biophys Acta 1840:1574–1582CrossRef Li G, Santoni V, Maurel C (2014) Plant aquaporins: roles in plant physiology. Biochim Biophys Acta 1840:1574–1582CrossRef
Zurück zum Zitat Li X, Zhang L, Wang G (2014) Genomic evidence reveals the extreme diversity and wide distribution of the arsenic-related genes in Burkholderiales. PLoS One 9:e92236CrossRef Li X, Zhang L, Wang G (2014) Genomic evidence reveals the extreme diversity and wide distribution of the arsenic-related genes in Burkholderiales. PLoS One 9:e92236CrossRef
Zurück zum Zitat Li N, Wang J, Song WY (2016) Arsenic uptake and translocation in plants. Plant Cell Physiol 57:4–13CrossRef Li N, Wang J, Song WY (2016) Arsenic uptake and translocation in plants. Plant Cell Physiol 57:4–13CrossRef
Zurück zum Zitat Liu S, Zhang F, Chen J, Sun G (2011) Arsenic removal from contaminated soil via biovolatilization by genetically engineered bacteria under laboratory conditions. J Environ Sci (China) 23:1544–1550CrossRef Liu S, Zhang F, Chen J, Sun G (2011) Arsenic removal from contaminated soil via biovolatilization by genetically engineered bacteria under laboratory conditions. J Environ Sci (China) 23:1544–1550CrossRef
Zurück zum Zitat Lou-Hing D, Zhang B, Price AH, Meharg AA (2011) Effects of phosphate on arsenate and arsenite sensitivity in two rice (Oryza sativa L.) cultivars of different sensitivity. Environ Exp Bot 72:47–52CrossRef Lou-Hing D, Zhang B, Price AH, Meharg AA (2011) Effects of phosphate on arsenate and arsenite sensitivity in two rice (Oryza sativa L.) cultivars of different sensitivity. Environ Exp Bot 72:47–52CrossRef
Zurück zum Zitat Ma JF, Yamaji N, Mitani N, Xu XY, Su YH, McGrath SP, Zhao FJ (2008) Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc Natl Acad Sci U S A 105:9931–9935CrossRef Ma JF, Yamaji N, Mitani N, Xu XY, Su YH, McGrath SP, Zhao FJ (2008) Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc Natl Acad Sci U S A 105:9931–9935CrossRef
Zurück zum Zitat Mahar A, Wang P, Ali A, Awasthi MK, Lahori AH, Wang Q (2016) Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review. Ecotoxicol Environ Saf 126:111–121CrossRef Mahar A, Wang P, Ali A, Awasthi MK, Lahori AH, Wang Q (2016) Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review. Ecotoxicol Environ Saf 126:111–121CrossRef
Zurück zum Zitat Meagher RB, Heaton ACP (2005) Strategies for the engineered phytoremediation of toxic element pollution: mercury and arsenic. J Ind Microbiol Biotechnol 32:502–513CrossRef Meagher RB, Heaton ACP (2005) Strategies for the engineered phytoremediation of toxic element pollution: mercury and arsenic. J Ind Microbiol Biotechnol 32:502–513CrossRef
Zurück zum Zitat Mohan TC, Castrillo G, Navarro C, Zarco-Fernández S, Ramireddy E, Mateo C, Zamarreño AM, Paz-Ares J, Muñoz R, García-Mina JM, Hernández LE, Schmülling T, Leyva A (2016) Cytokinin determines thiol-mediated arsenic tolerance and accumulation. Plant Physiol 171:1418–1426 Mohan TC, Castrillo G, Navarro C, Zarco-Fernández S, Ramireddy E, Mateo C, Zamarreño AM, Paz-Ares J, Muñoz R, García-Mina JM, Hernández LE, Schmülling T, Leyva A (2016) Cytokinin determines thiol-mediated arsenic tolerance and accumulation. Plant Physiol 171:1418–1426
