Skip to main content
Erschienen in: Engineering with Computers 3/2019

28.08.2018 | Original Article

Geometrically nonlinear analysis of elastoplastic behavior of functionally graded shells

verfasst von: Hanen Jrad, Jamel Mars, Mondher Wali, Fakhreddine Dammak

Erschienen in: Engineering with Computers | Ausgabe 3/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A geometrically nonlinear analysis of elastoplastic ceramic/metal functionally graded material (FGM) shells is investigated in this paper based on the first-order shear deformation theory. The elastoplastic behavior of the ceramic particle-reinforced metal matrix FGM shell is assumed to follow Ludwik hardening law. The elastoplastic material properties are assumed to vary smoothly through the thickness of the shells. The Mori–Tanaka model and self-consistent formulas of Suquet are employed to locally evaluate effective elastoplastic parameters of the ceramic/metal FGM composite. The homogenization formulation and numerical algorithms are implemented into ABAQUS/Standard via a user material subroutine (UMAT) developed to study the FG shells in large displacements and rotations. With the aim of demonstrating the accuracy of the present method, current numerical results are compared to experimental and numerical ones considering geometrically nonlinear elastoplastic FGMs and show very good agreement. The overall robustness of the new developed solution taking into account both geometric and material nonlinearities is demonstrated through several non-trivial benchmark problems taken from the literature. The effect of the constituent distribution on the deflections is analyzed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Pompea W, Worch H, Epple M, Friess W, Gelinsky M, Greil P, Hempele U, Scharnweber D, Schulte K (2003) Functionally graded materials for biomedical applications. Mater Sci Eng A 362(1–2):40–60CrossRef Pompea W, Worch H, Epple M, Friess W, Gelinsky M, Greil P, Hempele U, Scharnweber D, Schulte K (2003) Functionally graded materials for biomedical applications. Mater Sci Eng A 362(1–2):40–60CrossRef
3.
Zurück zum Zitat Kidane A, Shukla A (2008) Dynamic constitutive behavior of Ti/TiB FGM under thermo mechanical loading. J Mater Sci 43:2771–2777CrossRef Kidane A, Shukla A (2008) Dynamic constitutive behavior of Ti/TiB FGM under thermo mechanical loading. J Mater Sci 43:2771–2777CrossRef
4.
Zurück zum Zitat Yang J, Shena HS (2003) Non-linear analysis of functionally graded plates under transverse and in-plane loads. Int J Non-Linear Mech 38:467–482CrossRef Yang J, Shena HS (2003) Non-linear analysis of functionally graded plates under transverse and in-plane loads. Int J Non-Linear Mech 38:467–482CrossRef
5.
Zurück zum Zitat Woo J, Merguid SA (2001) Non-linear analysis of functionally graded plates and shallow shells. Int J Solids Struct 38:7409–7421CrossRefMATH Woo J, Merguid SA (2001) Non-linear analysis of functionally graded plates and shallow shells. Int J Solids Struct 38:7409–7421CrossRefMATH
7.
Zurück zum Zitat Ibrahim IA, Mohamed FA, Lavernia EJ (1991) Particulate reinforced metal matrix composites—a review. J Mater Sci 26(5):1137–1156CrossRef Ibrahim IA, Mohamed FA, Lavernia EJ (1991) Particulate reinforced metal matrix composites—a review. J Mater Sci 26(5):1137–1156CrossRef
8.
Zurück zum Zitat Tjong SC, Ma ZY (2000) Microstructural and mechanical characteristics of in situ metal matrix composites. Mater Sci Eng Rep 29(3–4):49–113CrossRef Tjong SC, Ma ZY (2000) Microstructural and mechanical characteristics of in situ metal matrix composites. Mater Sci Eng Rep 29(3–4):49–113CrossRef
9.
Zurück zum Zitat Praveen GN, Reddy JN (1998) Nonlinear transient thermoelastic analysis of functionally graded ceramic–metal plates. Int J Solids Struct 35:4457–4476CrossRefMATH Praveen GN, Reddy JN (1998) Nonlinear transient thermoelastic analysis of functionally graded ceramic–metal plates. Int J Solids Struct 35:4457–4476CrossRefMATH
10.
