Skip to main content
Erschienen in: Journal of Materials Science 13/2017

24.03.2017 | Original Paper

Geometric impact of void space in woven fabrics on oil resistance or repellency

verfasst von: Jihye Lim, Nancy Powell, Hoonjoo Lee, Stephen Michielsen

Erschienen in: Journal of Materials Science | Ausgabe 13/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

An oil-repellent surface is challenging to achieve due to the low surface tension of oil. The critical factor is to create void spaces at multiple scales (i.e., macro, micro, and nano) to increase the energy barrier that the liquid–vapor interface must overcome to transit from the Cassie–Baxter state to the Wenzel state, in which the surface is completely wet. To obtain an oil-resistant or repellent surface, one must create a structural geometry with void spaces, and the solid surface energy must be low relative to the oil. Knowing the impact of void space is important to enable a rational design of such surfaces. Woven fabric inherently consists of multiscale structures by its construction: nanoscale in fiber, microscale in yarn, and macroscale in fabric. In this study, theoretical modeling and experiments with actual fabric samples were utilized to determine the impact of void space in woven fabric. The ratio of the void space between two adjacent yarns to the yarn diameter, T y, was integrated into the lenticular Cassie–Baxter model of woven fabric (i.e., plain structure). Then, the role of void space resisting or repelling oil was quantified by measuring the contact angle of dodecane (γ LV = 25.3 mN/m) on the surface of the fabric samples with varied void spaces. The theoretical model predicted that the fabric’s oil resistance or repellence increases as the void space increases, and the role of void space at the macroscale was more important than at the micro- or nanoscale. The predicted tendency of a fabric’s apparent contact angle with oil, θ F, was in good agreement with experiment and showed the value of incorporating T y in the prediction of the liquid-resistant or repellent behavior. Contrary to the prediction, increasing T y further caused the liquid drop on the surfaces to have a reduced contact angle, θ F, due to the sagging of liquid into the void space.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Lee HJ, Michielsen S (2007) Preparation of superhydrophobic rough surface. J Polym Sci Part B Polym Phys 45:253–261CrossRef Lee HJ, Michielsen S (2007) Preparation of superhydrophobic rough surface. J Polym Sci Part B Polym Phys 45:253–261CrossRef
3.
Zurück zum Zitat Bhushan B, Jung YC (2011) Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Prog Mater Sci 56:100–108CrossRef Bhushan B, Jung YC (2011) Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Prog Mater Sci 56:100–108CrossRef
4.
Zurück zum Zitat Bhushan B (2009) Biomimetics: lessons from nature—an overview. Philos Trans R Soc A Math Phys Eng Sci 367:1445–1486CrossRef Bhushan B (2009) Biomimetics: lessons from nature—an overview. Philos Trans R Soc A Math Phys Eng Sci 367:1445–1486CrossRef
5.
Zurück zum Zitat Zhao H, Law KY (2012) Directional self-cleaning superoleophobic surface. Langmuir 28:11812–11818CrossRef Zhao H, Law KY (2012) Directional self-cleaning superoleophobic surface. Langmuir 28:11812–11818CrossRef
6.
Zurück zum Zitat Eadie L, Ghosh TK (2011) Biomimicry in textiles: past, present and potential. An overview. J R Soc Interfaces 8:761–775CrossRef Eadie L, Ghosh TK (2011) Biomimicry in textiles: past, present and potential. An overview. J R Soc Interfaces 8:761–775CrossRef
7.
Zurück zum Zitat Tuteja A, Choi W, McKinley GH, Cohen RE, Rubner MF (2008) Design parameters for superhydrophobicity and superoleophobicity. MRS Bull 33:752–758CrossRef Tuteja A, Choi W, McKinley GH, Cohen RE, Rubner MF (2008) Design parameters for superhydrophobicity and superoleophobicity. MRS Bull 33:752–758CrossRef
8.
Zurück zum Zitat Tuteja A, Choi W, Ma M, Mabry MJ, Mazzella ASA (2007) Designing superoleophobic surfaces. Science 318:1618–1622CrossRef Tuteja A, Choi W, Ma M, Mabry MJ, Mazzella ASA (2007) Designing superoleophobic surfaces. Science 318:1618–1622CrossRef
10.
Zurück zum Zitat Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–551CrossRef Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–551CrossRef
11.
Zurück zum Zitat Michielsen S, Lee HJ (2007) Design of a superhydrophobic surface using woven structures. Langmuir 23:6004–6010CrossRef Michielsen S, Lee HJ (2007) Design of a superhydrophobic surface using woven structures. Langmuir 23:6004–6010CrossRef
12.
Zurück zum Zitat Shanahan WJ, Hearle JWS (1978) An energy method for calculations in fabric mechanics part II: examples of application of the method to woven fabrics. J Text Inst 69:92–100CrossRef Shanahan WJ, Hearle JWS (1978) An energy method for calculations in fabric mechanics part II: examples of application of the method to woven fabrics. J Text Inst 69:92–100CrossRef
13.
Zurück zum Zitat Zhu Y (2016) The creation of superhydrophobic yarn through a duck feather structure, M.S. Thesis, NC State University Zhu Y (2016) The creation of superhydrophobic yarn through a duck feather structure, M.S. Thesis, NC State University
14.
Zurück zum Zitat Peirce FT (1937) 5—the geometry of cloth structure. J Text Inst Trans 28:45–96CrossRef Peirce FT (1937) 5—the geometry of cloth structure. J Text Inst Trans 28:45–96CrossRef
Metadaten
Titel
Geometric impact of void space in woven fabrics on oil resistance or repellency
verfasst von
Jihye Lim
Nancy Powell
Hoonjoo Lee
Stephen Michielsen
Publikationsdatum
24.03.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 13/2017
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1022-9

Weitere Artikel der Ausgabe 13/2017

Journal of Materials Science 13/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.