Zurück zum Zitat Mosa KA, Kumar K, Chhikara S, Mcdermott J, Liu Z, Musante C (2012) Members of rice plasma membrane intrinsic proteins subfamily are involved in arsenite permeability and tolerance in plants. Transgen Res 21:1265–1277CrossRef Mosa KA, Kumar K, Chhikara S, Mcdermott J, Liu Z, Musante C (2012) Members of rice plasma membrane intrinsic proteins subfamily are involved in arsenite permeability and tolerance in plants. Transgen Res 21:1265–1277CrossRef
Zurück zum Zitat Muller D, Lievremont D, Simeonova DD, Hubert JC, Lett MC (2003) Arsenite oxidase aox genes from a metal-resistant beta-proteobacterium. J Bacteriol 185:135–141CrossRef Muller D, Lievremont D, Simeonova DD, Hubert JC, Lett MC (2003) Arsenite oxidase aox genes from a metal-resistant beta-proteobacterium. J Bacteriol 185:135–141CrossRef
Zurück zum Zitat Muller D, Medigue C, Koechler S, Barbe V, Barakat M, Talla E (2007) A tale of two oxidation states: bacterial colonization of arsenic-rich environments. PLoS Genet 3:53CrossRef Muller D, Medigue C, Koechler S, Barbe V, Barakat M, Talla E (2007) A tale of two oxidation states: bacterial colonization of arsenic-rich environments. PLoS Genet 3:53CrossRef
Zurück zum Zitat Nie L, Shah S, Rashid A, Burd GI, Dixon DG, Glick BR (2002) Phytoremediation of arsenate contaminated soil by transgenic canola and the plant growth-promoting bacterium Enterobacter cloacae CAL2. Plant Physiol Biochem 40:355–361CrossRef Nie L, Shah S, Rashid A, Burd GI, Dixon DG, Glick BR (2002) Phytoremediation of arsenate contaminated soil by transgenic canola and the plant growth-promoting bacterium Enterobacter cloacae CAL2. Plant Physiol Biochem 40:355–361CrossRef
Zurück zum Zitat Nriagu J (2001) Arsenic poisoning through the ages. In: Frankenburger WT (ed) Environmental chemistry of arsenic. CRC Press, Boca Raton, FL, pp 1–26 Nriagu J (2001) Arsenic poisoning through the ages. In: Frankenburger WT (ed) Environmental chemistry of arsenic. CRC Press, Boca Raton, FL, pp 1–26
Zurück zum Zitat Pandey S, Shrivastava AK, Singh VK, Rai R, Singh PK, Rai S, Rai LC (2013) A new arsenate reductase involved in arsenic detoxification in Anabaena sp. PCC7120. Funct Integr Genomics 13:43–55CrossRef Pandey S, Shrivastava AK, Singh VK, Rai R, Singh PK, Rai S, Rai LC (2013) A new arsenate reductase involved in arsenic detoxification in Anabaena sp. PCC7120. Funct Integr Genomics 13:43–55CrossRef
Zurück zum Zitat Picault N, Cazalé AC, Beyly A, Cuiné S, Carrier P, Luu DT, Forestier C, Peltier G (2006) Chloroplast targeting of phytochelatin synthase in Arabidopsis: effects on heavy metal tolerance and accumulation. Biochimie 88:1743–1750CrossRef Picault N, Cazalé AC, Beyly A, Cuiné S, Carrier P, Luu DT, Forestier C, Peltier G (2006) Chloroplast targeting of phytochelatin synthase in Arabidopsis: effects on heavy metal tolerance and accumulation. Biochimie 88:1743–1750CrossRef
Zurück zum Zitat Pilon-Smits E, Pilon M (2002) Phytoremediation of metals using transgenic plants. Crit Rev Plant Sci 21:439–456CrossRef Pilon-Smits E, Pilon M (2002) Phytoremediation of metals using transgenic plants. Crit Rev Plant Sci 21:439–456CrossRef