Zurück zum Zitat Trabelsi S, Frikha A, Zghal S, Dammak F (2018) Thermal post-buckling analysis of functionally graded material structures using a modified FSDT. Int J Mech Sci 144:74–89CrossRef Trabelsi S, Frikha A, Zghal S, Dammak F (2018) Thermal post-buckling analysis of functionally graded material structures using a modified FSDT. Int J Mech Sci 144:74–89CrossRef
11.
Zurück zum Zitat Ma LS, Wang TJ (2003) Nonlinear bending and postbuckling of functionally graded circular plates under mechanical and thermal loadings”. Int J Non-Linear Mech 40:3311–3330MATH Ma LS, Wang TJ (2003) Nonlinear bending and postbuckling of functionally graded circular plates under mechanical and thermal loadings”. Int J Non-Linear Mech 40:3311–3330MATH
12.
Zurück zum Zitat Kar VR, Panda S (2015) Large deformation bending analysis of functionally graded spherical shell using FEM. Struct Eng Mech 53(4):661–679CrossRef Kar VR, Panda S (2015) Large deformation bending analysis of functionally graded spherical shell using FEM. Struct Eng Mech 53(4):661–679CrossRef
14.
Zurück zum Zitat Kar VR, Panda SK (2016) Post-buckling behaviour of shear deformable functionally graded curved shell panel under edge compression. Int J Mech Sci 115:318–324CrossRef Kar VR, Panda SK (2016) Post-buckling behaviour of shear deformable functionally graded curved shell panel under edge compression. Int J Mech Sci 115:318–324CrossRef
15.
Zurück zum Zitat Kar VR, Panda SK (2015) Thermoelastic analysis of functionally graded doubly curved shell panels using nonlinear finite element method. Compos Struct 129:202–212CrossRef Kar VR, Panda SK (2015) Thermoelastic analysis of functionally graded doubly curved shell panels using nonlinear finite element method. Compos Struct 129:202–212CrossRef
16.
Zurück zum Zitat Mahapatra TR, Kar VR, Panda SK, Mehar K (2017) Nonlinear thermoelastic deflection of temperature-dependent FGM curved shallow shell under nonlinear thermal loading. J Therm Stress 40(9):1184–1199CrossRef Mahapatra TR, Kar VR, Panda SK, Mehar K (2017) Nonlinear thermoelastic deflection of temperature-dependent FGM curved shallow shell under nonlinear thermal loading. J Therm Stress 40(9):1184–1199CrossRef
17.
Zurück zum Zitat Kar VR, Panda SK (2016) Nonlinear thermomechanical behavior of functionally graded material cylindrical/hyperbolic/elliptical shell panel with temperature-dependent and temperature-independent properties. J Press Vessel 138(6):061202CrossRef Kar VR, Panda SK (2016) Nonlinear thermomechanical behavior of functionally graded material cylindrical/hyperbolic/elliptical shell panel with temperature-dependent and temperature-independent properties. J Press Vessel 138(6):061202CrossRef
18.
Zurück zum Zitat Panda SK, Katariya PV (2015) Stability and free vibration behaviour of laminated composite panels under thermo-mechanical loading. Int J App Comput Math 1(3):475–490MathSciNetCrossRefMATH Panda SK, Katariya PV (2015) Stability and free vibration behaviour of laminated composite panels under thermo-mechanical loading. Int J App Comput Math 1(3):475–490MathSciNetCrossRefMATH
19.
Zurück zum Zitat Kar VR, Panda SK (2015) Nonlinear flexural vibration of shear deformable functionally graded spherical shell panel. Steel Compos Struct 18(3):693–709CrossRef Kar VR, Panda SK (2015) Nonlinear flexural vibration of shear deformable functionally graded spherical shell panel. Steel Compos Struct 18(3):693–709CrossRef
20.
