Skip to main content

2012 | OriginalPaper | Buchkapitel

Geometric Mechanics, Dynamics, and Control of Fishlike Swimming in a Planar Ideal Fluid

verfasst von : Scott David Kelly, Parthesh Pujari, Hailong Xiong

Erschienen in: Natural Locomotion in Fluids and on Surfaces

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We summarize the geometric treatment of locomotion in an ideal fluid in the absence of vorticity and link this work to a planar model incorporating localized vortex shedding evocative of vortex shedding from the caudal fin of a swimming fish. We present simulations of open-loop and closed-loop navigation and energy-harvesting by a Joukowski foil with variable camber shedding discrete vorticity from its trailing tip.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Specifically, the swimmer’s effective mass in the horizontal direction.
 
2
Planar Stokes flow requires a modified treatment due to Stokes’ paradox[1].
 
3
Compare the role of of IV  − 1 here to that of the Reynolds number in the Navier-Stokes equations, which become the equations for creeping flow as Re → 0 [3].
 
4
In the context of Stokes flow, this is the famous scallop theorem [13].
 
5
Our analysis relies on the use of conformal maps in the manner described in [11], prohibiting the arbitrary assignment of values to the parameters in (6). The conformal nature of the transformations used in our simulations is addressed in [18].
 
Literatur
[1].
Zurück zum Zitat Birkhoff G (1978) Hydrodynamics: a study in logic, fact, and similitude. Greenwood, Westport Birkhoff G (1978) Hydrodynamics: a study in logic, fact, and similitude. Greenwood, Westport
[2].
Zurück zum Zitat Bloch AM, Krishnaprasad PS, Marsden JE, Murray RM (1996) Nonholonomic mechanical systems with symmetry. Arch Ration Mech Anal 136:21–99MathSciNetMATHCrossRef Bloch AM, Krishnaprasad PS, Marsden JE, Murray RM (1996) Nonholonomic mechanical systems with symmetry. Arch Ration Mech Anal 136:21–99MathSciNetMATHCrossRef
[3].
Zurück zum Zitat Childress S (1981) Mechanics of swimming and flying. Cambridge University Press, CambridgeMATHCrossRef Childress S (1981) Mechanics of swimming and flying. Cambridge University Press, CambridgeMATHCrossRef
[4].
Zurück zum Zitat Kelly SD (1998) The mechanics and control of robotic locomotion with applications to aquatic vehicles, Ph.D. thesis, California Institute of Technology Kelly SD (1998) The mechanics and control of robotic locomotion with applications to aquatic vehicles, Ph.D. thesis, California Institute of Technology
[5].
Zurück zum Zitat Kelly SD, Murray RM (1995) Geometric phases and robotic locomotion. J Robot Syst 12:417–431MATHCrossRef Kelly SD, Murray RM (1995) Geometric phases and robotic locomotion. J Robot Syst 12:417–431MATHCrossRef
[6].
Zurück zum Zitat Kelly SD, Pujari P (2010) Propulsive energy harvesting by a fishlike vehicle in a vortex flow: computational modeling and control. In: Proceedings of the 49th IEEE conference on decision and control, Atlanta Kelly SD, Pujari P (2010) Propulsive energy harvesting by a fishlike vehicle in a vortex flow: computational modeling and control. In: Proceedings of the 49th IEEE conference on decision and control, Atlanta
[7].
Zurück zum Zitat Kobayashi S, Nomizu K (1963) Foundations of differential geometry, vol 1. Interscience Publishers, New YorkMATH Kobayashi S, Nomizu K (1963) Foundations of differential geometry, vol 1. Interscience Publishers, New YorkMATH
[8].
Zurück zum Zitat Sir Lamb H (1945) Hydrodynamics. Dover, New York Sir Lamb H (1945) Hydrodynamics. Dover, New York
[9].
Zurück zum Zitat Marsden JE, Ratiu TS (1999) Introduction to mechanics and symmetry, 2nd edn. Springer, New YorkMATH Marsden JE, Ratiu TS (1999) Introduction to mechanics and symmetry, 2nd edn. Springer, New YorkMATH
[10].
Zurück zum Zitat Marsden JE, Weinstein A (1983) Coadjoint orbits, vortices, and Clebsch variables for incompressible fluids. Physica 7D:305–323MathSciNet Marsden JE, Weinstein A (1983) Coadjoint orbits, vortices, and Clebsch variables for incompressible fluids. Physica 7D:305–323MathSciNet
[11].
Zurück zum Zitat Milne-Thomson LM (1996) Theoretical hydrodynamics. Dover, New York Milne-Thomson LM (1996) Theoretical hydrodynamics. Dover, New York
[13].
[14].
Zurück zum Zitat Shashikanth BN (2005) Poisson brackets for the dynamically interacting system of A 2D rigid cylinder and N point vortices: the case of arbitrary smooth cylinder Shapes. Regul Chaotic Dyn 10(1):1–14MathSciNetMATHCrossRef Shashikanth BN (2005) Poisson brackets for the dynamically interacting system of A 2D rigid cylinder and N point vortices: the case of arbitrary smooth cylinder Shapes. Regul Chaotic Dyn 10(1):1–14MathSciNetMATHCrossRef
[15].
Zurück zum Zitat Streitlien K, Triantafyllou MS (1995) Force and moment on a Joukowski profile in the presence of point vortices. AIAA J 33(4):603–610MATHCrossRef Streitlien K, Triantafyllou MS (1995) Force and moment on a Joukowski profile in the presence of point vortices. AIAA J 33(4):603–610MATHCrossRef
[16].
Zurück zum Zitat von Kármán T, Burgers JM (1934) General aerodynamic theory: perfect fluids. In: Aerodyn theory, vol II. Berlin, Springer von Kármán T, Burgers JM (1934) General aerodynamic theory: perfect fluids. In: Aerodyn theory, vol II. Berlin, Springer
[17].
Zurück zum Zitat von Mises R (1959) Theory of flight. Dover, New York von Mises R (1959) Theory of flight. Dover, New York
[18].
Zurück zum Zitat Xiong H (2007) Geometric mechanics, ideal hydrodynamics, and the locomotion of planar shape-changing aquatic vehicles, Ph.D. thesis, University of Illinois at Urbana-Champaign Xiong H (2007) Geometric mechanics, ideal hydrodynamics, and the locomotion of planar shape-changing aquatic vehicles, Ph.D. thesis, University of Illinois at Urbana-Champaign
Metadaten
Titel
Geometric Mechanics, Dynamics, and Control of Fishlike Swimming in a Planar Ideal Fluid
verfasst von
Scott David Kelly
Parthesh Pujari
Hailong Xiong
Copyright-Jahr
2012
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-3997-4_7