Zurück zum Zitat Qin J, Lehr CR, Yuan C, Le XC, McDermott TR, Rosen BP (2009) Biotransformation of arsenic by a Yellowstone thermoacidophilic eukaryotic alga. Proc Natl Acad Sci U S A 106:5213–5217CrossRef Qin J, Lehr CR, Yuan C, Le XC, McDermott TR, Rosen BP (2009) Biotransformation of arsenic by a Yellowstone thermoacidophilic eukaryotic alga. Proc Natl Acad Sci U S A 106:5213–5217CrossRef
Zurück zum Zitat Rathinasabapathi B, Wu S, Sundaram S, Rivoal J, Srivastava M, Ma LQ (2006) Arsenic resistance in Pteris vittata L.: identification of a cytosolic triosephosphate isomerase based on cDNA expression cloning in Escherichia coli. Plant Mol Biol 62:845–857CrossRef Rathinasabapathi B, Wu S, Sundaram S, Rivoal J, Srivastava M, Ma LQ (2006) Arsenic resistance in Pteris vittata L.: identification of a cytosolic triosephosphate isomerase based on cDNA expression cloning in Escherichia coli. Plant Mol Biol 62:845–857CrossRef
Zurück zum Zitat Remy E, Cabrito TR, Batista RA, Teixeira MC, Sa-Correia I, Duque P (2012) The Pht1;9 and Pht1;8 transporters mediate inorganic phosphate acquisition by the Arabidopsis thaliana root during phosphorus starvation. New Phytol 195:356–371CrossRef Remy E, Cabrito TR, Batista RA, Teixeira MC, Sa-Correia I, Duque P (2012) The Pht1;9 and Pht1;8 transporters mediate inorganic phosphate acquisition by the Arabidopsis thaliana root during phosphorus starvation. New Phytol 195:356–371CrossRef
Zurück zum Zitat Sánchez-Bermejo E, Castrillo G, del Llano B, Navarro C, Zarco-Fernández S, Martinez-Herrera DJ, Leo-del Puerto Y, Muñoz R, Cámara C, Paz-Ares J, Alonso-Blanco C, Leyva A (2014) Natural variation in arsenate tolerance identifies an arsenate reductase in Arabidopsis thaliana. Nat Commun 5:4617CrossRef Sánchez-Bermejo E, Castrillo G, del Llano B, Navarro C, Zarco-Fernández S, Martinez-Herrera DJ, Leo-del Puerto Y, Muñoz R, Cámara C, Paz-Ares J, Alonso-Blanco C, Leyva A (2014) Natural variation in arsenate tolerance identifies an arsenate reductase in Arabidopsis thaliana. Nat Commun 5:4617CrossRef
Zurück zum Zitat Sarangi BK, Kalve SAPR, Chakrabarti T (2009) Transgenic plants for phytoremediation of arsenic and chromium to enhance tolerance and hyperaccumulation. Transgen Plant J 3:57–86 Sarangi BK, Kalve SAPR, Chakrabarti T (2009) Transgenic plants for phytoremediation of arsenic and chromium to enhance tolerance and hyperaccumulation. Transgen Plant J 3:57–86
Zurück zum Zitat Schroeder JI, Delhaize E, Frommer WB, Guerinot ML, Harrison MJ, Herrera-Estrella L (2013) Using membrane transporters to improve crops for sustainable food production. Nature 497:60–66CrossRef Schroeder JI, Delhaize E, Frommer WB, Guerinot ML, Harrison MJ, Herrera-Estrella L (2013) Using membrane transporters to improve crops for sustainable food production. Nature 497:60–66CrossRef
Zurück zum Zitat Shin H, Shin HS, Dewbre GR, Harrison MJ (2004) Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments. Plant J Cell Mol Biol 39:629–642CrossRef Shin H, Shin HS, Dewbre GR, Harrison MJ (2004) Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments. Plant J Cell Mol Biol 39:629–642CrossRef