Zurück zum Zitat Kar VR, Panda SK (2016) Geometrical nonlinear free vibration analysis of FGM spherical panel under nonlinear thermal loading with TD and TID properties. J Therm Stress 39(8):942–959CrossRef Kar VR, Panda SK (2016) Geometrical nonlinear free vibration analysis of FGM spherical panel under nonlinear thermal loading with TD and TID properties. J Therm Stress 39(8):942–959CrossRef
22.
Zurück zum Zitat Zghal S, Frikha A, Dammak F (2018) Non-linear bending analysis of nanocomposites reinforced by graphene-nanotubes with finite shell element and membrane enhancement. Eng Struct 158:95–109CrossRef Zghal S, Frikha A, Dammak F (2018) Non-linear bending analysis of nanocomposites reinforced by graphene-nanotubes with finite shell element and membrane enhancement. Eng Struct 158:95–109CrossRef
23.
Zurück zum Zitat Zghal S, Frikha A, Dammak F (2018) Free vibration analysis of carbon nanotube-reinforced functionally graded composite shell structures. Appl Math Model 53:132–155MathSciNetCrossRef Zghal S, Frikha A, Dammak F (2018) Free vibration analysis of carbon nanotube-reinforced functionally graded composite shell structures. Appl Math Model 53:132–155MathSciNetCrossRef
24.
Zurück zum Zitat Zghal S, Frikha A, Dammak F (2017) Static analysis of functionally graded carbon nanotube-reinforced plate and shell structures. Compos Struct 176:1107–1123CrossRef Zghal S, Frikha A, Dammak F (2017) Static analysis of functionally graded carbon nanotube-reinforced plate and shell structures. Compos Struct 176:1107–1123CrossRef
25.
Zurück zum Zitat Frikha A, Zghal S, Dammak F (2018) Dynamic analysis of functionally graded carbon nanotubes-reinforced plate and shell structures using a double directors finite shell element. Aerosp Sci Technol 78:438–451CrossRef Frikha A, Zghal S, Dammak F (2018) Dynamic analysis of functionally graded carbon nanotubes-reinforced plate and shell structures using a double directors finite shell element. Aerosp Sci Technol 78:438–451CrossRef
26.
Zurück zum Zitat Moita JS, Araújo AL, Mota Soares CM, Mota Soares CA, Herskovits J (2016) Material and geometric nonlinear analysis of functionally graded plate-shell Type structures. Appl Compos Mater 23:537–554CrossRef Moita JS, Araújo AL, Mota Soares CM, Mota Soares CA, Herskovits J (2016) Material and geometric nonlinear analysis of functionally graded plate-shell Type structures. Appl Compos Mater 23:537–554CrossRef
27.
Zurück zum Zitat Tamura I, Tomota Y, Ozawa H (1973) Strength and ductility of Fe–Ni–C alloys composed of austenite and martensite with various strength. In: Proceedings of the third international conference on strength of metals and alloys, Cambridge: Institute of Metals, 1, pp. 611–5 Tamura I, Tomota Y, Ozawa H (1973) Strength and ductility of Fe–Ni–C alloys composed of austenite and martensite with various strength. In: Proceedings of the third international conference on strength of metals and alloys, Cambridge: Institute of Metals, 1, pp. 611–5
28.
Zurück zum Zitat Williamson RL, Rabin BH, Drake JT (1993) Finite element analysis of thermal residual stresses at graded ceramic/metal interfaces), part (I), pp. model description and geometrical effects. J Appl Phys 74:1310–1320CrossRef Williamson RL, Rabin BH, Drake JT (1993) Finite element analysis of thermal residual stresses at graded ceramic/metal interfaces), part (I), pp. model description and geometrical effects. J Appl Phys 74:1310–1320CrossRef
29.
Zurück zum Zitat Vaghefi R, Hematiyan MR, Nayebi A (2016) Three-dimensional thermo-elastoplastic analysis of thick functionally graded plates using the meshless local Petrov–Galerkin method. Eng Anal Boundary Elem 71:34–49MathSciNetCrossRefMATH Vaghefi R, Hematiyan MR, Nayebi A (2016) Three-dimensional thermo-elastoplastic analysis of thick functionally graded plates using the meshless local Petrov–Galerkin method. Eng Anal Boundary Elem 71:34–49MathSciNetCrossRefMATH
30.