Zurück zum Zitat Shri M, Dave R, Diwedi S, Shukla D, Kesari R, Tripathi RD, Trivedi PK, Chakrabarty D (2014) Heterologous expression of Ceratophyllum demersum phytochelatin synthase, CdPCS1, in rice leads to lower arsenic accumulation in grain. Sci Rep 4:5784CrossRef Shri M, Dave R, Diwedi S, Shukla D, Kesari R, Tripathi RD, Trivedi PK, Chakrabarty D (2014) Heterologous expression of Ceratophyllum demersum phytochelatin synthase, CdPCS1, in rice leads to lower arsenic accumulation in grain. Sci Rep 4:5784CrossRef
Zurück zum Zitat Shukla D, Kesari R, Mishra S, Dwivedi S, Tripathi RD, Nath P, Trivedi PK (2012) Expression of phytochelatin synthase from aquatic macrophyte Ceratophyllum demersum L. enhances cadmium and arsenic accumulation in tobacco. Plant Cell Rep 31:1687–1699CrossRef Shukla D, Kesari R, Mishra S, Dwivedi S, Tripathi RD, Nath P, Trivedi PK (2012) Expression of phytochelatin synthase from aquatic macrophyte Ceratophyllum demersum L. enhances cadmium and arsenic accumulation in tobacco. Plant Cell Rep 31:1687–1699CrossRef
Zurück zum Zitat Silver S, Phung LT (2005) Genes and enzymes involved in bacterial oxidation and reduction of inorganic arsenic. Appl Environ Microbiol 71:599–608CrossRef Silver S, Phung LT (2005) Genes and enzymes involved in bacterial oxidation and reduction of inorganic arsenic. Appl Environ Microbiol 71:599–608CrossRef
Zurück zum Zitat Slyemi D, Bonnefoy V (2012) How prokaryotes deal with arsenic(dagger). Environ Microbiol Rep 4:571–586 Slyemi D, Bonnefoy V (2012) How prokaryotes deal with arsenic(dagger). Environ Microbiol Rep 4:571–586
Zurück zum Zitat Song WY, Park J, Mendoza-Cózatl DG, Suter-Grotemeyer M, Shim D, Hörtensteiner S (2010) Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters. Proc Natl Acad Sci U S A 107:21187–21192CrossRef Song WY, Park J, Mendoza-Cózatl DG, Suter-Grotemeyer M, Shim D, Hörtensteiner S (2010) Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters. Proc Natl Acad Sci U S A 107:21187–21192CrossRef
Zurück zum Zitat Song WY, Mendoza-Cozatl DG, Lee Y, Schroeder JI, Ahn SN, Lee HS (2014a) Phytochelatin-metal(loid) transport into vacuoles shows different substrate preferences in barley and Arabidopsis. Plant Cell Environ 37:1192–1201CrossRef Song WY, Mendoza-Cozatl DG, Lee Y, Schroeder JI, Ahn SN, Lee HS (2014a) Phytochelatin-metal(loid) transport into vacuoles shows different substrate preferences in barley and Arabidopsis. Plant Cell Environ 37:1192–1201CrossRef
Zurück zum Zitat Song WY, Yamaki T, Yamaji N, Ko D, Jung KH, Fujii-Kashino M (2014b) A rice ABC transporter, OsABCC1, reduces arsenic accumulation in the grain. Proc Natl Acad Sci U S A 111:15699–15704CrossRef Song WY, Yamaki T, Yamaji N, Ko D, Jung KH, Fujii-Kashino M (2014b) A rice ABC transporter, OsABCC1, reduces arsenic accumulation in the grain. Proc Natl Acad Sci U S A 111:15699–15704CrossRef
Zurück zum Zitat Sundaram S, Wu S, Ma LQ, Rathinasabapathi B (2009) Expression of a Pteris vittata glutaredoxin PvGRX5 in transgenic Arabidopsis thaliana increases plant arsenic tolerance and decreases arsenic accumulation in the leaves. Plant Cell Environ 32:851–858CrossRef Sundaram S, Wu S, Ma LQ, Rathinasabapathi B (2009) Expression of a Pteris vittata glutaredoxin PvGRX5 in transgenic Arabidopsis thaliana increases plant arsenic tolerance and decreases arsenic accumulation in the leaves. Plant Cell Environ 32:851–858CrossRef