Zurück zum Zitat Bocciarelli M, Bolzon G, Maier G (2008) A constitutive model of metal–ceramic functionally graded material behavior), pp. formulation and parameter identification. Comput Mater Sci 43:16–16CrossRef Bocciarelli M, Bolzon G, Maier G (2008) A constitutive model of metal–ceramic functionally graded material behavior), pp. formulation and parameter identification. Comput Mater Sci 43:16–16CrossRef
31.
Zurück zum Zitat Orlik J (2010) Asymptotic homogenization algorithm for reinforced metal-matrix elastoplastic composites. Compos Struct 92(7):1581–1590CrossRef Orlik J (2010) Asymptotic homogenization algorithm for reinforced metal-matrix elastoplastic composites. Compos Struct 92(7):1581–1590CrossRef
32.
Zurück zum Zitat Suquet P (1997) Effective properties of nonlinear composites. In: Suquet P (ed) Continuum micromechanics. CISM Courses and Lecture Notes. Springer, Heidelberg, 377, pp. 197–264 Suquet P (1997) Effective properties of nonlinear composites. In: Suquet P (ed) Continuum micromechanics. CISM Courses and Lecture Notes. Springer, Heidelberg, 377, pp. 197–264
33.
Zurück zum Zitat Mars J, Chebbi E, Wali M, Dammak F (2018) Numerical and experimental investigations of low velocity impact on glass fiber-reinforced polyamide. Compos Part B 146(1):116–123CrossRef Mars J, Chebbi E, Wali M, Dammak F (2018) Numerical and experimental investigations of low velocity impact on glass fiber-reinforced polyamide. Compos Part B 146(1):116–123CrossRef
34.
Zurück zum Zitat Mars J, Ben Said L, Wali M, Dammak F (2018) Elasto-plastic modelling of low-velocity impact on functionally graded circular plates. Int J Appl Mech 10(04):1850038CrossRef Mars J, Ben Said L, Wali M, Dammak F (2018) Elasto-plastic modelling of low-velocity impact on functionally graded circular plates. Int J Appl Mech 10(04):1850038CrossRef
35.
Zurück zum Zitat Bao G, Wang L (1995) Multiple cracking in functionally graded ceramic/metal coatings. Int J Solids Struct 32:2853–2871CrossRefMATH Bao G, Wang L (1995) Multiple cracking in functionally graded ceramic/metal coatings. Int J Solids Struct 32:2853–2871CrossRefMATH
36.
Zurück zum Zitat Rahman S, Chakraborty A (2007) A stochastic micromechanical model for elastic properties of functionally graded materials. Mech Mater 39(6):548–563CrossRef Rahman S, Chakraborty A (2007) A stochastic micromechanical model for elastic properties of functionally graded materials. Mech Mater 39(6):548–563CrossRef
37.
Zurück zum Zitat Pettermann HE, Huber CO, Luxner MH, Nogales S, Böhm HJ (2010) An incremental Mori-tanaka homogenization scheme for finite strain thermoelastoplasticity of mmcs. Materials 3(1):434–451CrossRef Pettermann HE, Huber CO, Luxner MH, Nogales S, Böhm HJ (2010) An incremental Mori-tanaka homogenization scheme for finite strain thermoelastoplasticity of mmcs. Materials 3(1):434–451CrossRef
38.
Zurück zum Zitat Yu J, Kidane A (2014) Modeling functionally graded materials containing multiple heterogeneities. Acta Mech 225(7):1931–1943CrossRefMATH Yu J, Kidane A (2014) Modeling functionally graded materials containing multiple heterogeneities. Acta Mech 225(7):1931–1943CrossRefMATH
39.
Zurück zum Zitat Belhassen L, Koubaa S, Wali M, Dammak F (2016) Numerical prediction of springback and ductile damage in rubber-pad forming process of aluminum sheet metal. Int J Mech Sci 117:218–226CrossRef Belhassen L, Koubaa S, Wali M, Dammak F (2016) Numerical prediction of springback and ductile damage in rubber-pad forming process of aluminum sheet metal. Int J Mech Sci 117:218–226CrossRef
40.
Zurück zum Zitat Wali M, Chouchene H, Ben Said L, Dammak F (2015) One-equation integration algorithm of a generalized quadratic yield functions with Chaboche non-linear isotropic/kinematic hardening. Int J Mech Sci 92:223–232CrossRef Wali M, Chouchene H, Ben Said L, Dammak F (2015) One-equation integration algorithm of a generalized quadratic yield functions with Chaboche non-linear isotropic/kinematic hardening. Int J Mech Sci 92:223–232CrossRef
41.
Zurück zum Zitat Wali M, Autay R, Mars J, Dammak F (2016) A simple integration algorithm for a non-associated anisotropic plasticity model for sheet metal forming. Int J Numer Meth Eng 107:183–204MathSciNetCrossRefMATH Wali M, Autay R, Mars J, Dammak F (2016) A simple integration algorithm for a non-associated anisotropic plasticity model for sheet metal forming. Int J Numer Meth Eng 107:183–204MathSciNetCrossRefMATH
42.
Zurück zum Zitat Mars J, Wali M, Jarraya A, Dammak F, Dhiab A (2015) Finite element implementation of an orthotropic plasticity model for sheet metal in low velocity impact simulations. Thin-Walled Struct 89:93–100CrossRef Mars J, Wali M, Jarraya A, Dammak F, Dhiab A (2015) Finite element implementation of an orthotropic plasticity model for sheet metal in low velocity impact simulations. Thin-Walled Struct 89:93–100CrossRef
43.
Zurück zum Zitat Ben Said L, Mars J, Wali M, Dammak F (2017) Numerical prediction of the ductile damage in single point incremental forming process. Int J Mech Sci 131–132:546–558CrossRef Ben Said L, Mars J, Wali M, Dammak F (2017) Numerical prediction of the ductile damage in single point incremental forming process. Int J Mech Sci 131–132:546–558CrossRef
45.
Zurück zum Zitat Koubaa S, Mars J, Wali M, Dammak F (2017) Numerical study of anisotropic behavior of Aluminum alloy subjected to dynamic perforation. Int J Impact Eng 101:105–114CrossRef Koubaa S, Mars J, Wali M, Dammak F (2017) Numerical study of anisotropic behavior of Aluminum alloy subjected to dynamic perforation. Int J Impact Eng 101:105–114CrossRef
46.
Zurück zum Zitat Gunes R, Aydin M, Apalak MK, Reddy JN (2014) Experimental and numerical investigations of low velocity impact on functionally graded circular plates. Compos Part B: Eng 59:21–32CrossRef Gunes R, Aydin M, Apalak MK, Reddy JN (2014) Experimental and numerical investigations of low velocity impact on functionally graded circular plates. Compos Part B: Eng 59:21–32CrossRef
47.
Zurück zum Zitat Thai HT, Kim SE (2015) A review of theories for the modeling and analysis of functionally graded plates and shells. Compos Struct 128:70–86CrossRef Thai HT, Kim SE (2015) A review of theories for the modeling and analysis of functionally graded plates and shells. Compos Struct 128:70–86CrossRef
48.
Zurück zum Zitat (2014) Abaqus user's manual-version 6.14. Dassault Systems Simulia Corp, Providence, RI (2014) Abaqus user's manual-version 6.14. Dassault Systems Simulia Corp, Providence, RI
50.
Zurück zum Zitat Kabir MZ, Nazari A (2011) The study of ultimate strength in notched cylinders subjected to axial compression. J Constr Steel Res 67(10):1442–1452CrossRef Kabir MZ, Nazari A (2011) The study of ultimate strength in notched cylinders subjected to axial compression. J Constr Steel Res 67(10):1442–1452CrossRef
51.