Zurück zum Zitat Tiwari M, Sharma D, Dwivedi S, Singh M, Tripathi RD, Trivedi PK (2014) Expression in Arabidopsis and cellular localization reveal involvement of rice NRAMP, OsNRAMP1, in arsenic transport and tolerance. Plant Cell Environ 37:140–152CrossRef Tiwari M, Sharma D, Dwivedi S, Singh M, Tripathi RD, Trivedi PK (2014) Expression in Arabidopsis and cellular localization reveal involvement of rice NRAMP, OsNRAMP1, in arsenic transport and tolerance. Plant Cell Environ 37:140–152CrossRef
Zurück zum Zitat Tsao DT (2003) Overview of phytotechnologies. Adv Biochem Eng/Biotechnol 78:1–50CrossRef Tsao DT (2003) Overview of phytotechnologies. Adv Biochem Eng/Biotechnol 78:1–50CrossRef
Zurück zum Zitat van Lis R, Nitschke W, Duval S, Schoepp-Cothenet B (2013) Arsenics as bioenergetic substrates. Biochim Biophys Acta 1827:176–188CrossRef van Lis R, Nitschke W, Duval S, Schoepp-Cothenet B (2013) Arsenics as bioenergetic substrates. Biochim Biophys Acta 1827:176–188CrossRef
Zurück zum Zitat Verbruggen N, Hermans C, Schat H (2009) Mechanisms to cope with arsenic or cadmium excess in plants. Curr Opin Plant Biol 12:364–372CrossRef Verbruggen N, Hermans C, Schat H (2009) Mechanisms to cope with arsenic or cadmium excess in plants. Curr Opin Plant Biol 12:364–372CrossRef
Zurück zum Zitat Verma PK, Verma S, Pande V, Mallick S, Deo Tripathi R, Dhankher OP, Chakrabarty D (2016) Overexpression of rice glutaredoxin OsGrx_C7 and OsGrx_C2.1 reduces intracellular arsenic accumulation and increases tolerance in Arabidopsis thaliana. Front Plant Sci 7:740 Verma PK, Verma S, Pande V, Mallick S, Deo Tripathi R, Dhankher OP, Chakrabarty D (2016) Overexpression of rice glutaredoxin OsGrx_C7 and OsGrx_C2.1 reduces intracellular arsenic accumulation and increases tolerance in Arabidopsis thaliana. Front Plant Sci 7:740
Zurück zum Zitat Wang H, Xu Q, Kong YH, Chen Y, Duan JY, Wu WH, Chen YF (2014) Arabidopsis WRKY45 transcription factor activates phosphate Transporter1;1 expression in response to phosphate starvation. Plant Physiol 164:2020–2029CrossRef Wang H, Xu Q, Kong YH, Chen Y, Duan JY, Wu WH, Chen YF (2014) Arabidopsis WRKY45 transcription factor activates phosphate Transporter1;1 expression in response to phosphate starvation. Plant Physiol 164:2020–2029CrossRef
Zurück zum Zitat Wangeline AL, Burkhead JL, Hale KL, Lindblom SD, Terry N, Pilon M, Pilon-Smits EAH (2004) Overexpression of ATP sulfurylase in Indian mustard: effects on tolerance and accumulation of twelve metals. J Environ Qual 33:54–60CrossRef Wangeline AL, Burkhead JL, Hale KL, Lindblom SD, Terry N, Pilon M, Pilon-Smits EAH (2004) Overexpression of ATP sulfurylase in Indian mustard: effects on tolerance and accumulation of twelve metals. J Environ Qual 33:54–60CrossRef
Zurück zum Zitat Wojas S, Clemens S, Skłodowska A, Maria Antosiewicz D (2010) Arsenic response of AtPCS1- and CePCS-expressing plants—effects of external As(V) concentration on As-accumulation pattern and NPT metabolism. J Plant Physiol 167:169–175CrossRef Wojas S, Clemens S, Skłodowska A, Maria Antosiewicz D (2010) Arsenic response of AtPCS1- and CePCS-expressing plants—effects of external As(V) concentration on As-accumulation pattern and NPT metabolism. J Plant Physiol 167:169–175CrossRef
Zurück zum Zitat Wu Z, Ren H, McGrath SP, Wu P, Zhao FJ (2011) Investigating the contribution of the phosphate transport pathway to arsenic accumulation in rice. Plant Physiol 157:498–508CrossRef Wu Z, Ren H, McGrath SP, Wu P, Zhao FJ (2011) Investigating the contribution of the phosphate transport pathway to arsenic accumulation in rice. Plant Physiol 157:498–508CrossRef
Zurück zum Zitat Ye WL, Wood BA, Stroud JL, Andralojc PJ, Raab A, McGrath SP (2010) Arsenic speciation in phloem and xylem exudates of castor bean. Plant Physiol 154:1505–1513CrossRef Ye WL, Wood BA, Stroud JL, Andralojc PJ, Raab A, McGrath SP (2010) Arsenic speciation in phloem and xylem exudates of castor bean. Plant Physiol 154:1505–1513CrossRef
Zurück zum Zitat Zanella L, Fattorini L, Brunetti P, Roccotiello E, Cornara L, D'Angeli S, Della Rovere F, Cardarelli M, Barbieri M, Sanità di Toppi L, Degola F, Lindberg S, Altamura MM, Falasca G (2016) Overexpression of AtPCS1 in tobacco increases arsenic and arsenic plus cadmium accumulation and detoxification. Planta 243:605–622CrossRef Zanella L, Fattorini L, Brunetti P, Roccotiello E, Cornara L, D'Angeli S, Della Rovere F, Cardarelli M, Barbieri M, Sanità di Toppi L, Degola F, Lindberg S, Altamura MM, Falasca G (2016) Overexpression of AtPCS1 in tobacco increases arsenic and arsenic plus cadmium accumulation and detoxification. Planta 243:605–622CrossRef
Zurück zum Zitat Zargar K, Conrad A, Bernick DL, Lowe TM, Stolc V, Hoeft S (2012) ArxA, a new clade of arsenite oxidase within the DMSO reductase family of molybdenum oxidoreductases. Environ Microbiol 14:1635–1645CrossRef Zargar K, Conrad A, Bernick DL, Lowe TM, Stolc V, Hoeft S (2012) ArxA, a new clade of arsenite oxidase within the DMSO reductase family of molybdenum oxidoreductases. Environ Microbiol 14:1635–1645CrossRef
Zurück zum Zitat Zhao FJ, McGrath SP (2009) Biofortification and phytoremediation. Curr Opin Plant Biol 12:373–380CrossRef Zhao FJ, McGrath SP (2009) Biofortification and phytoremediation. Curr Opin Plant Biol 12:373–380CrossRef
Zurück zum Zitat Zhao FJ, Ma JF, Meharg AA, McGrath SP (2009) Arsenic uptake and metabolism in plants. New Phytol 181:777–794CrossRef Zhao FJ, Ma JF, Meharg AA, McGrath SP (2009) Arsenic uptake and metabolism in plants. New Phytol 181:777–794CrossRef
Zurück zum Zitat Zhu YG, Rosen BP (2015) Perspectives for genetic engineering for the phytoremediation of arsenic-contaminated environments: from imagination to reality. Curr Opin Biotechnol 20:220–224CrossRef Zhu YG, Rosen BP (2015) Perspectives for genetic engineering for the phytoremediation of arsenic-contaminated environments: from imagination to reality. Curr Opin Biotechnol 20:220–224CrossRef
Metadaten
Titel
Genomics and Genetic Engineering in Phytoremediation of Arsenic
verfasst von
Sarma Rajeev Kumar
Gowtham Iyappan
Hema Jagadeesan
Sathishkumar Ramalingam
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-54356-7_8