Zurück zum Zitat Teng JG, Hu YM (2007) Behaviour of FRP-jacketed circular steel tubes and cylindrical shells under axial compression. Constr Build Mater 21(4):827–838CrossRef Teng JG, Hu YM (2007) Behaviour of FRP-jacketed circular steel tubes and cylindrical shells under axial compression. Constr Build Mater 21(4):827–838CrossRef
52.
Zurück zum Zitat Kim CH, Sze KY, Kim YH (2003) Curved quadratic triangular degenerated- and solid-shell elements for geometric nonlinear analysis. Int J Numer Meth Eng 57:2077–2097CrossRefMATH Kim CH, Sze KY, Kim YH (2003) Curved quadratic triangular degenerated- and solid-shell elements for geometric nonlinear analysis. Int J Numer Meth Eng 57:2077–2097CrossRefMATH
53.
Zurück zum Zitat Kim KD, Lomboy GR, HAN SC (2008) Geometrically non-linear analysis of functionally graded material (FGM) plates and shells using a four-node quasi-conforming shell element. J Compos Mater 42:485–511CrossRef Kim KD, Lomboy GR, HAN SC (2008) Geometrically non-linear analysis of functionally graded material (FGM) plates and shells using a four-node quasi-conforming shell element. J Compos Mater 42:485–511CrossRef
54.
Zurück zum Zitat Sze KY, Liua XH, Lob SH (2004) Popular benchmark problems for geometric nonlinear analysis of shells. Finite Elem Anal Des 40:1551–1569CrossRef Sze KY, Liua XH, Lob SH (2004) Popular benchmark problems for geometric nonlinear analysis of shells. Finite Elem Anal Des 40:1551–1569CrossRef
55.
Zurück zum Zitat Sze KY, Zheng SJ (2002) A stabilized hybrid-stress solid element for geometrically nonlinear homogeneous and laminated shell analyses. Comput Methods Appl Mech Eng 191:1945–1966CrossRefMATH Sze KY, Zheng SJ (2002) A stabilized hybrid-stress solid element for geometrically nonlinear homogeneous and laminated shell analyses. Comput Methods Appl Mech Eng 191:1945–1966CrossRefMATH
56.
Zurück zum Zitat Sze KY, Chan WK, Pian THH (2002) An eight-node hybrid-stress solid-shell element for geometric nonlinear analysis of elastic shells”. Int J Numer Meth Eng 55:853–878CrossRefMATH Sze KY, Chan WK, Pian THH (2002) An eight-node hybrid-stress solid-shell element for geometric nonlinear analysis of elastic shells”. Int J Numer Meth Eng 55:853–878CrossRefMATH
57.
Zurück zum Zitat Sansour C, Kollmann FG (2000) Families of 4-nodes and 9-nodes finite elements for a finite deformation shell theory: an assessment of hybrid stress, hybrid strain and enhanced strain elements. Comput Mech 24(6):435–447CrossRefMATH Sansour C, Kollmann FG (2000) Families of 4-nodes and 9-nodes finite elements for a finite deformation shell theory: an assessment of hybrid stress, hybrid strain and enhanced strain elements. Comput Mech 24(6):435–447CrossRefMATH
58.
Zurück zum Zitat Simo JC, Fox DD, Rifai MS (1990) On a stress resultant geometrically exact shell model. Part (III), pp. computational aspects of the nonlinear theory. Comput Methods Appl Mech Eng 79:21–70CrossRefMATH Simo JC, Fox DD, Rifai MS (1990) On a stress resultant geometrically exact shell model. Part (III), pp. computational aspects of the nonlinear theory. Comput Methods Appl Mech Eng 79:21–70CrossRefMATH
59.
Zurück zum Zitat Simo JC, Rifai MS, Fox DD (1990) On a stress resultant geometrically exact shell model, part (IV), pp. variable thickness shells with through-the-thickness stretching. Comput Methods Appl Mech Eng 81: 91–96CrossRefMATH Simo JC, Rifai MS, Fox DD (1990) On a stress resultant geometrically exact shell model, part (IV), pp. variable thickness shells with through-the-thickness stretching. Comput Methods Appl Mech Eng 81: 91–96CrossRefMATH
60.
Zurück zum Zitat Lee SJ, Kanok-Nukulchai W (1998) A nine-node assumed strain finite element for large deformation analysis of laminated shells. Int J Numer Meth Eng 42:777–798CrossRefMATH Lee SJ, Kanok-Nukulchai W (1998) A nine-node assumed strain finite element for large deformation analysis of laminated shells. Int J Numer Meth Eng 42:777–798CrossRefMATH
61.
Zurück zum Zitat Hong WI, Kim JH, Kim YH, Lee SW (2001) An assumed strain triangular curved solid shell element formulation for analysis for plates and shells undergoing finite rotations. Int J Numer Meth Eng 52:747–761CrossRefMATH Hong WI, Kim JH, Kim YH, Lee SW (2001) An assumed strain triangular curved solid shell element formulation for analysis for plates and shells undergoing finite rotations. Int J Numer Meth Eng 52:747–761CrossRefMATH
62.
Zurück zum Zitat Arciniega RA, Reddy JN (2007) Large deformation analysis of functionally graded shells. Int J Solids Struct 44:2036–2052CrossRefMATH Arciniega RA, Reddy JN (2007) Large deformation analysis of functionally graded shells. Int J Solids Struct 44:2036–2052CrossRefMATH
63.
Zurück zum Zitat Arciniega RA, Reddy JN (2007) Tensor-based finite element formulation for geometrically nonlinear analysis of shell structures. Comput Methods Appl Mech Eng 196:1048–1073MathSciNetCrossRefMATH Arciniega RA, Reddy JN (2007) Tensor-based finite element formulation for geometrically nonlinear analysis of shell structures. Comput Methods Appl Mech Eng 196:1048–1073MathSciNetCrossRefMATH
64.
Zurück zum Zitat Rezaiee-Pajand M, Arabi E (2016) A curved triangular element for nonlinear analysis of laminated shells. Compos Struct 153:538–548CrossRef Rezaiee-Pajand M, Arabi E (2016) A curved triangular element for nonlinear analysis of laminated shells. Compos Struct 153:538–548CrossRef
65.
Zurück zum Zitat Balah M, Al-Ghamedy HN (2002) Finite element formulation of a third order laminated finite rotation shell element. Comput Struct 80:1975–1990CrossRef Balah M, Al-Ghamedy HN (2002) Finite element formulation of a third order laminated finite rotation shell element. Comput Struct 80:1975–1990CrossRef
66.
Zurück zum Zitat Mars J, Koubaa S, Wali M, Dammak F (2017) Numerical analysis of geometrically non-linear behavior of functionally graded shells. Latin Am J Solids Struct 14(11):1952–1978CrossRef Mars J, Koubaa S, Wali M, Dammak F (2017) Numerical analysis of geometrically non-linear behavior of functionally graded shells. Latin Am J Solids Struct 14(11):1952–1978CrossRef
67.
Zurück zum Zitat Frikha A, Zghal S, Dammak F (2018) Finite rotation three and four nodes shell elements for functionally graded carbon nanotubes-reinforced thin composite shells analysis. Comput Methods Appl Mech Eng 329:289–311MathSciNetCrossRef Frikha A, Zghal S, Dammak F (2018) Finite rotation three and four nodes shell elements for functionally graded carbon nanotubes-reinforced thin composite shells analysis. Comput Methods Appl Mech Eng 329:289–311MathSciNetCrossRef
Metadaten
Titel
Geometrically nonlinear analysis of elastoplastic behavior of functionally graded shells
verfasst von
Hanen Jrad
Jamel Mars
Mondher Wali
Fakhreddine Dammak
Publikationsdatum
28.08.2018
Verlag
Springer London
Erschienen in
Engineering with Computers / Ausgabe 3/2019
Print ISSN: 0177-0667
Elektronische ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-018-0633-3

Weitere Artikel der Ausgabe 3/2019

Engineering with Computers 3/2019 Zur Ausgabe

Neuer Inhalt